£— RMO0016
YI Reference manual

STMB8S microcontroller family

January 2009

Introduction

This reference manual provides complete information for application developers on how to
use the STM8S microcontroller memory and peripherals.

The STMS8S is a family of microcontrollers with different memory sizes, packages and
peripherals.

m The STM8S is designed for general purpose applications. For ordering information, pin
description, mechanical and electrical device characteristics, please refer to the STM8S
Performance line and Access line datasheets.

m Forinformation on programming, erasing and protection of the internal Flash memory
please refer to the STM8S Flash Programming Manual (PM0051) and the STM8 SWIM
communication protocol and debug module User Manual (UM0470)

m For information on the STM8 core, please refer to the STM8 CPU Programming Manual
(PMO0051)

Rev 4 1/430

www.st.com

http://www.st.com

Contents RMO0016

Contents
1 Central processingunit(CPU)ccciiiiiiiiinnnnn. 22
1.1 Introduction 22
1.2 CPUTregisters 22
1.2.1 Description of CPU registers 22
1.2.2 STM8 CPU registermapot 26
1.3 Global configuration register (CFG_GCR) 26
1.3.1 Activation level e 26
1.3.2 SWIMdisable 26
1.3.3 Description of global configuration register (CFG_GCR) 27
1.34 Global configuration register map and resetvalues 27
2 BOOt ROM i ittt i e eessnnneanaannanns 28
3 Memory andregistermapcciiiiiiiiinnnnnnnnnnns 29
3.1 Register description abbreviations 29
4 Flash program memory and data EEPROM (FLASH) 30
4.1 Introduction 30
4.2 GloSSaAry . . 30
4.3 FLASH mainfeatures i 30
4.4 Memory organization 31
441 Userbootarea (UBC)ot 34
442 Data EEPROM (DATA) . .. oot ee e e 37
4.4.3 Main program area 37
444 Optionbytes e 38
4.5 Memory protection 38
451 Readout protection 38
45.2 Memory access security system (MASS) 38
45.3 Enabling write access to optionbytes L. 40
4.6 Memory programmingottt 40
4.7 Read-while-write (RWW) 40
4.71 Byte programming 40
4.7.2 Word programmingttt e 41

2/430 Kﬁ

RMO0016 Contents
4.7.3 Block programming e 41

4.7.4 Option byte programming it 43

4.8 ICP and AP . . e 43

4.9 FLASH registers e 45

4.9.1 Flash control register 1 (FLASH_CR1) 45

4.9.2 Flash control register2 (FLASH_CR2) 46

4.9.3 Flash complementary control register 2 (FLASH_NCR2) 47

49.4 Flash protection register (FLASH_FPR) 48

4.9.5 Flash protection register (FLASH_NFPR) 49

4.9.6 Flash program memory unprotecting key register (FLASH_PUKR) ...50

49.7 Data EEPROM unprotection key register (FLASH_DUKR) 50

4.9.8 Flash Status register (FLASH_IAPSR) 51

4.9.9 Flash register map and resetvalues 52

5 Single wire interface module (SWIM) and debug module (DM) 53
5.1 Introduction e 53

5.2 Main features e 53

5.3 SWIMMOAES e e 53

6 Power supplyciiiiiiiiiii it i i e i e e 54
7 Reset (RST) ...t i i ittt e e eassnnnnnraannnnnnns 55
7.1 Reset circuit description 55

7.2 Internal reset SOUICES oot e 55

7.21 Power-on reset (POR) and brown-out reset (BOR) 56

722 Watchdogreset 56

7.2.3 Software reset e 56

7.2.4 SWIMrreset e e 56

7.2.5 lllegalopcode reset i e 57

7.2.6 EMS reset ... 57

7.3 RST registerdescription 58

7.3.1 Reset status register (RST_SR) i .. 58

7.4 RSTregistermap ... 59

8 Clockcontrol (CLK)ciiiiii i i ettt s e nnnnnnnns 60
8.1 Master CloCK SOUICeS e 61

Ky_’ 3/430

Contents RMO0016
8.1.1 HSE .. 62

8.1.2 HSl e 63

8.1.3 LSl 64

8.2 Master clock switching 64
8.2.1 Systemstartup 64

8.2.2 Master clock switching procedures 64

8.3 Low speed clock selection i 67
8.4 CPUclockdivider i e 67
8.5 Peripheral clock gating (PCG)c i, 68
8.6 Clock security system (CSS) i 69
8.7 Clock-out capability (CCO) e 70
8.8 CLKinterrupts 70
8.9 CLKrregisterdescription i 71
8.9.1 Internal clock register (CLK_ICKR), 71

8.9.2 External clock register (CLK_ECKR) 73

8.9.3 Clock master status register (CLK_CMSR) 74

8.9.4 Clock master switch register (CLK_SWR) 74

8.9.5 Switch control register (CLK_SWCR) 75

8.9.6 Clock divider register (CLK_CKDIVR)o 76

8.9.7 Peripheral clock gating register 1 (CLK_PCKENR1) 77

8.9.8 Peripheral clock gating register 2 (CLK_PCKENR2) 78

8.9.9 Clock security system register (CLK_CSSR) 79

8.9.10 Configurable clock output register (CLK_CCOR) 80

8.9.11 CAN external clock control register (CLK_CANCCR) 81

8.9.12 HSI clock calibration trimming register (CLK_HSITRIMR) 82

8.9.13 SWIM clock control register (CLK_SWIMCCR) 83

8.10 CLKregistermapt e 84
9 Powermanagementooiiiiiitiiinnnnnnnnnnnans 85
9.1 General considerations 85
9.2 Clock management for low consumption 86
9.21 Slowing down the systemclock 86

9.2.2 Peripheral clock gating 86

9.3 LOW POWEr MOTES . . . e 87
9.3.1 Waitmode e 87

9.3.2 Haltmode 87

4/430 Kﬁ

RMO0016 Contents
9.3.3 Active Haltmodes 88

9.4 Additional analog powercontrols 89

9.41 Fast Flash wakeup fromHaltmode 89

9.4.2 Very low Flash consumption in Active Haltmode 89

10 Interrupt controller (ITC) oot i e e e anns 90
10.1 ITCintroduction 90

10.2 Interrupt masking and processingflow 90

10.2.1 Servicing pendinginterrupts 91

10.2.2 INterrupt SOUrCESt 92

10.3 Interrupts and low powermodes 93

10.4 Activation level/low power mode control 93

10.5 Concurrent and nested interrupt management 94

10.5.1 Concurrent interrupt managementmode 94

10.5.2 Nested interrupt managementmode 95

10.6 Externalinterrupts 97

10.7 Interruptinstructions e 98

10.8 Interruptmapping 98

10.9 ITCregisterso e 100

10.9.1 CPU Condition Code register interrupt bits (CCR) 100

10.9.2 Software priority register x (ITC_SPRx) 101

10.9.3 External interrupt control register 1 (EXTI_CR1) 102

10.9.4 External interrupt control register 1 (EXTI_CR2) 103

10.9.5 ITCreqgistermapandresetvalues 104

11 General purpose /O ports (GPIO) ...t iiiinnnnnns 105
11.1 Introduction 105

11.2 GPIOmainfeatures i 105

11.3 Port configurationandusage 107

11.3.1 Inputmodes e 107

11.3.2 Outputmodeso e e 108

11.4 Resetconfiguration e 108

11.5 Unused /O PINS ... o e 108

11.6 Lowpowermodesiiiiiiiiii i 108

11.7 Inputmode details 108

Ky_’ 5/430

Contents RMO0016
11.7.1 Alternate function Input 108

11.7.2 Interruptcapability 108

11.7.3 Analogchannels 109

11.7.4 Schmitttrigger 109

11.8 Outputmodedetails 109

11.8.1 Alternate functionoutput 109

11.8.2 Slope control 109

11.9 GPIOTregisters e 110

11.9.1 Port x output data register (Px_ODR) 110

11.9.2 Portx pininput register (Px_IDR) 110

11.9.3 Port x data direction register (Px_DDR) 111

11.9.4 Portxcontrol register1 (Px_CR1) 111

11.9.5 Portxcontrolregister2 (Px_CR2), 112

11.9.6 GPlOregistermap andresetvalues 112

12 Auto-wakeup (AWU) ...ttt iiiinanaaaaeanrrrrnnns 113
12.1 Introduction 113

12.2 AWU functional description 114

1221 AWU o operation 114

12.22 Timebaseselection i 115

12.2.3 LSl clock frequency measurement 116

12.3 AWUTregisters 117

12.3.1 Control/status register (AWU_CSR) 117

12.3.2 Asynchronous prescaler register AWU_APR) 118

12.3.3 Timebase selection register AWU_TBR) 119

12.3.4 AWU registermapandresetvalues 119

13 Beeper(BEEP) ...t i i s 120
13.1 Introduction 120

13.2 BEEP functional description 121

13.2.1 Beeperoperation 121

13.2.2 Beepercalibration 121

13.3 BEEPregisters 122

13.3.1 Beep control/status register (BEEP_CSR) 122

13.3.2 BEEP registermapandresetvalues 122

6/430 Kﬁ

RMO0016 Contents
14 Independent watchdog (IWDG)¢cciiiiiiiiinnrnnnns 123
141 Introduction e 123

14.2 IWDG functional description 123

14.3 IWDG registers e e 125

14.3.1 Keyregister IWDG_KR)t 125

14.3.2 Prescalerregister IWDG_PR) 125

14.3.3 Reload register IWDG_RLR) 126

14.3.4 IWDG registermapandresetvalues 126

15 Window watchdog (WWDG)cciiiiiiiinnnnnnnnnnnns 127
15.1 Introduction 127

152 WWDG mainfeatures 127

15.3 WWDG functional description 127

15.4 Using Halt mode with the WWDG 129

15.5 How to program the watchdogtimeout 129

15.6 WWDG Iow power modesoiiiiiie .. 130

15.7 Hardware watchdogoption i 131

15.8 Using Halt mode with the WWDG (WWDGHALT option) 131

15.9 WWDGiinterrupts 131

15.10 WWDG registers e e 131

15.10.1 Control register (WWDG_CR), 131

15.10.2 Window register (WWDG_WR) 132

15.11 Window watchdog register map and resetvalues 132

16 Timeroverviewottt innni s 133
16.1 Timer feature comparison i 134

16.2 Glossary of timersignalnames 135

17 16-bit advanced control timer (TIM1), 137
17.1 Introduction 137

17.2 TIM1mainfeatures i 138

17.3 TIM1timebaseunit 140

17.3.1 Reading and writing to the 16-bitcounter 141

17.3.2 Write sequence for 16-bit TIM1_ARRregister 141

17.3.3 Prescaler 141

K7_I 7/430

Contents RMO0016
17.3.4 Up-countingmodet 142

17.3.5 Down-countingmode i 144

17.3.6 Center-aligned mode (up/down counting) 146

17.3.7 Repetition down-counter 148

17.4 TIM1 clock/triggercontroller 150
17.41 Prescalerclock (CK_PSC) e 150

17.4.2 Internal clock source (fMASTER) 150

17.4.3 Externalclocksourcemode 1 151

17.4.4 Externalclocksourcemode 2 i iiiiiinennn.. 152

17.4.5 Trigger synchronization 153

17.4.6 Synchronization from TIM5/TIM6 timers 157

17.5 TIM1 capture/comparechannels 163
17.5.1 Write sequence for 16-bit TIM1_CCRiregisters 164

1752 Inputstage e 164

1753 Inputcapturemode 165

1754 Outputstage i 168

1755 Forcedoutputmode 169

17.5.6 Outputcompare modecci i, 169

1757 PWMmMOde e 171

17.5.8 Usingthebreakfunction 178

17.5.9 Clearing the OCIiREF signal on an externalevent 180
17.5.10 Encoderinterfacemode i 180

176 TIMTinterrupts e 183
17.7 TIMTregisters e 184
17.7.1 Controlregister 1 (TIM1_CR1) 184

17.7.2 Controlregister2 (TIM1_CR2) 185

17.7.3 Slave mode control register (TIM1_SMCR) 187

17.7.4 External trigger register (TIM1_ETR) 188

17.7.5 Interrupt enable register (TIM1_IER) 190

17.7.6 Statusregister 1 (TIM1_SR1) 191

17.7.7 Statusregister2 (TIM1_SR2) 192

17.7.8 Event generation register (TIM1_EGR) 193

17.7.9 Capture/compare mode register 1 (TIM1_CCMR1) 195
17.7.10 Capture/compare mode register 2 (TIM1_CCMR2) 198

17.7.11 Capture/compare mode register 3 (TIM1_CCMR3) 199
17.7.12 Capture/compare mode register 4 (TIM1_CCMR4) 201
17.7.18 Capture/compare enable register 1 (TIM1_CCER1) 202

8/430

RMO0016 Contents
17.7.14 Capture/compare enable register 2 (TIM1_CCER2) 205
17.7.15 Counter high (TIM1_CNTRH) 205
17.7.16 Counter low (TIM1_CNTRL) 206
17.7.17 Prescaler high (TIM1_PSCRH) 206
17.7.18 Prescalerlow (TIM1_PSCRL) 206
17.7.19 Auto-reload register high (TIM1_ARRH) 207
17.7.20 Auto-reload register low (TIM1_ARRL) 207
17.7.21 Repetition counter register (TIM1_RCR) 207
17.7.22 Capture/compare register 1 high (TIM1_CCR1H) 208
17.7.28 Capture/compare register 1 low (TIM1_CCR1L) 208
17.7.24 Capture/compare register 2 high (TIM1_CCR2H) 209
17.7.25 Capture/compare register 2 low (TIM1_CCR2L) 209
17.7.26 Capture/compare register 3 high (TIM1_CCR3H) 210
17.7.27 Capture/compare register 3low (TIM1_CCR3L) 210
17.7.28 Capture/compare register 4 high (TIM1_CCR4H) 211
17.7.29 Capture/compare register 4 low (TIM1_CCR4L) 211
17.7.30 Breakregister (TIM1_BKR) i 212
17.7.31 Dead-time register (TIM1_DTR) 214
17.7.32 Output idle state register (TIM1_OISR) 215
17.7.33 TIM1 register mapandresetvalues 215

18 16-bit general purpose timers (TIM2, TIM3, TIM5) 218

18.1 Introduction 218
18.2 TIM2/TIM3 mainfeatures 218
18.3 TIMSmainfeatures i 219
18.4 TIM2/TIM3/TIM5 functional description 219
18.4.1 Timebaseunit 220

18.4.2 Clock/triggercontroller i 221

18.4.3 Capture/comparechannels 222

18.5 TIM2/TIM3/TIMS interruptso e 223
18.6 TIM2/TIM3/TIMS registers 224
18.6.1 Controlregister 1 (TIMx_CR1) 224

18.6.2 Controlregister2 (TIM5_CR2) 225

18.6.3 Slave mode control register (TIM5_SMCR) 226

18.6.4 Interrupt enable register (TIMx_IER) 227

18.6.5 Statusregister1 (TIMx_SR1) 227

Ky_’ 9/430

Contents RMO0016
18.6.6 Statusregister2 (TIMx_SR2) 228

18.6.7 Event generation register (TIMx_EGR) 229

18.6.8 Capture/compare mode register 1 (TIMx_CCMR1) 230

18.6.9 Capture/compare mode register 2 (TIMx_CCMR2) 232
18.6.10 Capture/compare mode register 3 (TIMx_CCMR3) 234

18.6.11 Capture/compare enable register 1 (TIMx_CCER1) 235
18.6.12 Capture/compare enable register 2 (TIMx_CCER2) 236
18.6.13 Counter high (TIMXx_CNTRH) 236
18.6.14 Counterlow (TIMX_CNTRL) 236
18.6.15 Prescaler register (TIMx_PSCR) oo ... 237
18.6.16 Auto-reload register high (TIMXx_ARRH) 237
18.6.17 Auto-reload register low (TIMx_ARRL) 237
18.6.18 Capture/compare register 1 high (TIMx_CCR1H) 238
18.6.19 Capture/compare register 1 low (TIMx_CCR1L) 238
18.6.20 Capture/compare register 2 high (TIMx_CCR2H) 239

18.6.21 Capture/compare register 2 low (TIMx_CCR2L) 239
18.6.22 Capture/compare register 3 high (TIMx_CCR3H) 240
18.6.23 Capture/compare register 3 low (TIMx_CCR3L) 240
18.6.24 TIM2/TIM3/TIM5 register map and resetvalues 241

19 8-bit basic timer (TIM4, TIM6)ciiiiiiririiiennnnnnnns 245
19.1 Introduction e 245
19.2 TIM4 mainfeatures 246
19.3 TIM6 mainfeatures i 246
19.4 TIM4/TIMG interrupts e 246
19.5 TIM4/TIM6 clock selection 246
19.6 TIMA/TIMB registers e 247
19.6.1 Controlregister 1 (TIMx_CR1) 247

19.6.2 Control register 2 (TIM6_CR2) 248

19.6.3 Slave mode control register (TIM6_SMCR) 249

19.6.4 Interrupt enable register (TIMx_IER) 250

19.6.5 Statusregister 1 (TIMX_SR1) 250

19.6.6 Event generation register (TIMx_EGR) 251

19.6.7 Counter (TIMX_CNTR)o e 251

19.6.8 Prescaler register (TIMX_PSCR) i, 251

19.6.9 Auto-reload register (TIMXx_ARR) 252

10/430 Kﬁ

RMO0016 Contents
19.6.10 TIM4/TIMG6 register map and resetvalues 253

20 Serial peripheral interface (SPI)ccci .. 254
20.1 Introduction 254

20.2 SPImainfeatures i e 254

20.3 SPlfunctionaldescription 255

20.3.1 Generaldescription e 255

20.3.2 SPIslave modet e 258

20.3.3 SPImastermode 259

20.3.4 Simplexcommunication 260

20.3.5 Statusflags 261

20.3.6 CRCecalculation i 261

20.3.7 Errorflags 262

20.3.8 Disablingthe SPI 263

20.3.9 SPllow powermodesiiii e 263

20.3.10 SPlinterrupts o 265

20.4 SPlregisters 266

20.4.1 SPlcontrolregister 1 (SPI_CR1) 266

20.4.2 SPlcontrolregister2 (SPI_CR2) i 267

20.4.3 SPI interrupt control register (SPI_ICR) 268

20.4.4 SPlstatusregister (SPI_SR) i 269

20.4.5 SPldataregister (SPI_DR) i 270

20.4.6 SPI CRC polynomial register (SPI_CRCPR) 270

20.4.7 SPIRx CRC register (SPI_RXCRCR) 270

20.4.8 SPITxCRC register (SPI_TXCRCR) i, 271

20.5 SPlregistermapandresetvalues 271

21 Inter-integrated circuit (I2C) Interface 272
21.1 Introduction 272

212 PCmMaiNfeaturesouun e 272

21.3 I°C generaldescription 273

21.4 I2C functional descriptionooo e 275

2141 I12Cslavemodet 275

2142 12Cmastermodet e 278

21.4.3 Errorconditions 282

21.4.4 SDA/SCLIlinecontrol 283

Ky_’ 11/430

Contents RMO0016
215 [PC lOW POWEI MOGES v v e oottt e e e 283
216 PCINEITUPES . ..ottt et e e e 284
21.7 120 registers 286

21.7.1 Controlregister 1 (I2C_CR1) 286
21.7.2 Controlregister2 (I2C_CR2) 287
21.7.3 Frequency register (I2C_FREQR) 288
21.7.4 Own address register LSB (I2C_OARL) 288
21.7.5 Own address register MSB (I2C_OARH) 289
21.7.6 Dataregister (I2C_DR) i 289
21.7.7 Statusregister 1 (I2C_SR1) i 290
21.7.8 Statusregister2 (I2C_SR2) 292
21.7.9 Statusregister3(12C_SR3) 293
21.7.10 |Interruptregister (I2C_ITR) i 294
21.7.11 Clock control registerlow (I2C_CCRL) 295
21.7.12 Clock control register high (I2C_CCRH) 296
21.7.13 TRISEregister (I2C_TRISER) 297
21.7.14 I2Cregistermap andresetvalues 298

22 Universal asynchronous receiver transmitter (UART) 299
22.1 Introduction 299
222 UART mainfeatures i e 300
22.3 UART functional description 301

22.3.1 UART characterdescription 305

2232 Transmitter 306

22.3.3 Receiver 308

22.3.4 High precision baud rate generator 312

22.3.5 Paritycontrol 313

22.3.6 Multi-processor communication 314

22.3.7 LIN (local interconnection network) mode 315

22.3.8 UART synchronous communication 316

22.3.9 Single wire half duplex communication 318
22.3.10 Smartcard e 318

22.3.11 IrDASIRENDECDIoCk i 320

22.4 LIN mode functional description 323
2241 Mastermode e 323

22.4.2 Slave mode with automatic resynchronization disabled 327

12/430 Kﬁ

RMO0016 Contents
22.4.3 Slave mode with automatic resynchronization enabled 330

22.4.4 LINmodeselection i, 335

225 UARTIlowpowermodes i, 335
22.6 UARTInterrupts 336
227 UART registers e 337
22.7.1 Statusregister (UART_SR) 337

22.7.2 Dataregister (UART_DR) 339

22.7.3 Baudrate register 1 (UART_BRR1) 339

22.7.4 Baudrate register2 (UART_BRR2) 340

22.7.5 Controlregister 1 (UART_CR1) i 340

22.7.6 Control register2 (UART_CR2) i 341

22.7.7 Control register 3(UART_CR3) i 343

22.7.8 Controlregister4 (UART_CR4) 344

22.7.9 Control register 5(UART_CR5) 345
22.7.10 Control register6 (UART_CR6) 346
22.7.11 Guard time register (UART_GTR) 347
22.7.12 Prescaler register (UART_PSCR) 348
22.7.13 UART registermap andresetvalues 349

23 Controller area network (beCAN), 351
23.1 Introduction 351
23.2 beCANmainfeatures i 351
23.3 beCAN general description i 351
23.3.1 CAN2.0Bactive Coreot e 352

23.3.2 Control, status and configuration registers 352

23.3.3 Txmailboxes e 352

23.3.4 Acceptancefilters 353

23.4 Operating modest e 354
23.4.1 Initialization mode 354

2342 Normalmode e 354

23.4.3 Sleep mode (IoW POWEN) ... ittt e e 354

23.4.4 Time triggered communicationmode 355

235 Testmodes 355
23.5.1 Silentmode e 355

23.5.2 Loopbackmode 356

23.5.3 Loop back combined with silentmode 356

‘y_l 13/430

Contents RMO0016
23.6 Functional description 357
23.6.1 Transmissionhandling i 357

23.6.2 Receptionhandling 359

23.6.3 ldentifierfiltering 360

23.6.4 Message storage e 367

23.6.5 Errormanagement 369

23.6.6 Bittiming 370

23.7 INterrupts ... 372
23.8 Registeraccess protection 373
23.9 ClocKk system e 373
23.10 beCANlowpowermodes 374
23.11 beCAN registers e e e 375
23.11.1 CAN master control register (CAN_MCR) 375
23.11.2 CAN master status register (CAN_MSR) 376
23.11.3 CAN transmit status register (CAN_TSR) 377
23.11.4 CAN transmit priority register (CAN_TPR) 378
23.11.5 CAN receive FIFO register (CAN_RFR) 379
23.11.6 CAN interrupt enable register (CAN_IER) 379
23.11.7 CAN diagnostic register (CAN_DGR) 380
23.11.8 CAN page select register (CAN_PSR) 381
23.11.9 CAN error status register (CAN_ESR) 382
23.11.10 CAN error interrupt enable register (CAN_EIER) 383
23.11.11 CAN transmit error counter register (CAN_TECR) 383
23.11.12 CAN receive error counter register (CAN_RECR) 384
23.11.13 CAN bit timing register 1 (CAN_BTR1) 384
23.11.14 CAN bit timing register 2 (CAN_BTR2) 385
23.11.15 Mailbox registers e 386
23.11.16 CANfilterregisters 390

23.12 CANregistermap e 395
23.12.1 Page mapping for CAN 396

24 Analog/digital converter (ADC)cciiiiiiiinnnnnrnnn 399
241 Introduction 399
242 ADCmainfeatures 399
24.3 ADCextendedfeatures i 399
24.4 ADC PINS .ottt e e 402
14/430 Kﬁ

RMO0016

Contents

24.5

24.6
24.7
24.8
24.9
24.10
2411

24.12

ADC functional description e 402
2451 ADCon-offcontrol 402
2452 ADCCIOCK 402
2453 Channelselection i 402
2454 Conversion MOdesttt 403
2455 Overrunflag ... 404
2456 Analogwatchdog 404
24.5.7 Conversion on externaltrigger i, 405
2458 Analog zoOmingt 405
2459 Timingdiagram 406
ADC oW POWEIr MOAES . . . oottt ettt et et 407
ADC iNterrupts ... e 407
Data alignment 410
Reading the conversionresult 410
Schmitt trigger disable registers L. 411
ADC registerso 411
24.11.1 ADC data buffer register x high (ADC_DBxRH) (x=0..7 or 0..9) 411
24.11.2 ADC data buffer register x low (ADC_DBxRL) (x=or 0..7 or 0..9)412
24.11.3 ADC control/status register (ADC_CSR) 413
24.11.4 ADC configuration register 1 (ADC_CR1) 414
24.11.5 ADC configuration register2 (ADC_CR2) 415
24.11.6 ADC configuration register 3(ADC_CR3) 416
24.11.7 ADC data register high (ADC_DRH) 417
24.11.8 ADC data registerlow (ADC_DRL)o .. 417
24.11.9 ADC Schmitt trigger disable register high (ADC_TDRH) 418
24.11.10 ADC Schmitt trigger disable register low (ADC_TDRL) 418
24.11.11 ADC high threshold register high (ADC_HTRH) 419
24.11.12 ADC high threshold register low (ADC_HTRL) 419
24.11.13 ADC low threshold register high (ADC_LTRH) 419
24.11.14 ADC low threshold register low (ADC_LTRL) 420
24.11.15 ADC watchdog status register high (ADC_AWSRH) 420
24.11.16 ADC watchdog status register low (ADC_AWSRL) 421
24.11.17 ADC watchdog control register high (ADC_AWCRH) 421
24.11.18 ADC watchdog control register low (ADC_AWCRL) 422
ADC registermap andresetvalues 423

15/430

Contents RMO0016

25 Revision historyttt 425

16/430 Ky_’

RMO0016

List of tables

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 18.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 28.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 38.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.

574

INterrupt leVels e 25
CPU register mapo e 26
CFG_GCRregister map oo e e 27
BIOCK Size e 43
Memory access versus programming method oL, 44
Flash register map and resetvalues. 52
RS register Map . . . oo e e 59
CLK Nterrupt reqUeSESo e 70
Peripheral clock gating bits. 77
Peripheral clock gating bits. 78
CLKregistermap andresetvalues i 84
Low power mode management e 87
Software priority levels e 91
Vector address map versus software priority bits. o L. 95
Dedicated interruptinstruction set 98
INterrupt MapPPiNg oo e 98
Interrupt register mapo e 104
I/0 port configuration summary e 107
Effect of low power modes on GPIO ports i e 108
Recommended and non-recommended configurations for analog input 109
GPIO registermap oo e e 112
AWUTB[3:0] selection. e e e e 115
Example where fLS=128 kHz and target time is78.5ms. 115
AWU register map e 119
BEEP register mapo e 122
Watchdog timeout period (with 64 kHz counterclock) 124
IWDG register Mapot e e 126
Effect of low powermodes on WWDG e 130
WWDG register mapandresetvalues. i 132
Timer characteristics. e 133
Timer feature CoOmMPariSON.t e e e e e 134
Glossary of internal timersignals o e 135
Counting direction versus encodersignals. i 181
Output control for complementary OCi and OCiN channels with break feature 204
TIMT register Mmap. e 215
TIM2 register Map. e 241
TIM3 register Map. e 242
TIMS register Map. e 243
TIM4 register Map. e 253
TIMB register Map. e 253
SPI behaviorinlow power modest 263
SPlinterruptrequests. e 265
SPlregistermap andresetvalues e 271
I12C Interface behavior inlow powermodes 283
12C Interrupt reqUESES oo e e 284
2 register Mapo e e e 298
UART configurations. e e e 299
Noise detection fromsampleddata i 311

17/430

List of tables RMO0016

Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.

18/430

Baud rate programming and error calculation oL 313
Frame formats e 313
LINmode selection. e 335
UART interface behaviorin low powermodes 335
UART interrupt requestst e 336
UARTT register Mapo e e e 349
UART2 register Mapo ottt e e e e e 349
UART S register Mapot e e e 350
Example of filter numbering 365
Transmit mailbox mapping e 367
Receive mailboXx mapping.ot 368
beCAN behavior in low power modes. i e 374
beCAN control and status page - register map andresetvalues. 397
beCAN mailbox pages - register map andresetvalues 397
beCAN filter configuration page - register map and resetvalues. 398
LOW POWEr MOTES. . . o ettt e e e e e e e e e e e 407
ADC Interrupts in single and non-buffered continuous mode (ADC1 and ADC2). 407
ADC interrupts in buffered continuous mode (ADC1). 408
ADC interrupts in scan mode (ADC1). oot e 409
ADC1 registermap andresetvalues i 423
ADC2 registermap andresetvalues 424
Document revision history e 425

RMO0016

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.

574

Programming model e 23
Stacking Order. e e e 24
Flash memory and data EEPROM organization on low density STM8S 32
Flash memory and data EEPROM organization on medium density STM8S. 33
Flash memory and data EEPROM organization high density STM8S 34
UBC area size definition on low density STM8S devices 35
UBC area size definition on medium density STM8S 36
UBC area size definition on high density STM8S. 37
SWIM pin connection i e 53
Power SUPPIY OVEIVIEWo e e 54
ReSet CirCUIt e 55
VDD/VDDIO voltage detection: POR/BORthreshold 56
CloCK trEe . . o e 61
HSE CIOCK SOUICES . . . o ottt e e e e e e e e 62
Clock switching flowchart (automatic mode example) 66
Clock switching flowchart (manual mode example) 67
Interrupt processing flowchart 91
Priority deCisSion ProCESSottt e 92
Concurrentinterrupt management e 94
Nested interrupt management e 96
GPIO block diagram e 106
AWU block diagram e 113
Beep block diagram 120
Independent watchdog block diagram 123
Watchdog block diagram e 128
Approximate timeout duration. 129
Window watchdog timing diagram 130
TIM1 general block diagram 139
Time base unit e 140
16-bit read sequence for the counter (TIM1_CNTR) 141
Counterinup-counting mode e 142
Counter update when ARPE=0 (ARR not preloaded) with prescaler=2............. 143
Counter update event when ARPE=1 (TIM1_ARR preloaded). 144
Counter in down-counting mode.o i e 144
Counter update when ARPE=0 (ARR not preloaded) with prescaler=2............. 145
Counter update when ARPE=1 (ARR preloaded), with prescaler=1 146
Counterin center-aligned mode e 146
Counter timing diagram, CK_PSC divided by 1, TIM1_ARR=06h, ARPE=1 147
Update rate examples depending on mode and TIM1_RCR register settings 149
Clock/trigger controller block diagram 150
Control circuit in normal mode, fMASTER divided by 1 151
TI2 external clock connection example. i 151
Control circuitin external clock mode 1 152
External triggerinput block e 152
Control circuitin external clock mode 2 153
Control circuitin trigger mode. e e 154
Control circuitin triggerresetmode 154
Control circuitin triggergatedmode. 155

19/430

List of figures RMO0016

Figure 49. Control circuit in external clock mode 2 + triggermode 156
Figure 50. Timer chaining system implementationexample 157
Figure 51. Trigger/master mode selectionblocks 157
Figure 52. Master/Slave timerexample 158
Figure 53. Gating Timer B with OC1REF of Timer A. e 159
Figure 54. Gating Timer B with the counter enable signal of Timer A(CNT_EN) 160
Figure 55. Triggering Timer B with update event of Timer A (TIMERA-UEV) 161
Figure 56. Triggering Timer B with counter enable CNT_ENof TimerA. 161
Figure 57. Triggering Timer Aand B with Timer AT input 162
Figure 58. Capture/compare channel 1 maincircuit i .. 163
Figure 59. 16-bit read sequence for the TIM1_CCRIi register in capture mode 164
Figure 60. Channel input stage block diagram i 164
Figure 61. Inputstageof TIM 1 channel 1 e 165
Figure 62. PWM input signal measurement. i e 166
Figure 63. PWM input signal measurementexample 168
Figure 64. Channel output stage block diagram i 168
Figure 65. Detailed output stage of channel with complementary output (channel 1) 169
Figure 66. Output compare mode, toggle on OCT. e 170
Figure 67. Edge-aligned counting mode PWM mode 1 waveforms (ARR=8) 172
Figure 68. Center-aligned PWM waveforms (ARR=8). 173
Figure 69. Exampleofonepulsemode. e 174
Figure 70. Complementary output with dead-time insertion 176
Figure 71. Dead-time waveforms with delay greater than the negativepulse.................. 176
Figure 72. Dead-time waveforms with delay greater than the positive pulse. 176
Figure 73. 6-step generation, commutation event (COM) example (OSSR=1) 177
Figure 74. Behavior of outputs in response to a break (channel without complementary output) . . . 179
Figure 75. Behavior of outputs in response to a break (TIM1 complementary outputs) 179
Figure 76. ETR activation e 180
Figure 77. Example of counter operation in encoder interffacemode 182
Figure 78. Example of encoder interface mode with IC1 polarity inverted. 182
Figure 79. TIM2/TIM3 block diagramt e 219
Figure 80. TIM5 block diagram e e 220
Figure 81. Timebase unit 220
Figure 82. Input stage block diagram. e 222
Figure 83. Inputstageof TIM2channel 1.. e 222
Figure 84. OUIpUL Stage oo 223
Figure 85. Outputstage of channel 1. 223
Figure 86. TIM4 block diagram e e 245
Figure 87. TIMB block diagram e e 245
Figure 88. SPIlblock diagram.ot e 255
Figure 89. Single master/ single slave application. i i 256
Figure 90. Hardware/software slave selectmanagement 256
Figure 91. Dataclock timing diagram e 258
Figure 92. 12C bus protocol oot e 273
Figure 93. 12C block diagram. e 274
Figure 94. Transfer sequence diagram for slave transmitter. 276
Figure 95. Transfer sequence diagram for slave receiver 277
Figure 96. Transfer sequence diagram for master transmitter. 280
Figure 97. Transfer sequence diagram for masterreceiver. 281
Figure 98. 12C interrupt mapping diagram 285
Figure 99. UART1 block diagram. e e e 302
Figure 100. UART2 block diagram. e 303
20/430 Kﬁ

RMO0016

List of figures

Figure 101.
Figure 102.
Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.
Figure 110.
Figure 111.
Figure 112.
Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.
Figure 119.
Figure 120.
Figure 121.
Figure 122.
Figure 123.
Figure 124.
Figure 125.
Figure 126.
Figure 127.
Figure 128.
Figure 129.
Figure 130.
Figure 131.
Figure 132.
Figure 133.
Figure 134.
Figure 135.
Figure 136.
Figure 137.
Figure 138.
Figure 139.
Figure 140.
Figure 141.
Figure 142.
Figure 143.
Figure 144.
Figure 145.
Figure 146.
Figure 147.
Figure 148.
Figure 149.
Figure 150.
Figure 151.
Figure 152.

574

UARTS3 block diagram. e 304
Word length programming e 305
Configurable stop bits. 307
Data sampling for noise detection 310
How to code UART_DIVinthe BRRregisters 312
Mute mode using Idle line detection 314
Mute mode using Address mark detection i 315
UART example of synchronous transmission. 317
UART data clock timing diagram (M=0) e 317
UART data clock timing diagram (M=1) e 317
RX data setup/hold time e 318
ISO 7816-3 asynchronous protocol i e 319
Parity error detection using 1.5stop bits 320
IrDA SIR ENDEC- block diagramot e 322
IrDA data modulation (3/16) -normalmode i 322
Break detection in LIN mode (11-bit break length - LBDL bitisset)................. 325
Break detection in LIN mode vs Framing error detection 325
LIN identifier field parity bits 328
LIN identifier field parity check 328
LIN header reception time-out 329
LIN synch field measurement e 330
UARTDIV read / write operations when LDUM =0...........ot 331
UARTDIV read / write operations when LDUM =1........... 332
Bit sampling inreception mode. 335
UART interrupt mapping diagram e 336
CAN network topology oo 352
beCAN block diagram. 353
beCAN operating modes 353
beCAN insilentmode. 356
beCAN inloopbackmode 356
beCAN incombined mode i 357
Transmit mailbox states e 358
Receive FIFO states. o 359
32-bit filter bank configuration (FSCx bits = 0b11 in CAN_FCRXx register). 362
16-bit filter bank configuration (FSCx bits = 0b10 in CAN_FCRx register). 363
16/8-bit filter bank configuration (FSCx bits = O0b01 in CAN_FCRx register) 363
8-bit filter bank configuration (FSCx bits = 0b00 in CAN_FCRXx register). 364
Filter banks configured as in the example in Table 57. 366
CAN error state diagram. i 369
Bt lIMING e 370
CAN frameso 371
Event flags and interrupt generation. 372
Clock interfaceo e 373
CAN register mappingottt 395
CAN Page MapPPINg .« oottt e e e e e e e e 396
ADCT block diagram.o 400
ADC2 block diagram.o 401
Analog watchdog guarded area i e 405
Timing diagram in single mode (CONT =0)t 406
Timing diagram in continuous mode (CONT=1) it 406
Right alignmentof data 410
Leftalignmentofdata. i 410

21/430

Central processing unit (CPU) RM0016

1.1

1.2

1.2.1

22/430

Central processing unit (CPU)

Introduction

The CPU has an 8-bit architecture. Six internal registers allow efficient data manipulations.
The CPU is able to execute 80 basic instructions. It features 20 addressing modes and can
address 6 internal registers. For the complete description of the instruction set, refer to the
STM8 microcontroller family programming manual (PM0044).

CPU registers

The 6 CPU registers are shown in the programming model in Figure 1. Following an
interrupt, the registers are pushed onto the stack in the order shown in Figure 2. They are
popped from stack in the reverse order. The interrupt routine must therefore handle it, if
needed, through the POP and PUSH instructions.

Description of CPU registers

Accumulator (A)

The accumulator is an 8-bit general purpose register used to hold operands and the results
of the arithmetic and logic calculations as well as data manipulations.

Index registers (X and Y)

These are 16-bit registers used to create effective addresses. They may also be used as
temporary storage area for data manipulations and have an inherent use for some
instructions (multiplication/division). In most of the cases, the cross assembler generates a
PRECODE instruction (PRE) to indicate that the following instruction refers to the Y register.

Program counter (PC)

The program counter is a 24-bit register used to store the address of the next instruction to
be executed by the CPU. It is automatically refreshed after each processed instruction. As a
result, the STM8 core can access up to 16-Mbyte of memory.

RMO0016 Central processing unit (CPU)

Figure 1. Programming model

7 0
[T T 7 7T 777 AACCUMULATOR
15 8 7 0
Looooxit [xf |] XINDEX
15 8 7 0
Looooxit [xf |] YINDEX
. . .si, . [, ., /s , ,, | SPSTACKPOINTER
23 16 15 8 7 0
., PCE, . [, PEH [, ,PEL, , , | PCPROGRAMCOUNTER
7 0
[VI0O M H.I0,N Z . C|] CC CODE CONDITION

Stack pointer (SP)

The stack pointer is a 16-bit register. It contains the address of the next free location of the
stack. Depending on the product, the most significant bits can be forced to a preset value.

The stack is used to save the CPU context on subroutine calls or interrupts. The user can
also directly use it through the POP and PUSH instructions.

The stack pointer can be initialized by the startup function provided with the C compiler. For
applications written in C language, the initialization is then performed according to the
address specified in the linker file for C users. If you use your own linker file or startup file,
make sure the stack pointer is initialized properly (with the address given in the datasheet).
For applications written in assembler, you can use either the startup function provided by ST
or write your own by initializing the stack pointer with the correct address.

The stack pointer is decremented after data has been pushed onto the stack and
incremented after data is popped from the stack. It is up to the application to ensure that the
lower limit is not exceeded.

A subroutine call occupies two or three locations. An interrupt occupies nine locations to
store all the internal registers (except SP). For more details refer to Figure 2.

Note: The WFI/HALT instructions save the context in advance. If an interrupt occurs while the CPU
is in one of these modes, the latency is reduced.

Ky_l 23/430

Central processing unit (CPU) RM0016

24/430

Figure 2. Stacking order

| INTERRUPT GENERATION (execute pipeline) \
Complete instruction in execute stage (1-6 cycles latency)

PUSH PCL
PUSH PCH
PUSH PCE
PUSHY
PUSH X
PUSH A
PUSH CC

v

| JUMP TO INTERRUPT ROUTINE GIVEN BY THE INTERRUPT VECTOR ‘

PCL
PCH
PCE

9 CPU CYCLES

»
»

STACK
_(PUSH)

NYNL3Y
<
T

x
—
1dNYY3LN

UNSTACK XH
(POP) A

W

<

| IRET INSTRUCTION |

A 4

POP CC
POP A
POP X
POP Y

POP PCE

POP PCH

POP PCL

9 CPU CYCLES

‘ JUMP TO THE ADDRESS GIVEN BY PROGRAM COUNTER (Reload F‘ipeline)|

Condition code register (CC)

The Condition Code register is an 8-bit register which indicates the result of the instruction
just executed as well as the state of the processor. The 7th bit (MSB) of this register is
reserved. These bits can be individually tested by a program and specified action taken as a
result of their state. The following paragraphs describe each bit.

® V:Overflow
When set, V indicates that an overflow occurred during the last signed arithmetic operation,

on the MSB result bit. See INC, INCW, DEC, DECW, NEG, NEGW, ADD, ADDW, ADC, SUB,
SUBW, SBC, CP, CPW instructions.

o I1: Interrupt mask level 1

The 11 flag works in conjunction with the 10 flag to define the current interruptability level as
shown in Table 1. These flags can be set and cleared by software through the RIM, SIM,
HALT, WFI, IRET, TRAP and POP instructions and are automatically set by hardware when
entering an interrupt service routine.

574

RMO0016

Central processing unit (CPU)

Table 1. Interrupt levels
Interruptability Priority "1 10
Interruptable Main Lowest 1 0
Interruptable Level 1 0 1
Interruptable Level 2 0 0
Non Interruptable Highest 1 1

® H: Half carry bit

The H bit is set to 1 when a carry occurs between the bits 3 and 4 of the ALU during an ADD
or ADC instruction. The H bit is useful in BCD arithmetic subroutines.

® 10: Interrupt mask level 0

See Flag I

® N: Negative

When set to 1, this bit indicates that the result of the last arithmetic, logical or data
manipulation is negative (i.e. the most significant bit is a logic 1).

® Z:Zero

When set to 1, this bit indicates that the result of the last arithmetic, logical or data
manipulation is zero.

e C: Carry

When set, C indicates that a carry or borrow out of the ALU occurred during the last

arithmetic operation on the MSB operation result bit. This bit is also affected during bit test,
branch, shift, rotate and load instructions. See ADD, ADC, SUB, SBC instructions.

In division operation, C indicates if a trouble occurred during execution (quotient overflow or
zero division). See DIV instruction.

In bit test operations, C is the copy of the tested bit. See BTJF, BTJT instructions.
In shift and rotate operations, the carry is updated. See RRC, RLC, SRL, SLL, SRA
instructions.

This bit can be set, reset or complemented by software using SCF, RCF, CCF instructions.

25/430

Central processing unit (CPU) RM0016

Example: Addition
$B5 + $94 = "C" + $49 = $149

C 7 0
[o] [ffofr[+fo]7]ofr]
c 7 0
+[9] [1]ofofrJof]o]o]
C 7 0

=[] [o]r]ofofr[ofo1]

1.2.2 STM8 CPU register map
The CPU registers are mapped in the STM8 address space as shown inTable 2. These
registers can only be accessed by the debug module but not by memory access intructions
executed in the core.
Table 2. CPU register map
Address | Register name 7 6 5 4 3 2 1 0
00 7F00h A MSB - - - - - - LSB
00 7F01h PCE MSB - i - - - - LSB
00 7F02h PCH MSB - - - - - - LSB
00 7F03h PCL MSB - - - - - - LSB
00 7F04h XH MSB - - - - - - LSB
00 7F05h XL MSB - - - - - - LSB
00 7F06h YH MSB - - - - - - LSB
00 7F07h YL MSB - - - - - - LSB
00 7F08h SPH MSB - - - - - - LSB
00 7F0%h SPL MSB - - - - - - LSB
00 7FOAh CcC \% 0 11 H 10 N z C
1.3 Global configuration register (CFG_GCR)
1.3.1 Activation level
The MCU activation level is configured by programming the AL bit in the CFG_GCR register.
For information on the use of this bit refer to Section 10.4: Activation level/low power mode
control on page 93.
1.3.2 SWIM disable
By default, after an MCU reset, the SWIM pin is configured to allow communication with an
external tool for debugging or Flash/EEPROM programming. This pin can be configured for
26/430 KY_I

RMO0016

Central processing unit (CPU)

use as general purpose I/O by the application. This is done by setting the SWD bit in the
CFG_GCR register.

1.3.3 Description of global configuration register (CFG_GCR)
Address offset: 0x00
Reset value: 0x00
7 6 5 4 3 2 1 0
AL SWD
Reserved
rw rw
Bits 7:2 Reserved, must be kept cleared.
Bit 1 AL: Activation level
This bit is set and cleared by software. It configures Main or Interrupt-only activation.
0: Main activation level. An IRET instruction will cause the context to be retrieved from the stack and
the main program will continue after the WFI instruction.
1: Interrupt-only activation level. An IRET instruction will cause the CPU to go back to WFI/Halt
mode without restoring the context.
Bit 0 SWD: SWIM disable
0: SWIM mode enabled
1: SWIM mode disabled
When SWIM mode is enabled, the SWIM pin cannot be used as general purpose I/O.
1.3.4 Global configuration register map and reset values
The CFG_GCR is mapped in the STM8 address space. Refer to the corresponding
datasheet for the base address.
Table 3. CFG_GCR register map
Address Register name 7 6 5 4 3 2 1 0
offset
CFG_GCR - - - - - - AL SWD
0x00 Reset value 0 0 0 0 0 0 0 0
Ays 27/430

Boot ROM

RMO0016

2

28/430

Boot ROM

The internal 2 Kbyte Boot ROM (available in some devices) contains the bootloader code.
Its main task is to download the application program to the internal Flash/EEPROM through
the SPI, CAN or UART interface and program the code, data, option bytes and interrupt
vectors in the internal Flash/EEPROM.

The boot loader starts executing after reset. Refer to the STM8 Bootloader user manual
(UMO0560) for more details.

RMO0016

Memory and register map

3

3.1

Memory and

register map

For details on memory map, I/O port hardware register map and CPU/SWIM/debug
module/interrupt controller registers, refer to the product datasheet.

Register description abbreviations

In the register descriptions of each chapter in this reference manual, the following
abbreviations are used:

read/write (rw)

Software can read and write to these bits.

read-only (r)

Software can only read these bits.

write only (w)

Software can only write to this bit. Reading the bit returns a meaningless
value.

read/write once (rwo)

Software can only write once to this bit and can also read it at any time. Only
a reset can return the bit to its reset value.

read/clear (rc_w1)

Software can read as well as clear this bit by writing 1. Writing ‘0’ has no
effect on the bit value.

read/clear (rc_w0)

Software can read as well as clear this bit by writing 0. Writing ‘1’ has no
effect on the bit value.

read/set (rs)

Software can read as well as set this bit. Writing ‘0’ has no effect on the bit
value.

29/430

Flash program memory and data EEPROM (FLASH) RM0016

4

4.1

4.2

4.3

30/430

Flash program memory and data EEPROM (FLASH)

Introduction

The embedded Flash Program memory and data EEPROM memories are controlled by a
common set of registers. Using these registers the application can program or erase
memory contents, set write protection, or configure specific low power modes. The
application can also program the device option bytes.

Glossary

Block

A block is a set of bytes that can be programmed or erased in one single programming
operation. Operations that are performed at block level are fast and standard
programming and erasing. Refer to Table 4 for the details on block size.

Page
A page is a set of blocks. STM8L devices feature boot code, proprietary code, and data

EEPROM areas which contents are protected by dedicated mechanisms. Their sizes
are programmable through dedicated option bytes by increments of one page.

FLASH main features

STM8S EEPROM is divided into two memory array:

— Up to 128 Kbytes of Flash program memory. The density differs according to the
devices. Refer to Section 4.4: Memory organization for details.

— Up to 2 Kbytes of data EEPROM including option bytes. Data EEPROM density
differs according to the devices. Refer to Section 4.4: Memory organization for
details.

Programming modes

— Byte programming and automatic fast byte programming (without erase operation)
— Word programming

— Block programming and fast block programming mode (without erase operation)

— Interrupt generation on end of program/erase operation and on illegal program
operation

Read-while-write capability (RWW). This feature is not available on all STM8 devices.
Refer to the datasheets for details.

In-application programming (IAP) and in-circuit programming (ICP) capabilities

Protection features

— Memory readout protection (ROP)

— Program memory write protection with memory access security system (MASS
keys)

— Data memory write protection with memory access security system (MASS keys)

— Programmable write protected user boot code area (UBC)

Memory state configurable to operating or Power-down in Halt and Active-halt modes

574

RMO0016

Flash program memory and data EEPROM (FLASH)

4.4

Memory organization
STM8S EEPROM is organized in 32-bit words (4 bytes per word).

The memory organization differs according to the devices:
® Low density STM8S devices
— 8 Kbytes of Flash Program Memory organized in 128 pages of 64 bytes each

— 640 bytes of Data EEPROM organized in 10 pages of 64 bytes each. The data
EEPROM includes one block of option bytes (64 bytes)

® Medium density STM8S devices

— From 16 to 32 Kbytes of Flash Program memory organized in up to 64 pages of
512 bytes each.

— 1 Kbytes of data EEPROM organized in 2 pages of 512 bytes each. The data
EEPROM includes one block of option bytes (128 bytes)

® High density STM8S devices

— From 32 to 128 Kbytesof Flash Program memory organized in up to 256 pages of
512 bytes each

— From 1 to 2 Kbytes of data EEPROM organized in up to 4 pages of 512 bytes
each. The data EEPROM includes one block of option bytes (128 bytes)

The page defines the granularity of the user boot code area as described in Section 4.4.1:
User boot area (UBC).

Figure 3, Figure 4, and Figure 5 show the Flash memory and data EEPROM organization
for STM8S devices.

31/430

Flash program memory and data EEPROM (FLASH)

RMO0016

Figure 3.

Flash memory and data EEPROM organization on low density STM8S

DATA EEPROM

Programmable size
from 2 pages (1 Kbytes)
up to 8 Kbytes
(1 page steps)

{

r

0x00 4000

0x00 427F
0x00 4800

0x00 483F

0x00 8000

0x00 9FFF

1 page = 1 block = 64 bytes

DATA MEMORY
(640 bytes)

OPTION BYTES (1 block)

Interrupt vectors (128 bytes)

USER BOOT CODE (UBC)
(permanently write protected)

MAIN PROGRAM
(write access possible for IAP
and using MASS mechanism)

.

Flash program
memory

.

8 Kbytes of

FLASH PROGRAM

MEMORY

ai15503

32/430

RMO0016

Flash program memory and data EEPROM (FLASH)

Figure 4.

Flash memory and data EEPROM organization on medium density STM8S

DATA EEPROM

Programmable size
from 2 pages (1 Kbytes)
up to 32 Kbytes
(1 page steps)

0x00 4000

0x00 43FF
0x00 4800

0x00 487F

(" 0x00 8000

0x00 FFFF

1 page = 512 bytes
1 block = 128 bytes

DATA MEMORY
(1 Kbytes)

OPTION BYTES (1 block)

Interrupt vectors (128 bytes)

USER BOOT CODE (UBC)
(permanently write protected)

MAIN PROGRAM
(write access possible for IAP
and using MASS mechanism)

.

Flash program >
memory

16 to 32 Kbytes of
FLASH PROGRAM
MEMORY

ai15502

33/430

Flash program memory and data EEPROM (FLASH) RM0016

Figure 5. Flash memory and data EEPROM organization high density STM8S

1 page = 512 bytes
1 block = 128 bytes

0x00 4000
DATA MEMORY
(1 to 2 Kbytes)
DATA EEPROM
OXO0 47FF facccccccccaccccccaaaaaan
OPTION BYTES (1 block)
0x00 487F

[0x00 8000 Interrupt vectors (128 bytes) |)

Programmable size USER BOOT CODE (UBC)

from 2 pages (1 Kbytes) (permanently write protected)
up to 64 or 128 Kbytes

(1 page steps)

Flash proaram 32 to 128 Kbytes of
- > prog Flash Program
memory
Memory
MAIN PROGRAM
(write access possible for IAP
and using MASS mechanism)
0x02 7FFF J J

ai15501b

4.4.1 User boot area (UBC)

The user boot area (UBC) contains the reset and the interrupt vectors. It can be used to
store the IAP and communication routines. The UBC area has a second level of protection
to prevent unintentional erasing or modification during IAP programming. This means that it
is always write protected and the write protection cannot be unlocked using the MASS keys.

The size of the UBC area can be configured in ICP mode (using the SWIM interface)
through the UBC option byte. The UBC option byte specifies the number of pages allocated
for the UBC area starting from address 0x00 8000.

The size of the UBC area can be obtained by reading the UBC option byte.

Refer to Figure 6, Figure 7 and Figure 8 for a description of the UBC area memory mapping
and to the option bytes section in the datasheet for more details on the UBC option byte.

34/430 Ky_’

RMO0016

Flash program memory and data EEPROM (FLASH)

Figure 6. UBC area size definition on low density STM8S devices

0x00 8000
64 bytes
Interrupt vectors 0x00 8040
64 bytes
0x00 8080
64 bytes
0x00 80C0O 64 bytes
0x00 8100
| |
| |
| |
| |
0x00 9F00
64 bytes
0x00 9F40
64 bytes
0x00 9F80
64 bytes
0x00 9FCO
64 bytes
0x00 9FFF

Page 0

L_Y_I

UBC[7:0] =0x01

Page 1

\ p——

Page 2

Page 3

Ox7E

8 Kbytes

UBC[7:0]

Page 124
Page 125
Page 126

Page 127

64 bytes

0x02

128 bytes

UBC[7:0]

64 bytes to 8 Kbytes
user boot code area

1. UBC[7:0] = 0x00 means no user boot code area is defined. Refer to the datasheet for the description of the UBC

option byte.

2. The first 2 pages (128 bytes) contain the interrupt vectors.

35/430

Flash program memory and data EEPROM (FLASH)

RMO0016

36/430

Figure 7. UBC area size definition on medium density STM8S

0x00 8000
Interrupt vector table
0x00807F | — — — — — —— _— |
0x00 8200
512 bytes
0x00 8400
512 bytes
0x00 8600
512 bytes
0x00 8800
| |
| |
| |
| |
0x00 F800
512 bytes
0x00 FAOO
512 bytes
0x00 FC00
512 bytes
0x00 FEOO
512 bytes
0x00 FFFF

Page 0
Page 1
Page 2

Page 3

Page 60
Page 61
Page 62

Page 63

=0x01

UBC[7:0]

0x3E

32 Kbytes

UBC[7:0]

1 Kbytes

UBCJ7:0] =0x02
2 Kbytes

1K to 32 Kbytes
User boot code area

1. UBC[7:0] =0x00 means no user boot code area is defined. Refer to the datasheet for the description of the UBC

option byte.

2. The first 2 pages (1 Kbytes) contain the interrupt vectors out of which only 128 bytes (32 IT vectors) are

used.

RM0016 Flash program memory and data EEPROM (FLASH)

Figure 8. UBC area size definition on high density STM8S

0x00 8000
Interrupt vector table
0x00 807F - — — — — — — — 4
0x00 8200
512 bytes
0x00 8400
512 bytes
0x00 8600
512 bytes
0x00 8800
I |
I |
I |
I |
27
0x02 7800 512 bytes
0x02 7A00
512 bytes
0x02 7C00
512 bytes
0x02 7E00
512 bytes
0x02 7FFF

Page 0
Page 1
Page 2

Page 3

Page 252
Page 253
Page 254

Page 255

UBC[7:0] =0x01

-

UBC[7:0] =OxFE
128 Kbytes

1 Kbytes

UBCJ7:0] =0x02
2 Kbytes

1K to 128 Kbytes
User boot code area

1. UBC[7:0] = 0x00 means no user boot code area is defined. Refer to the datasheet for the description of the UBC

option byte.

2. The first 2 pages (1 Kbytes) contain the interrupt vectors out of which only 128 bytes (32 IT vectors) are

used.

4.4.2 Data EEPROM (DATA)

The data EEPROM area can be used to store application data. By default, the DATA area is
write protected to prevent unintentional modification when the main program is updated in
IAP mode. The write protection can be unlocked only using specific a MASS key sequence

(refer to Enabling write access to the DATA area).

Refer to Section 4.4: Memory organization for the size of the DATA area according to the

STMS8S devices.

4.4.3 Main program area

The main program is the part of the Flash program memory which is used to store the
application code (see Figure 3, Figure 4 and Figure 5).

37/430

Flash program memory and data EEPROM (FLASH) RM0016

4.4.4

4.5

4.5.1

4.5.2

38/430

Option bytes

The option bytes are used to configure device hardware features and memory protection.
They are located in a dedicated memory array of one block.

The option bytes can be modified both in ICP/SWIM and in IAP mode, with OPT bit of the
FLASH_CR2 register set to ‘1’ and the NOPT bit of the FLASH_NCR2 register set to ‘0’ (see
Section 4.9.2: Flash control register 2 (FLASH_CRZ2) and Section 4.9.3: Flash
complementary control register 2 (FLASH_NCR2)).

Refer to the option bytes section in the datasheet for more information on option bytes, and
to the STM8 SWIM protocol and debug module user manual (UM0470) for details on how to
program them.

Memory protection

Readout protection

Readout protection is selected by programming the ROP option byte to 0xAA. When readout
protection is enabled, reading or modifying the Flash program memory and DATA area in
ICP mode (using the SWIM interface) is forbidden, whatever the write protection settings.
Even if no protection can be considered as totally unbreakable, the readout feature provides
a very high level of protection for a general purpose microcontroller.

The readout protection can be disabled on the program memory, UBC,DATA areas, by
reprogramming the ROP option byte in ICP mode. In this case, the Flash program memory;,
the DATA area and the option bytes are automatically erased and the device can be
reprogrammed.

Refer to Table 5: Memory access versus programming method for details on memory
access when readout protection is enabled or disabled.

Memory access security system (MASS)

After reset, the main program and DATA areas are protected against unintentional write
operations. They must be unlocked before attempting to modify their content. This unlock
mechanism is managed by the memory access security system (MASS).

The UBC area specified in the UBC option byte is always write protected (see Section 4.4.1:
User boot area (UBC)).

Once the memory has been modified, it is recommended to enable the write protection
again to protect the memory content against corruption.

Enabling write access to the main program memory

After a device reset, it is possible to disable the main program memory write protection by
writing consecutively two values called MASS keys to the FLASH_PUKR register (see
Section 4.9.6: Flash program memory unprotecting key register (FLASH_PUKR)). These
programmed keys are then compared to two hardware key values:

® First hardware key: 0Ob0101 0110 (0x56)
® Second hardware key: 0b1010 1110 (OxAE)

The following steps are required to disable write protection on the main program area:

574

RMO0016

Flash program memory and data EEPROM (FLASH)

1. Write the first 8-bit key into the FLASH_PUKR register. When this register is written for
the first time after a reset, the data bus content is not latched into the register, but
compared to the first hardware key value (0x56).

2. If the key available on the data bus is incorrect, then the FLASH_PUKR register
remains locked until the next reset. Any new write commands sent to this address will
be discarded.

3. If the first hardware key is correct, when the FLASH_PUKR register is written to for the
second time, the data bus content is still not latched into the register, but compared to
the second hardware key value (OXAE).

4. If the key available on the data bus is incorrect, then the write protection on program
memory remains locked until the next reset. Any new write commands sent to this
address will be discarded.

5. If the second hardware key is correct, the main program memory is write unprotected
and the PUL bit of the FLASH_IAPSR is set (see Section 4.9.8: Flash Status register
(FLASH_IAPSR) register.

Before starting programming, the application can verify that PUL bit is effectively set. The
application can choose at any time to disable again write access to the Flash program
memory by clearing the PUL bit.

Enabling write access to the DATA area

After a device reset, it is possible to disable the DATA area write protection by writing
consecutively two values called MASS keys to the FLASh_DUKR register (see
Section 4.9.9: Flash register map and reset values). These programmed keys are then
compared to two hardware key values:

® First hardware key: Ob1010 1110 (OxAE)
® Second hardware key: 0b0101 0110 (0x56)

The following steps are required to disable write protection on the DATA area:

1. Write an first 8-bit key into the FLASH_DUKR register. When this register is written for
the first time after a reset, the data bus content is not latched into the register, but
compared to the first hardware key value (0xAE).

2. If the key available on the data bus is incorrect, the application can re-enter two MASS
keys to try unprotecting the DATA area.

3. If the first hardware key is correct, the FLASH_DUKR register is programmed with the
second key. The data bus content is still not latched into the register, but compared to
the second hardware key value (0x56).

4. If the key available on the data bus is incorrect, then the data EEPROM area remains
write protected until the next reset. Any new write command sent to this address is
ignored.

5. If the second hardware key is correct, the DATA area is write unprotected and the DUL
bit of the FLASH_IAPSR register is set (see Section 4.9.8: Flash Status register
(FLASH_IAPSR)).

Before starting programming, the application can verify that the DATA area is not write
protected by checking that the DUL bit is effectively set. The application can choose at any
time to disable again write access to the DATA area by clearing the DUL bit.

39/430

Flash program memory and data EEPROM (FLASH) RM0016

4.5.3

4.6

4.7

Note:

4.71

40/430

Enabling write access to option bytes

The procedure for enabling write access to the option byte area is the same as that used for
Data EEPROM. however there is an additional OPT bit in Flash control register 2
(FLASH_CR2) to be set and the corresponding NOPT bit in the Flash complementary
control register 2 (FLASH_NCRZ2) to be cleared in order to enable write access to the option
bytes.

Memory programming

The main program memory, and the DATA area must be unlocked before attempting to
perform any program operation. The unlock mechanism depends on the memory area to be
programmed as described in Section 4.5.2: Memory access security system (MASS).

Read-while-write (RWW)

The RWW feature allows performing write operations on Data EEPROM while reading and
executing the program memory. Execution time is therefore optimized. The opposite
operation is not allowed: data memory cannot be read while writing to program memory.

This RWW feature is always enabled and can be used at any time.

The RWW feature is not available on all devices. Refer to the datasheets for addition
information.

Byte programming
The main program memory and the DATA area can be programmed at byte level. To
program one byte, the application writes directly to the target address
® In main program memory
The application stops for the duration of the byte program operation.
® In DATA area

— Devices with RWW capability: program execution does not stop, and the byte
program operation is performed using the read-while-write (RWW) capability in
IAP mode.

— Devices without RWW capability: the application stops for the duration of the byte
program operation.
To erase a byte, simply write 0x00 at the corresponding address.
The application can read the FLASH_IAPSR register to verify that the programming or
erasing operation has been correctly executed:
® EOP flag is set after a successful programming operation
® WR_PG_DIS is set when the software has tried to write to a protected page. In this
case, the write procedure is not performed.

As soon as one of these flags are set, a Flash interrupt is generated if it has been previously
enabled by setting the IE bit of the FLASH_CR1 register.

RMO0016

Flash program memory and data EEPROM (FLASH)

Note:

4.7.2

4.7.3

Automatic fast byte programming

The programming duration can vary according to the initial content of the target address. If
the word (4 bytes) containing the byte to be programmed is not empty, the whole word is
automatically erased before the program operation. On the contrary if the word is empty, no
erase operation is performed and the programming time is shorter (see tprog in Table
“Flash program memory”in the datasheet).

however, the programming time can be fixed by setting the FIX bit of the FLASH_CR1
register to force the program operation to systematically erase the byte whatever its content
(see Section 4.9.1: Flash control register 1 (FLASH_CR1)). The programming time is
consequently fixed and equal to the sum of erase and write time (see tprgg in Table “Flash
program memory” in the datasheet).

In order to write a byte fast (no erase), the whole word (4 bytes) into which it is written must
previously be erased. It is consequently not possible to do two fast writes to the same word
(without an erase before the second write): the first write will be fast but the second write to
the other byte will require an erase.

Word programming

A word write operation allows to program an entire 4-byte word in one shot, thus minimizing
the programming time.

Like byte programming, the word operation is available both for main program memory and
data EEPROM. On some STMB8S devices, the read-while-write (RWW) capability is also
available when a word programming operation is performed on the data EEPROM. Refer to
the datasheets for additional information.

To program a word, the WPRG/NWPRG bits in the FLASH_CR2 and FLASH_NCR2
registers must be previously set/cleared to enable word programming mode (see

Section 4.9.2: Flash control register 2 (FLASH_CRZ2) and Section 4.9.2: Flash control
register 2 (FLASH_CRZ2)). Then the 4 bytes of the word to be programmed must be loaded
starting with the first address. The programming cycle starts automatically when the 4 bytes
have been written.

Like for byte operation, the EOP and the WR_PG_DIS control flags of FLASH_IAPSR
together with the Flash interrupt can be used to determine if the operation has been
correctly completed.

Block programming

Block program operations are much faster than byte or word program operations. In a block
program operation, a whole block is programmed or erased in a single programming cycle.
Refer to Table 4 for details on the block size according to the devices.

41/430

Flash program memory and data EEPROM (FLASH) RM0016

42/430

Block operations can be performed both to main program memory and DATA area:
® In main program memory

Block program operations to main program memory have to be executed totally from
RAM.

® In DATA area

— Devices with RWW capability: DATA block operations can be executed from main
program memory. However the data loading phase (see below) has to be executed
from RAM.

— Devices without RWW capability: block program operations must be executed
totally from RAM.

There are three possible block operation:

® Block programming also called standard block programming: the block is automatically
erased before being programmed.

® Fast block programming: no previous erase operation is performed.
® Block erase

During block programming, interrupts are masked by hardware.

Standard block programming

A standard block program operation allows to write a whole block in one shot. The block is
automatically erase before being programmed.

To program a whole block in standard mode, the PRG/NPRG bits in the FLASH_CR2 and
FLASH_NCR2 registers must be previously set/cleared to enable standard block
programming (see Section 4.9.2: Flash control register 2 (FLASH_CRZ2) and Section 4.9.2:
Flash control register 2 (FLASH_CRZ2)). Then the block of data to be programmed must be
loaded sequentially to the destination addresses in main program memory or DATA area.
This causes all the bytes of data to be latched. To start programming the whole block, all the
bytes of data must be written. All the bytes written in a programming sequence must be in
the same block. This means that they must have the same high address: only the six least
significant bits of the address can change. When the last byte of the target block is loaded,
the programming starts automatically. It is preceded by an automatic erase operation of the
whole block.

When programming a block in DATA area, the application can check the HVOFF bit in the
Flash Status register (FLASH_IAPSR). As soon the HVOFF flag is reset the actual
programming phase starts and the application can return to main program memory.

The EOP and the WR_PG_DIS control flags of the FLASH_IAPSR together with the Flash
interrupt can be used to determine if the operation has been correctly completed.

Fast block programming

Fast block programming allows to program without first erasing the memory contents. Fast
block programming is therefore twice as fast as standard programming.

This mode is intended only for programming parts that have already been erased. It is very
useful for programming blank parts with the complete application code, as the time saving is
significant.

Fast block programming is performed by using the same sequence as standard block
programming. To enable fast block programming mode, the FPRG/NFPRG bits of the
FLASH_CR2 and FLASH_NCR?2 registers must be previously set/cleared.

574

RMO0016

Flash program memory and data EEPROM (FLASH)

Caution:

4.7.4

4.8

The HVOFF flag can also be polled by the application, which can execute other instructions
(RWW) during the actual programming phase of the DATA.

The EOP and the WR_PG_DIS bits of the FLASH_IAPSR register can be checked to
determine if the fast block programming operation has been correctly completed.

The data programmed in the block are not guaranteed when the block is not blank before
the fast block program operation.

Block erasing

A block erase allows to erase a whole block.

To erase a whole block, the ERASE/NERASE bits in the FLASH_CR2 and FLASH_NCR2
registers must be previously set/cleared to enable block erasing (see Section 4.9.2: Flash
control register 2 (FLASH_CRZ2) and Section 4.9.3: Flash complementary control register 2
(FLASH_NCR2)). The block is then erased by writing ‘0x00 00 00 00’ to any word inside the
block. The word start address must end with ‘0", ‘4’, ‘8, or ‘C’.

The EOP and the WR_PG_DIS control flags of the FLASh_IAPSR together with the Flash
interrupt can be used to determine if the operation has been correctly completed.

Table 4. Block size
STM8 microcontroller family Block size
Low density STM8S 64 bytes
Medium density STM8S 128 bytes
High density STM8S 128 bytes

Option byte programming
Option byte programming is very similar to data EEPROM byte programming.

The application writes directly to the target address. The program does not stop and the
write operation is performed using the RWW capability.

Refer to the datasheet for details of the option byte contents.

ICP and IAP

The in-circuit programming (ICP) method is used to update the entire content of the memory,
using the SWIM interface to load the user application into the microcontroller. ICP offers
quick and efficient design iterations and eliminates unnecessary package handling or
socketing of devices. The SWIM interface (single wire interface module) uses the SWIM pin
to connect to the programming tool.

In contrast to the ICP method, in-application programming (IAP) can use any communication
interface supported by the microcontroller (I/Os, [°C, SPI, USART...) to download the data to
be programmed in the memory. IAP allows reprogramming the Flash program memory
content during application execution. Nevertheless, part of the application must have been
previously programmed in Flash program memory using ICP.

Refer to the STM8 Flash programming manual (PM0051) and STM8 SWIM protocol and
debug manual (UM0470) for more information on programming procedures.

43/430

Flash program memory and data EEPROM (FLASH) RM0016

Table 5. Memory access versus programming method(")
Mode ROP Memory Area Access
User boot code area (UBC) R/E
Readout | Main program R/W/E®?)
protection
enabled | Data EEPROM area (DATA) R/W/E®)
User, IAP, and Option bytes R
Bootloader (if available) User boot code area (UBC) RE@
Readout | Main program R/W/E®)
protection
disabled | Data EEPROM area (DATA) R/W/E®)
Option bytes R/wW®)
User boot code area (UBC) P
Readout | Main program P
protection
enabled Data EEPROM area (DATA) P
Option bytes R/Wanp'®
ICP and SWIM prion by ROP
User boot code area (UBC) R/E®
Readout | Main program R/W/E®?)
protection
disabled | Data EEPROM area (DATA) R/W/E®)
Option bytes R/W

R/W/E = Read; Write and Execute;

R/E = Read and Execute (write operation forbidden);

R = Read (write and execute operations forbidden);

P = the area cannot be accessed (read, execute and write operations forbidden);
P/Wgop = Protected, write forbidden except for ROP option byte.

The Flash program memory is write protected (locked) until the correct MASS key is written in the
FLASH_PUKR. It is possible to lock the memory again by resetting the PUL bit in the FLASH_IAPSR
register. Unlocking can only be done once between two resets.

The data memory is write protected (locked) until the correct MASS key is written in the FLASH_DUKR. It
is possible to lock the memory again by resetting the DUL bit in the IAPSR register.

To program the UBC area the application must first clear the UBC option byte.

The option bytes are write protected (locked) until the correct MASS key is written in the FLASH_DUKR
(with OPT set to ‘1°). It is possible to lock the memory again by resetting the DUL bit in the FLASH_IAPSR
register.

When ROP is removed, the whole memory is erased, including option bytes.

RM0016 Flash program memory and data EEPROM (FLASH)

4.9 FLASH registers

4.9.1 Flash control register 1 (FLASH_CR1)

Address offset: 0x00

Reset value: 0x00

HALT
Reserved

AHALT

FIX

rw

Bits 7:4 Reserved, forced by hardware to 0.

Bit 3 HALT: Power-down in Halt mode
This bit is set and cleared by software.

0: Flash in power-down mode when MCU is in halt mode
1: Flash in operating mode when MCU is in halt mode

Bit 2 AHALT: Power-down in Active-halt mode
This bit is set and cleared by software.

0: Flash in operating mode when MCU is in Active-halt mode

1: Flash in power-down when MCU is in Active-halt mode

Bit 1 IE: Flash Interrupt enable
This bit is set and cleared by software.
0: Interrupt disabled

1: Interrupt enabled. An interrupt is generated if the EOP or WR_PG_DIS flag in the

FLASH_IAPSR register is set.

Bit 0 FIX: Fixed Byte programming time
This bit is set and cleared by software.

0: Standard programming time of (1/2 t,4) if the memory is already erased and g

otherwise.
1: Programming time fixed at tyog.

45/430

Flash program memory and data EEPROM (FLASH) RM0016

4.9.2 Flash control register 2 (FLASH_CR2)
Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0
OPT WPRG ERASE FPRG PRG
Reserved
w w w w ro

Bit 7 OPT: Write option bytes
This bit is set and cleared by software.
0: Write access to option bytes disabled
1: Write access to option bytes enabled

Bit6 WPRG: Word programming

This bit is set by software and cleared by hardware when the operation is completed.
0: Word program operation disabled
1: Word program operation enabled

Bit 5 ERASE(): Block erasing

This bit is set by software and cleared by hardware when the operation is completed.
0: Block erase operation disabled
1: Block erase operation enabled

Bit 4 FPRG("): Fast block programming

This bit is set by software and cleared by hardware when the operation is completed
(updated, please check).
0: Fast block program operation disabled

1: Fast block program operation enabled
Bit 3:1 Reserved

Bit 0 PRG: Standard block programming

This bit is set by software and cleared by hardware when the operation is completed.
0: Standard block programming operation disabled
1: Standard block programming operation enabled (automatically first erasing)

1. The ERASE and FPRG bits are locked when the memory is busy.

46/430 Ky_’

RM0016 Flash program memory and data EEPROM (FLASH)

4.9.3 Flash complementary control register 2 (FLASH_NCRZ2)
Address offset: 0x02

Reset value: OxFF

7 6 5 4 3 2 1 0
NOPT NWPRG NERASE NFPRG Reserved NPRG
w w w w Res. rw

Bit 7 NOPT: Write option bytes
This bit is set and cleared by software.
0: Write access to Option bytes enabled
1: Write access to Option bytes disabled

Bit 6 NWPRG: Word Programming
This bit is cleared by software and set by hardware when the operation is completed.
0: Word programming enabled
1: Word programming disabled

Bit 5 NERASE: Block erase

This bit is cleared by software and set by hardware when the operation is completed.
0: Block erase enabled
1: Block erase disabled

Bit 4 NFPRG: Fast block Programming
This bit is cleared by software and set by software reading the register.

0: Fast block programming enabled (no erase before programming, the programmed data
values are not guaranteed when the block is not blank (fully erased) before the operation)
1: Fast block programming disabled

Bits 3:1 Reserved, forced by hardware to 1.

Bit 0 NPRG: Block programming
This bit is cleared by software and set by hardware when the operation is completed.
0: Block programming enabled
1: Block programming disabled

Ky_l 47/430

Flash program memory and data EEPROM (FLASH)

RMO0016

49.4 Flash protection register (FLASH_FPR)

Address offset: 0x03

Reset value: 0x00

Reserved

WPB5

WPB4

WPB3

WPB2

WPB1

WPBO

ro

ro

ro

Bit 7:6 Reserved - must be kept to ‘0’

Bit 5:0 WPB[5:0]: User boot code area protection bits
These bits show the size of the boot code area. They are loaded at startup with the content of
the UBC option byte. Refer o the datasheet for the protected pages according to the bit values.

48/430

RM0016 Flash program memory and data EEPROM (FLASH)

4.9.5 Flash protection register (FLASH_NFPR)
Address offset: 0x04

Reset value: OxFF

7 6 5 4 3 2 1 0
NWPB5 NWPB4 NWPB3 NWPB2 NWPBH1 NWPBO
Reserved
ro ro ro ro ro ro

Bit 7:6 Reserved - must be kept to ‘1’

Bit 5:0 WPB[5:0]: User boot code area protection bits
These bits show the size of the boot code area. They reflect the content of the NUBC option
byte. Refer o the datasheet for the protected pages according to the bit values.

Ky_l 49/430

Flash program memory and data EEPROM (FLASH) RM0016

4.9.6 Flash program memory unprotecting key register (FLASH_PUKR)
Address offset: 0x08

Reset value: 0x00

7 6 5 4 3 2 1

MASS_PRG KEYS

Bits 7:0 PUK [7:0]: Main program memory unlock keys
This byte is written by software (all modes). It returns 0x00 when read.

Refer to Enabling write access to the main program memory on page 38 for the description
of main program area write unprotection mechanism.

4.9.7 Data EEPROM unprotection key register (FLASH_DUKR)
Address offset: Ox0A

Reset value: 0x00

7 6 5 4 3 2 1

MASS_DATA KEYS

Bits 7:0 DUK][7:0]: Data EEPROM write unlock keys

This byte is written by software (all modes). It returns 0x00 when read.

Refer to Enabling write access to the DATA area on page 39 for the description of main
program area write unprotection mechanism.

50/430 Ky_’

RM0016 Flash program memory and data EEPROM (FLASH)

4.9.8 Flash Status register (FLASH_IAPSR)
Address offset: 0x05

Reset value: 0x40

7 6 5 4 3 2 1 0
HVOFF DUL EOP PUL WR_PG_DIS
Reserved Reserved
r rc_w0 r rc_w0 r

Bit 7 Reserved, forced by hardware to 0.

Bit 6 HVOFF: End of high voltage flag
This bit is set and cleared by hardware.
0: HV ON, start of actual programming
1: HV OFF, end of high voltage

Bits 5:4 Reserved, forced by hardware to 0.

Bit 3 DUL: Data EEPROM area unlocked flag
This bit is set by hardware and cleared by software by programming it to ‘0’.
0: Data EEPROM area write protection enabled
1: Data EEPROM area write protection can be disabled by MASS keys

Bit 2 EOP: End of programming (write or erase operation) flag
This bit is set by hardware and cleared by software by reading the register.
0: No EOP event occurred
1: An EOP operation occurred. An interrupt is generated if the |IE bit is set in the
FLASH_CR1 register.

Bit 1 PUL: Flash Program memory unlocked flag
This bit is set by hardware and cleared by software by programming it to ‘0’.
0: Write protection of main Program area enabled
1: Write protection of main Program area can be disabled by MASS keys.

Bit 0 WR_PG_DIS: Write attempted to protected page flag
This bit is set by hardware and cleared by software by reading the register.
0: No WR_PG_DIS event occurred
1: A write attempt to a write protected page occurred. An interrupt is generated if the IE bit
is set in the FLASH_CR1 register.

Ky_l 51/430

Flash program memory and data EEPROM (FLASH) RM0016

4.9.9 Flash register map and reset values
For details on the register boundary addresses, refer to in the general hardware register
map in the datasheet.
Table 6. Flash register map and reset values
Address | Register name 7 6 5 4 3 2 1 0
0x00 FLASH_CRH1 - - - - HALT AHALT IE FIX
Reset Value 0 0 0 0 0 0 0 0
0x01 FLASH_CR2 OPT WPRG ERASE FPRG - - - PRG
X Reset Value 0 0 0 0 0 0 0 0
0x02 FLASH_NCR2 NOPT NWPRG | NERASE | NFPRG - - - NPRG
X Reset Value 1 1 1 1 1 1 1 1
0x03 FLASH_FPR - - WPB5 WPB4 WPB3 WPB2 WPB1 WPBO
Reset Value 0 0 0 0 0 0 0 0
0x04 FLASH_NFPR - - NWPB5 | NWPB4 NWPB3 NWPB2 NWPB1 NWPBO
Reset Value 1 1 1 1 1 1 1 1
0x05 FLASH_IAPSR - HVOFF - - DUL EOP PUL WR_PG_DIS
Reset Value 0 1 0 0 0 0
0x06-0x07 Reserved
0x08 FLASH_PUKR PUK7 PUK6 PUKS5 PUK4 PUK3 PUK2 PUK1 PUKO
Reset Value 0 0 0 0 0 0 0 0
0x09 Reserved
OxOA FLASH_DUKR DUK? DUNP6 DUK5 DUK4 DUK3 DUK2 DUK1 DUKO
Reset Value 0 0 0 0 0 0 0 0
52/430 Kﬁ

RMO0016

Single wire interface module (SWIM) and debug module (DM)

5

5.1

5.2

5.3

Note:

Single wire interface module (SWIM) and debug
module (DM)

Introduction

In-circuit debugging mode or in-circuit programming mode are managed through a single
wire hardware interface featuring ultra fast memory programming. Coupled with an in-circuit
debugging module, it also offers a non-intrusive emulation mode, making the in-circuit
debugger extremely powerful, close in performance to a full-featured emulator.

Main features

® Based on an asynchronous, high sink (8 mA), open-drain, bidirectional communication.
® Allows reading or writing any part of memory space.

® Access to CPU registers (A, X, Y, CC, SP). They are memory mapped for read or write
access.

® Non intrusive read/write on the fly to the RAM and peripheral registers.
® Device reset capability with status flag in the Reset status register (RST_SR).
® Clock speed selectable in the SWIM clock control register (CLK_SWIMCCR,).

SWIM pin can be used as a standard 1/0O with some restrictions if you also want to use it for
debug. The most secure way is to provide on the PCB a strap option.

Figure 9. SWIM pin connection

MCU

I/O for application ~—€——

SWIM/PD1

R

SWIM interface for tools ~—€————

Jumper selection for
debug purposes

SWIM modes

After a power-on reset, the SWIM is reset and enters OFF mode.
1. OFF: Default state after power-on reset. The SWIM pin cannot be used by the
application as an /0.

2. I/O: This state is entered by software writing to the SWD bit in the Global configuration
register (CFG_GCR). In this state, the SWIM pin can be used by the application as a
standard I/O pin. In case of a reset, the SWIM goes back to OFF mode.

3. SWIM: This state is entered when a specific sequence is performed on the SWIM pin.
In this state, the SWIM pin is used by the host tool to control the STM8 with 3
commands (SRST System Reset, ROTF Read On The Fly, WOTF Write On The Fly).

Refer to the STM8 SWIM communication Protocol and Debug Module User Manual for a
description of the SWIM and Debug module (DM) registers.

53/430

Power supply RMO0016

6

54/430

Power supply

The MCU has four distinct power supplies:

® Vpp/Vgg: Main power supply (3'V to 5.5 V)

® Vppio/Vssio: /0 power supply (3 V to 5.5 V)

® Vppa/Vssa: Power supply for the analog functions

® Vger/VRer.: Reference supply for Analog Digital Converter

The Vpp/Vgs pins are used to supply the internal Main Voltage Regulator (MVR) and the
internal Low Power Voltage Regulator (LPVR). The 2 regulator outputs are connected and
provide the 1.8 V supply (V4g) to the MCU core (CPU, Flash and RAM)

In low power modes the system automatically switches from the MVR to the LPVR in order
to reduce current consumption.

To stabilize the MVR, a capacitor must be connected to the VCAP pin. The minimum
recommended value is 470 nF with low Equivalent Series Resistance.

Depending on the package size, there are one or two pairs of dedicated pins for
Vppio/Vssio to supply power to the I/Os.

Vppa/Vssa and Vgeg,/VReE. are connected to the Analog to Digital Converter (ADC).

Figure 10. Power supply overview

3V-5.5V
Vbpa [0 r

VVSSA o [A/D converter
REF+ (F———

VRer ——

Vear O
MCU core
Vop SV-S.M Main Voltage Regulator 1.8V CPU
Vig RAM
Flash
Low Power Voltage Regulator [~
3V-5.5V
Vopio =227 1/O buffers

RMO0016

Reset (RST)

7

7.1

7.2

Reset (RST)

There are 9 reset sources:

External reset through the NRST pin

Power-on reset (POR)

Brown-out Reset (BOR)

Independent watchdog reset (IWDG)

Window watchdog reset (WWDG)

Software reset

SWIM reset

lllegal opcode reset

® EMS reset: generated if critical registers are corrupted or badly loaded

These sources act on the RESET pin and it is always kept low during the delay phase. The
RESET service routine vector is fixed at address 6000h in the memory map.

Figure 11. Reset circuit

— Vbp_io

T
Reu
(typ 45kQ)
Fiter b SYSTEM NRESET
NRST

EXTERNAL ¢ > |:
RESET

L

(min 20-ps ILLEGAL OPCODE RESET
EMS RESET

POR/BOR RESET
PULSE IWDG/WWDG/SOFTWARE RESET
‘4— GENERATOR x SWIM RESET

Reset circuit description

The NRST pin is both an input and an open-drain output with integrated Rpy weak pull-up
resistor.

A minimum of 500 ns low pulse on the NRST pin generates an external reset. The reset
detection is asynchronous and therefore the MCU can enter reset even in HALT mode.

The NRST pin also acts as an open-drain output for resetting external devices.

An internal temporization maintains a pulse of at least 20 ys whatever the internal reset
source. An additional internal weak pull-up ensures a high level on the reset pin when the
reset is not forced.

Refer to Figure 11 and see Electrical parameters section of the datasheet for more details.

Internal reset sources

Each internal reset source is linked to a specific flag bit in the Reset status register
(RST_SR) except POR/BOR which have no flag. These flags are set respectively at reset
depending on the given reset source. So they are used to identify the last reset source. They
are cleared by software writing the logic value “1”.

55/430

Reset (RST)

RMO0016

7.2.1

7.2.2

7.2.3

7.2.4

56/430

Power-on reset (POR) and brown-out reset (BOR)

During power-on, the POR keeps the device under reset until the supply voltages (Vpp and
Vppio) reach the voltage level at which the BOR starts to function. At this point, the BOR
reset replaces the POR and the POR is automatically switched off. The BOR reset is
maintained till the supply voltage reaches the operating voltage range.

See Electrical parameters section of the datasheet for more details.

The BOR also generates a reset when the supply voltage drops below the V1. threshold.
When this occurs, the POR is re-armed for the next power-on phase.

An hysteresis is implemented to ensure clean detection of voltage rise and fall.

The BOR always remains active even when the MCU is put into Low Power mode.

Figure 12. Vpp,Vppjo voltage detection: POR/BOR threshold

Vob/Vbpio

Virs
VlT_

NRST

Watchdog reset

Refer to Section 15: Window watchdog (WWDG) and Section 14: Independent watchdog
(IWDG) for details.

Software reset

The application software can trigger reset by clearing bit T6 in the WWDG_CR register.
Refer to Section 15: Window watchdog (WWDG).

SWIM reset

An external device connected to the SWIM interface can request the SWIM block to
generate an MCU reset.

RMO0016 Reset (RST)

7.2.5 lllegal opcode reset
In order to provide enhanced robustness to the device against unexpected behavior, a
system of illegal opcode detection is implemented. If a code to be executed does not
correspond to any opcode or prebyte value, a reset is generated. This, combined with the
Watchdog, allows recovery from an unexpected fault or interference.

Note: A valid prebyte associated with a valid opcode forming an unauthorized combination does
not generate a reset.

7.2.6 EMS reset

To protect the application against spurious write access or system hang-up, possibly caused
by electromagnetic disturbance, the most critical registers are implemented as two bit-fields
that must contain complementary values. Mismatches are automatically detected by this
mechanism, triggering an EMS reset and allowing the application to cleanly recover normal
operations.

57/430

Reset (RST)

RMO0016

7.3 RST register description

7.3.1 Reset status register (RST_SR)
Address offset: 0x00

Reset value: undefined

7 6 5 4 3 2 1 0
EMCF SWIMF ILLOPF IWDGF WWDGF
Reserved
rc_wi rc_wi rc_wi rc_wi rc_wi

Bits 7:5 Reserved, must be kept cleared.

Bit 4 EMCF: EMC reset flag
This bit is set by hardware and cleared by software writing “1”.
0: No EMC reset occurred

1: An EMC reset occurred (possible cause: complementary register or option byte mismatch).

Bit 3 SWIMF: SWIM reset flag
This bit is set by hardware and cleared by software writing “1”.
0: No SWIM reset occurred
1: A SWIM reset occurred

Bit 2 ILLOPF: lllegal opcode reset flag
This bit is set by hardware and cleared by software writing “1”.
0: No ILLOP reset occurred
1: An ILLOP reset occurred

Bit 1 IWDGF: Independent Watchdog reset flag
This bit is set by hardware and cleared by software writing “1”.
0: No IWDG reset occurred
1: An IWDG reset occurred

Bit 0 WWDGF: Window Watchdog reset flag
This bit is set by hardware and cleared by software writing “1”.
0: No WWDG reset occurred
1: An WWDG reset occurred

58/430

RMO0016 Reset (RST)
7.4 RST register map
Refer to the corresponding datasheet for the base address.
Table 7. RST register map
Address .
offset Register Name 4 3 2 1 0
0 RST_SR EMCF | SWIMF | ILLOPF | IWDGF | WWDGF
x00
Reset value X X X X X

Ays 59/430

Clock control (CLK) RMO0016

8

60/430

Clock control (CLK)

The clock controller is designed to be powerful, very robust, and at the same time easy to
use. Its purpose is to allow you to obtain the best performance in your application while at
the same time get the full benefit of all the microcontroller’s power saving capabilities.

You can manage all the different clock sources independently and distribute them to the
CPU and to the various peripherals. Prescalers are available for the master and CPU clocks.

A safe and glitch-free switch mechanism allows you to switch the master clock on the fly
from one clock source to another one.

EMS-hardened clock configuration registers

To protect the application against spurious write access or system hang-up, possibly caused
by electromagnetic disturbance, the most critical CLK registers are implemented as two bit-
fields that must contain complementary values. Mismatches are automatically detected by
the CLK, triggering an EMS reset and allowing the application to cleanly recover normal
operations. See CLK register description for more details.

RMO0016

Clock control (CLK)

8.1

Figure 13. Clock tree

CKM[7:0]
HSE Ext.
CPUDIV[2:0]
i fhse
OSCIN
HSE OSC
1-24MHz /"
OSCOUT EXTCLK OPT BIT /2
/4
Master| fMASTER | /8 fopu
Clock /16
» CSS [— =1 HSIDIV[1:0] Switch /30
l /64
' /8 128
HSIRC fusi /4) fusioiv
10 Mz 2 to CPU and
a Window Watchdog
LSI_EN OPT BIT .
LSIRC LSl
128 kHz
to Timers
12C
to Independent Watchdog

SPI
Peripheral Clock ADC

Enable (8 bits) é‘/’\"#
PRSC(1:0) OPT BITS UART
128 KHz to Auto wakeup unit (AWU)
CKAWUSEL OPT BIT
CANDIV[2:0] CCOSEL[3:0]
to beCAN —fusi
—fHsiDiv
—fhse
—fLsi
cco -1, Configurable Clock Output _IMASTER
< —IcpPu
[|J —;CPU/Z
Legend: _fgggg
HSE = High Speed External clock signal —fcpurs
HSI = High Speed Internal clock signal :;CPU/SZ
LS| = Low Speed Internal clock signal CcPues
Master clock sources
4 different clock sources can be used to drive the master clock:
® 1-24 MHz High Speed External crystal oscillator (HSE)
® Up to 24 MHz High Speed user-external clock (HSE user-ext)
® 16 MHz High Speed Internal RC oscillator (HSI)
® 128 kHz Low Speed Internal RC (LSI)
61/430

Clock control (CLK) RMO0016

8.1.1

62/430

Each clock source can be switched on or off independently when it is not used, to optimize
power consumption.

HSE

The High Speed External clock signal (HSE) can be generated from two possible clock
sources:

® HSE external crystal/ceramic resonator
® HSE user external clock

Figure 14. HSE clock sources

Hardware configuration

S
2 OSCOUT
E [] []
& L LT
g T (/O available)
w

EXTERNAL

SOURCE

OSCIN OScouT

[]
| | |[]| jJ |
|| [|
Ciy CLo

N LOAD ,
CAPACITORS

Ve

Crystal/ceramic resonators

The resonator and the load capacitors have to be placed as close as possible to the
oscillator pins in order to minimize output distortion and start-up stabilization time. The
loading capacitance values must be adjusted according to the selected oscillator.

External crystal/ceramic resonator (HSE crystal)

The 1 to 24 MHz external oscillator has the advantage of producing a very accurate rate on
the main clock with 50% duty cycle.

The associated hardware configuration is shown in Figure 14. Refer to the electrical
characteristics section for more details.

At start up the clock signal produced by the oscillator is not stable, and by default a delay of
2048 osc cycles is inserted before the clock signal is released. You can program a shorter
stabilization time in the HSECNT option byte, please refer to option bytes section in the
datasheet.

574

RMO0016

Clock control (CLK)

8.1.2

Note:

The HSERDY flag in the External clock register (CLK_ECKR) indicates if the high-speed
external oscillator is stable or not. At startup, the clock is not released until this bit is set by
hardware.

The HSE Crystal can be switched on and off using the HSEEN bit in the External clock
register (CLK_ECKR).

External source (HSE user-ext)

In this mode, an external clock source must be provided. It can have a frequency of up to
24MHz. You select this mode by programming the EXTCLK option bit. Refer to the option
bytes section of the datasheet. The external clock signal (square, sinus or triangle) with
~50% duty cycle has to drive the OSCIN pin while the OSCOUT pin is available as standard
I/O. See Figure 13.

HSI

The HSI clock signal is generated from an internal 16 MHz RC oscillator together with a
programmable divider (factor 1 to 8). This is programmed in the Clock divider register
(CLK_CKDIVR).

At startup the master clock source is automatically selected as HSI RC clock output divided
by 8 (frsy8).

The HSI RC oscillator has the advantage of providing a 16 MHz master clock source with
50% duty cycle at low cost (no external components). It also has a faster startup time than
the HSE crystal oscillator however, even with calibration the frequency is less accurate than
an external crystal oscillator or ceramic resonator.

The HSIRDY flag in the Internal clock register (CLK_ICKR) indicates if the HSI RC is stable
or not. At startup, the HSI RC output clock is not released until this bit is set by hardware.

The HSI RC can be switched on and off using the HSIEN bit in the Internal clock register
(CLK_ICKR).

Backup source

The HSI/8 signal can also be used as a backup source (Auxiliary clock) if the HSE crystal
oscillator fails. Refer to Section 8.6: Clock security system (CSS).

Fast wakeup feature

If the FHWU bit in the Internal clock register (CLK_ICKR) is set, this automatically selects
the HSI clock as master clock after MCU wakeup from Halt or Active Halt (see Low Power
chapter).

Calibration

Each device is factory calibrated by ST.

After reset, the factory calibration value is automatically loaded in an internal calibration
register.

If the application is subject to voltage or temperature variations this may affect the RC
oscillator speed. You can trim the HSI frequency in the application using the HS/ clock
calibration trimming register (CLK_HSITRIMR). In this register there are 3 or 4 bits providing
an additional trimming value that is added to the internal HSI calibration register value.

63/430

Clock control (CLK) RMO0016

8.1.3

Note:

8.2

8.2.1

8.2.2

64/430

LSI

The 128 kHz LSI RC acts as a low power, low cost alternative master clock source as well
as a low power clock source that can be kept running in Halt mode for the independent
watchdog (IWDG) and Auto-Wakeup unit (AWU).

The LSI RC can be switched on and off using the LSIEN bit in the Internal clock register
(CLK_ICKR).

The LSIRDY flag in the Internal clock register (CLK_ICKR) indicates if the low-speed
internal oscillator is stable or not. At startup, the clock is not released until this bit is set by
hardware.

Calibration

Like the HSI RC, the LSI RC device is factory calibrated by ST. However, it is not possible to
perform further trimming.

When using the Independent Watchdog with the LSI as clock source, in order to guarantee
that the CPU will never run on the same clock in case of corruption, the LS| clock cannot be
the master clock if LSI_EN option bit is reset. Refer to the option bytes section in the
datasheet.

Master clock switching

The clock switching feature provides an easy to use, fast and secure way for the application
to switch from one master clock source to another.

System startup

For fast system startup, after a reset the clock controller configures the master clock source
as HSI RC clock output divided by 8 (HSI/8). This is to take advantage of the short
stabilization time of the HSI oscillator. The /8 divider is to ensure safe start-up in case of
poor Vpp conditions.

Once the master clock is released, the user program can switch the master clock to another
clock source.

Master clock switching procedures

To switch clock sources, you can proceed in one of two ways:
® Automatic switching
® Manual switching

Automatic switching

The automatic switching enables the user to launch a clock switch with a minimum number
of instructions. The software can continue doing other operations without taking care of the
switch event exact time.

Refer to the flowchart in Figure 15.

RMO0016

Clock control (CLK)

1. Enable the switching mechanism by setting the SWEN bit in the Switch control register
(CLK_SWCR).

2. Write the 8-bit value used to select the target clock source in the Clock master switch
register (CLK_SWR). The SWBSY bit in the CLK_SWCR register is set by hardware,
and the target source oscillator starts. The old clock source continues to drive the CPU
and peripherals.

As soon as the target clock source is ready (stabilized), the content of the CLK_SWR
register is copied to the Clock master status register (CLK_CMSR).

The SWBSY bit is cleared and the new clock source replaces the old one. The SWIF flag in
the CLK_SWCR is set and an interrupt is generated if the SWIEN bit is set.

Manual switching

The manual switching is not as immediate as the automatic switching but it offers to the user
a precise control of the switch event time.

Refer to the flowchart in Figure 16.

1. write the 8-bit value used to select the target clock source in the Clock master switch
register (CLK_SWR). Then the SWBSY bit is set by hardware, and the target source
oscillator starts. The old clock source continues to drive the CPU and peripherals.

2. The software has to wait until the target clock source is ready (stabilized). This is
indicated by the SWIF flag in the CLK_SWCR register and by an interrupt if the SWIEN
bit is set.

3. The final software action is to set, at the chosen time, the SWEN bit in the CLK_SWCR
register to execute the switch.

In both manual and automatic switching modes, the old master clock source will not be
powered off automatically in case it is required by other blocks (the LSI RC may be used to
drive the Independent Watchdog for example). The clock source can be powered off using
the bits in the Internal clock register (CLK_ICKR) and External clock register (CLK_ECKR).

If the clock switch does not work for any reason, software can reset the current switch
operation by clearing the SWBSY flag. This will restore the CLK_SWR register to its
previous content (old master clock).

65/430

Clock control (CLK) RMO0016

Figure 15. Clock switching flowchart (automatic mode example)

HARDWARE ACTION

| MCU in run mode with HSI/8 |
|

SOFTWARE ACTION

|
‘ Set SWEN bit in CLK_SWCR ‘

| Set SWIEN bit in CLK_SWCR to enable interrupt if suitable

| Write target clock source in CLK_SWR |
|

[
Switch busy

SWBSY ——> 1

Target clock source powered on

Target clock source ready after
stabilization time

Update Clock Master Status
CLK_SWR —> CLK_CMSR

Reset Switch busy flag
SWBSY—> 0

Switch done
SWIF —> 1

Interrupt if activated

Clear SWIF flag

MCU in run mode
with new master clock source

66/430 Ky_’

RMO0016 Clock control (CLK)
Figure 16. Clock switching flowchart (manual mode example)
HARDWARE ACTION | SOFTWARE ACTION
|
v |
[MCU in run mode with HSI/8 | |
[
1
| [Set SWIEN bitin CLK_SWCR to enable interrupt if suitable |
| | Write target clock source in CLK_SWR |
|]
| T
Switch busy |
SWBSY —> 1 |
Target clock source powered on
Target clock source ready after |
stabilization time |
|
Ready for the switch |
SWIF > 1
[| Interrupt if activated
|
| | Clear SWIF flag |
| | Set SWEN bit in CLK_SWCR to execute switch
|
: |
Update Clock Master Status |
CLK_SWR—> CLK_CMSR |
Reset Switch busy flag !
SWBSY—> 0
MCU in run mode
with new master clock source
8.3 Low speed clock selection
The Low speed clock source for the AWU or the Independent Watchdog can be LS| or HSE
divided according to the CKAWUSEL option bit. Refer to option bytes section in the
datasheet.
The division factor for HSE has to be programmed in the HSEPRSC[1:0] option bits Refer to
in the option bytes section of the datasheet. The goal is to get 128 kHz at the output of the
HSE prescaler.
8.4 CPU clock divider

The CPU clock (fcpy) is derived from the master clock (fyaster), divided by a factor
programmed in the CPUDIV[2:0] bits in the Clock divider register (CLK_CKDIVR). Seven
division factors (1 to 128 in steps of power of 2) can be selected. Refer to Figure 13.

The fcpy signal is the clock for both the CPU and the Window Watchdog.

67/430

Clock control (CLK) RMO0016

8.5

68/430

Peripheral clock gating (PCG)

Gating the clock to unused peripherals helps reduce power consumption. Peripheral clock
Gating (PCG) mode allows you to selectively enable or disable the fyagTer clock
connection to the following peripherals at any time in run mode:

ADC

12C

AWU (regqister clock, not counter clock)
SPI

TIM[4:1]

UART

CAN (register clock, not CAN clock)

After a device reset, all peripheral clocks are enabled. You can disable the clock to any
peripheral by clearing the corresponding PCKEN bit in the Peripheral clock gating register 1
(CLK_PCKENRT1) and in the Peripheral clock gating register 2 (CLK_PCKENRZ2). But you
have to disable properly the peripheral using the appropiate bit, before stopping the
corresponding clock.

To enable a peripheral, you must first enable the corresponding PCKEN bit in the
CLK_PCKENR registers and then set the peripheral enable bit in the peripheral’s control
registers.

The AWU counter is driven by an internal or external clock (LSI or HSE) independent from
fuAsTER, SO that it continues to run even if the register clock to this peripheral is switched off.

RMO0016

Clock control (CLK)

8.6

Clock security system (CSS)

The Clock Security System (CSS) monitors HSE crystal clock source failures. When
fumasTER depends on HSE crystal, i.e. when HSE is selected, if the HSE clock fails due to a
broken or disconnected resonator or any other reason, the clock controller activates a stall-
safe recovery mechanism by automatically switching fyasTeR to the auxiliary clock source
(HSI1/8). Once selected the auxiliary clock source remains enabled until the MCU is reset.

You enable the clock security system by setting the CSSEN bit in the Clock security system
register (CLK_CSSR). For safety reason, once CSS is enabled it cannot be disabled until
the next reset.

The following conditions must be met so that the CSS can detect HSE quartz crystal
failures:

® HSE crystal on: (HSEEN=1 in the External clock register (CLK_ECKR))

® HSE oscillator in quartz crystal configuration (EXTCLK option bit is set)

® CSS function enabled: (CSSEN=1 in the CLK_CSSR register)

If HSE is the current clock master when a failure is detected, the CSS performs the following
actions:

® The CSSD bit is set in the CLK_CSSR register and an interrupt is generated if the
CSSIEN bit is set.

® The Clock master status register (CLK_CMSR), Clock master switch register
(CLK_SWR) register and the HSIDIV[1:0] bits in the Clock divider register
(CLK_CKDIVR) are set to their reset values (CKM[7:0]= SWI[7:0]=E1h). HSI/8
becomes the master clock.

® The HSIEN bit in the Internal clock register (CLK_ICKR) register is set (HSI on).
® The HSEEN bit in the External clock register (CLK_ECKR) is cleared (HSE off)
® The AUX bit is set to indicate that the HSI/8 auxiliary clock source is forced.

You can clear the CSSD bit by software but the AUX bit is cleared only by reset.

To select a faster clock speed, you can modify the HSIDIV[1:0] bits in the CLK_CKDIVR
register after the CSSD bit in the CLK_CSSR register is cleared.

If HSE is not the current clock master when a failure is detected, the master clock is not
switched to the auxiliary clock and none of the above actions are performed except:
® The HSEEN bit is cleared in the CLK_ECKR register, HSE is then switched OFF

® The CSSD bit is set in the CLK_CSSR register and interrupt is generated if CSSDIE is
also set, it can be cleared by software.

If HSE is not the current clock master and the master clock switch to HSE is ongoing, the
SWBSY bit in the CLK_SWCR register must be cleared by software before clearing the
CSSD bit.

If HSE is selected by CCOSEL to be in output mode (see Clock-out capability (CCO)) when
a failure is detected, the selection is automatically changed to force HSI (HSIDIV) instead of
HSE.

69/430

Clock control (CLK) RMO0016

8.7

Note:

8.8

70/430

Clock-out capability (CCO)

The configurable Clock Output (CCO) capability allows you to output a clock on the external
CCO pin. You can select one of 6 clock signals as CCO clock:

® fuse

fusi

fusipiv

fLsi

fmasTER
fcpu (with current prescaling selection)

50% duty cycle is not guaranteed on all possible prescaled values

The selection is controlled by the CCOSEL[3:0] bits in the Configurable clock output register
(CLK_CCOR).

The user has to select first the desired clock for the dedicated I/O pin (see Pin Description
chapter). This I/O must be set at 1 in the corresponding Px_CR1 register to be set as input
with pull-up or push-pull output.

The sequence to really output the chosen clock starts with CCOEN=1 in Configurable clock
output register (CLK_CCOR,).

The CCOBSY is set to indicate that the Configurable Clock Output system is operating. As
long as the CCOBSY bit is set, the CCOSEL bits are write protected.

The CCO automatically activates the target oscillator if needed. The CCORDY bit is set
when the chosen clock is ready.

To disable the clock output the user has to clear the CCOEN bit. Both CCOBSY and
CCORDY remain at 1 till the shut down is completed. The time between the clear of CCOEN
and the reset of the two flags can be relatively long, for instance in case the selected clock
output is very slow compared to fepy.

CLK interrupts

The following interrupts can be generated by the clock controller:
® Master clock source switch event
® Clock Security System event

Both interrupts are individually maskable.

Table 8. CLK interrupt requests

Enable Exit Exit
Event
Interrupt event fla control from from
9 bit Wait Halt
CSS event CSSD CSSDIE Yes No
Master clock switch event SWIF SWIEN Yes No

RMO0016 Clock control (CLK)

8.9 CLK register description

8.9.1 Internal clock register (CLK_ICKR)
Address offset: 0x00

Reset value: 0x01

7 6 5 4 3 2 1 0
REGAH LSIRDY LSIEN FHW HSIRDY HSIEN
Reserved
w r rw rw r w

Bits 7:6 Reserved, must be kept cleared.

Bit 5 REGAH: Regulator power off in Active Halt mode

This bit is set and cleared by software. When it is set, the main voltage regulator is powered off as
soon as the MCU enters Active Halt mode, so the wakeup time is longer.

0: MVR regulator ON in active halt mode
1: MVR regulator OFF in active halt mode

Bit 4 LSIRDY: Low speed internal oscillator ready
This bit is set and cleared by hardware.
0: LSI clock not ready
1: LSI clock ready

Bit 3 LSIEN: Low speed internal RC oscillator enable

This bit is set and cleared by software. It is set by hardware whenever the LSI oscillator is required,
for example:

— When switching to the LSI clock (see CLK_SWR register)

— When LSl is selected as the active CCO source (see CLK_CCOR register)

— When BEEP is enabled (BEEPEN bit set in the BEEP_CSR register)

— When LSI measurement is enabled (MSR bit set in the AWU_CSR register)
It cannot be cleared when LSl is selected as master clock source (CLK_CMSR register), as active
CCO source or as clock source for the AWU peripheral or independent Watchdog.
0: Low-speed internal RC off
1: Low-speed internal RC on

Bit2 FHWU: Fast wakeup from Halt/Active Halt modes

This bit is set and cleared by software.
0: Fast wakeup from Halt/Active Halt modes disabled
1: Fast wakeup from Halt/Active Halt modes enabled

Bit 1 HSIRDY: High speed internal oscillator ready
This bit is set and cleared by hardware.
0: HSI clock not ready
1: HSI clock ready

Ky_l 71/430

Clock control (CLK) RMO0016

Bit 0 HSIEN: High speed internal RC oscillator enable
This bit is set and cleared by software. It is set by hardware whenever the HSI oscillator is required,
for example:
— When activated as safe oscillator by the CSS
— When switching to HSI clock (see CLK_SWR register)
— When HSl is selected as the active CCO source (see CLK_CCOR register)
It cannot be cleared when HSI is selected as clock master (CLK_CMSR register), as active CCO
source or if the safe oscillator (AUX) is enabled.
0: High-speed internal RC off
1: High-speed internal RC on

72/430

RMO0016

Clock control (CLK)

8.9.2 External clock register (CLK_ECKR)
Address offset: 0x01

Reset value: 0x00

1

Reserved

HSERDY

HSEEN

rw

Bits 7:2 Reserved, must be kept cleared.

Bit 1 HSERDY: High speed external crystal oscillator ready
This bit is set and cleared by hardware.
0: HSE clock not ready
1: HSE clock ready (HSE clock is stabilized and available)

Bit 0 HSEEN: High speed external crystal oscillator enable

This bit is set and cleared by software. It can be used to switch the external crystal oscillator on or

off. It is set by hardware in the following cases:

— When switching to HSE clock (see CLK_SWR register)
— When HSE is selected as the active CCO source (see CLK_CCOR register)

It cannot be cleared when HSE is selected as clock master (indicated in CLK_CMSR register) or as

the active CCO source.
0: HSE clock off
1: HSE clock on

73/430

Clock control (CLK) RMO0016

8.9.3 Clock master status register (CLK_CMSR)
Address offset:0x03

Reset value: OxE1

CKM[7:0]

Bits 7:0 CKM[7:0]: Clock master status bits

These bits are set and cleared by hardware. They indicate the currently selected master clock
source. An invalid value occurring in this register will automatically generate an MCU reset.
OxE1: HSI selected as master clock source (reset value)

0xD2: LSI selected as master clock source (only if LSI_EN option bit is set)

0xB4: HSE selected as master clock source

8.9.4 Clock master switch register (CLK_SWR)
Address offset: 0x04

Reset value: OxE1

SWI[7:0]

Bits 7:0 SWI[7:0]: Clock master selection bits
These bits are written by software to select the master clock source. Its contents are write protected
while a clock switch is ongoing (while the SWBSY bit is set). They are set to the reset value (HSI) if
the AUX bit is set in the CLK_CSSR register. If Fast Halt wakeup mode is selected (FHW bit =1 in
CLK_ICKR register) then these bits are set by hardware to E1h (HSI selected) when resuming from
Halt/Active halt mode.
OxE1: HSI selected as master clock source (reset value)
0xD2: LSI selected as master clock source (only if LSI_EN option bit is set)
0xB4: HSE selected as master clock source

74/430 Kﬁ

RMO0016

Clock control (CLK)

8.9.5

Switch control register (CLK_SWCR)
Address offset: 0x05

Reset value: undefined

SWIF SWIEN SWEN SWBSY
Reserved

rc_w0 w w w

Bits 7:4
Bit 3

Bit 2

Bit 1

Bit 0

Reserved, must be kept cleared.

SWIF: Clock switch interrupt flag
This bit is set by hardware and cleared by software writing 0. Its meaning depends on the status of
the SWEN bit. Refer to Figure 15 and Figure 16.
® In manual switching mode (SWEN=0):
0: Target clock source not ready
1: Target clock source ready
® In automatic switching mode (SWEN=1):
0: No clock switch event occurred
1: Clock switch event occurred

SWIEN: Clock switch interrupt enable
This bit is set and cleared by software.
0: Clock switch interrupt disabled
1: Clock switch interrupt enabled

SWEN: Switch start/stop
This bit is set and cleared by software. Writing a 1 to this bit enables switching the master clock to
the source defined in the CLK_SWR register.
0: Disable clock switch execution
1: Enable clock switch execution

SWBSY: Switch busy

This bit is set and cleared by hardware. It can be cleared by software to reset the clock switch
process.

0: No clock switch ongoing

1: Clock switch ongoing

75/430

Clock control (CLK) RMO0016

8.9.6 Clock divider register (CLK_CKDIVR)
Address offset: 0x06

Reset value: 0x18

7 6 5 4 3 2 1 0
HSIDIV[1:0] CPUDIV[2:0]
Reserved
w rw rw rw w

Bits 7:5 Reserved, must be kept cleared.

Bits 4:3 HSIDIV[1:0]: High speed internal clock prescaler
These bits are written by software to define the HSI prescaling factor.

00: fys1= fHsi RC output
01: fysi= fHsi Rc output’2
10: fys= fHsi Re output’4
11: fysi= fisi Re output’d
Bits 2:0 CPUDIV[2:0]: CPU clock prescaler
These bits are written by software to define the CPU clock prescaling factor.
000: fopy=fuasTer
001: fopy=fuasTeR/2
010: fopy=fuasTer/4
011: fopu=fuasTeR/8
100: fepy=fmasTer/16
101: fopu=fmasTeR/32
110: fopy=fmasTer/64
111: fCPU=fMASTER/1 28

76/430 Ky_’

Clock control (CLK)

RMO0016
8.9.7 Peripheral clock gating register 1 (CLK_PCKENR1)
Address offset: 0x07
Reset value: OxFF
7 6 5 4 3 2 1 0
PCKEN1[7:0]
w rw rw rw rw rw rw rw

Bits 7:0 PCKEN1[7:0]: Peripheral clock enable

These bits are written by software to enable or disable the fyasTER Clock to the corresponding
peripheral. See Table 9

0: fyasTER to peripheral disabled

1: fmasTeR to peripheral enabled

Table 9. Peripheral clock gating bits

Control bit Peripheral
PCKEN17 TIM1
PCKEN16 TIM3
PCKEN15 TIM2
PCKEN14 TIM4
PCKEN13 UART2/3
PCKEN12 UARTT
PCKEN11 SPI
PCKEN10 1>C

77/430

Clock control (CLK)

RMO0016

8.9.8 Peripheral clock gating register 2 (CLK_PCKENRZ2)
Address offset: 0x0B
Reset value: OxFF
7 6 5 4 3 2 1 0
PCKEN2[7:0]
w rw rw rw rw rw rw rw

Bits 7:0 PCKENZ2[7:0]: Peripheral clock enable
These bits are written by software to enable or disable the fyasTER Clock to the corresponding

78/430

peripheral. See Table 9
0: fmasTER to peripheral disabled
1: fmasTeER to peripheral enabled

Table 10. Peripheral clock gating bits

Control bit Peripheral
PCKEN27 CAN
PCKEN26 Reserved
PCKEN25 Reserved
PCKEN24 Reserved
PCKEN23 ADC
PCKEN22 AWU
PCKEN21 Reserved
PCKEN20 Reserved

RMO0016

Clock control (CLK)

8.9.9

Clock security system register (CLK_CSSR)
Address offset: 0x08

Reset value: 0x00

6 5 4 3 2 1

CSSD CSSDIE AUX
Reserved

CSSEN

rc_w0 w r

rwo

Bits 7:4
Bit 3

Bit 2

Bit 1

Bit 0

Reserved, must be kept cleared.

CSSD: Clock security system detection
This bit is set by hardware and cleared by software writing 0.
0: CSS is OFF or no HSE crystal clock disturbance detected.
1: HSE crystal clock disturbance detected.

CSSDIE: Clock security system detection interrupt enable
This bit is set and cleared by software.
0: Clock security system interrupt disabled
1: Clock security system interrupt enabled

AUX: Auxiliary oscillator connected to master clock
This bit is set and cleared by hardware.
0: Auxiliary oscillator is OFF.
1: Auxiliary oscillator (HSI/8) is on and selected as current clock master source.

CSSEN: Clock security system enable
This bit can be read many times and be written once-only by software.
0: Clock security system off
1: Clock security system on

79/430

Clock control (CLK)

RMO0016

8.9.10

Configurable clock output register (CLK_CCOR)

Address offset: 0x09

Reset value: 0x00

6 5

Reserved

CCOBSY CCORDY

CCOSEL[3:0]

CCOEN

rw

Bit 7
Bit 6

Bit 5

Bits 4:1

Bit 0 CCOEN: Configurable clock output enable
This bit is set and cleared by software.

80/430

Reserved, must be kept cleared.

CCOBSY: Configurable clock output busy

This bit is set and cleared by hardware. It indicates that the selected CCO clock source is being
switched-on and stabilized. While CCOBSY is set, the CCOSEL bits are write-protected. CCOBSY

remains set until the CCO clock is enabled.

0: CCO clock not busy
1: CCO clock busy

CCORDY: Configurable clock output ready
This bit is set and cleared by hardware. It indicates that the CCO clock is being output.

0: CCO clock not available
1: CCO clock available

CCOSEL[3:0]: Configurable clock output selection.

These bits are written by software to select the source of the output clock available on the CLK_CCO
pin. They are write-protected when CCOBSY is set.

0000: fyysipiv
0001: f_g,
0010: fHSE
0011: Reserved
0100: fCPU
0101: fopu/2
0110: fopu/4
0111: fopu/s
1000: fopy/16
1001: fop/32
1010: fopy/64
1011: fHS|
1100: fyasTER
1101: fCPU
1110: fCPU
1111: fCPU

0: CCO clock output disabled
1: CCO clock output enabled

RMO0016 Clock control (CLK)

8.9.11 CAN external clock control register (CLK_CANCCR)
Address offset: 0x0B

Reset value: 0x00

7 6 5 4 3 2 1 0

CANDIV[2:0]
Reserved

Bits 7:0 CANDIV[2:0]: External CAN clock divider
These bits are written by software to define the divider for the external CAN clock. See Section 23.9:
Clock system on page 373 for more details.
000: External CAN clock = fyge/1 (reset value)
001: External CAN clock = fygg/2

111: External CAN clock = fygg/8

Ky_l 81/430

Clock control (CLK) RMO0016

8.9.12 HSI clock calibration trimming register (CLK_HSITRIMR)
Address offset: 0x0C

Reset value: undefined

HSITRIM[3:0]
Reserved

Bits 7:3 Reserved, must be kept cleared.

Bits 2:0 HSITRIM[3:0] HSI trimming value
These bits are written by software to fine tune the HSI calibration.
Note: In high density devices only bits 2:0 are available.

In medium and low density devices bits 3:0 or 2:0 are available, depending on the option byte
configuration (refer to datasheet).

82/430 Ky_’

RMO0016

Clock control (CLK)

8.9.

13 SWIM clock control register (CLK_SWIMCCR)
Address offset: 0x0D

Reset value: undefined

7 6 5 4 3 2

1 0

Reserved

SWIMCLK

rw

Bits 7:1 Reserved, must be kept cleared.

Bit 0 SWIMCLK SWIM clock divider
This bit is set and cleared by software.
0: SWIM clock divided by 2
1: SWIM clock not divided by 2

83/430

Clock control (CLK) RMO0016
8.10 CLK register map
Table 11. CLK register map and reset values
Address
Register Name 7 6 5 4 3 2 1 0
Offset 9
0x00 CLK_ICKR - - REGAH LSIRDY LSIEN FHWU HSIRDY HSIEN
X Reset value 0 0 0 0 0 0 0 1
0x01 CLK_ECKR - - - - - - HSERDY HSEEN
Reset value 0 0 0 0 0 0 0 0
0x02 Reserved area (1 byte)
0x03 CLK_CMSR CKM7 CKM6 CKM5 CKM4 CKM3 CKM2 CKM1 CKMO
Reset value 1 1 1 0 0 0 0 1
0x04 CLK_SWR SWI7 SWi6 SWIi5 SWi4 SWI3 SWI2 SWH SWI0
Reset value 1 1 1 0 0 0 0 1
0x05 CLK_SWCR - - - - SWIF SWIEN SWEN SWBSY
Reset value X X X X 0 0 0 0
0X06 CLK_CKDIVR - - - HSIDIV1 HSIDIVO CPUDIV2 | CPUDIV12 | CPUDIVO
Reset value 0 0 0 1 1 0 0 0
0x07 CLK_PCKENR1 PCKEN17 | PCKEN16 | PCKEN15 | PCKEN14 | PCKEN13 | PCKEN12 | PCKEN11 | PCKEN10
Reset value 1 1 1 1 1 1 1 1
0x08 CLK_CSSR - - - - CSSD CSSDIE AUX CSSEN
Reset value 0 0 0 0 0 0 0 0
CLK_CCOR - CCOBSY | CCORDY | CCOSEL3 | CCOSEL2 | CCOSEL1 | CCOSELO | CCOEN
0x09
Reset value 0 0 0 0 0 0 0 0
OX0A CLK_PCKENR2 PCKEN27 | PCKEN26 | PCKEN25 | PCKEN24 | PCKEN23 | PCKEN22 | PCKEN21 | PCKEN20
Reset value 1 1 1 1 1 1 1 1
CLK_CANCCR - - - - - CANDIV2 CANDIV1 CANDIVO
0x0B
Reset value X X X X X 0 0 0
CLK_HSITRIMR - - - - - HSITRIM2 | HSITRIM1 | HSITRIMO
0x0C
Reset value X X X X X 0 0 0
0x0D CLK_SWIMCCR - - - - - - - SWIMCLK
Reset value X X X X X 0 0 0
84/430 Lys

RMO0016

Power management

9

9.1

Power management

By default, after a system or power reset, the microcontroller is in Run mode. In this mode
the CPU is clocked by fcpy and executes the program code, the system clocks are
distributed to the active peripherals and the microcontroller is drawing full power.

While in Run mode, still keeping the CPU running and executing code, the application has
several ways to reduce power consumption, such as:

® Slowing down the system clocks

® Gating the clocks to individual peripherals when they are unused

® Switching off any unused analog functions

However, when the CPU does not need to be kept running, three dedicated low power
modes can be used:

e Wait

® Active Halt (configurable for slow or fast wakeup)

® Halt (configurable for slow or fast wakeup)

You can select one of these three modes and configure them to obtain the best compromise
between lowest power consumption, fastest start-up time and available wakeup sources.

General considerations

Low power consumption features are generally very important for all types of application for
energy saving. Ultra low power features are especially important for mobile applications to
ensure long battery lifetimes. This is also crucial for environmental protection.

In a silicon chip there are two kind of consumption:

e Static power consumption which is due to analog polarization and leakages. This so
small, it is only significant in Halt and Active Halt modes (refer to Section 9.3: Low
power modes).

e Dynamic power consumption which comes from running the digital parts of the chip.
It depends on Vpp, clock frequency and load capacitors.

In a microcontroller device the consumption depends on:

® Vpp supply voltage

® Analog performance

® MCU size or number of digital gates (leakages and load capacitors)

® Clock frequency

® Number of active peripherals

® Available low power modes and low power levels

Device processing performance is also very important, as this allows the application to
minimize the time spent in Run mode and maximize the time in low power mode.

Using the MCU'’s flexible power management features, you can obtain a range of significant
power savings while the system is running or able to resume operations quickly.

85/430

Power management RMO0016

9.2

9.2.1

9.2.2

86/430

Clock management for low consumption

Slowing down the system clock

In Run mode, choosing the oscillator to be used as the system clock source is very
important to ensure the best compromise between performance and consumption. The
selection is done by programming the clock controller registers. Refer to the Clock control
(CLK) section.

As a further measure, fcpy can be reduced by writing to the CPUDIV[2:0] bits in the Clock
divider register (CLK_CKDIVR). This reduces the speed of the CPU and consequently the
power consumption of the MCU. The other peripherals (clocked by fyyasTER) are not affected
by this setting.

To return to full speed at any time in Run mode, clear the CPUDIV[2:0] bits.

Peripheral clock gating

For additional power saving you can use Peripheral Clock Gating (PCG). This can be done
at any time by selectively enabling or disabling the f\asTeR clock connection to individual
peripherals. Refer to the Clock control (CLK) section.

These settings are effective in both Run and Wait modes.

RMO0016 Power management
9.3 Low power modes
The main characteristics of the four low power modes are summarized in Table 12.
Table 12. Low power mode management
Mode Main voltage Wakeup trigger
(consumption regulato? Oscillators CPU Peripherals evpent 99
level)
All internal interrupts
Wait (including AWU) or
M
(-) ON ON OFF ON external interrupts,
reset
. OFF Only AWU
Halt 2
Active Ha ON except LS| OFF | andiwDgGif | AWU orexternal
(--) (or HSE) activated interrupts, reset
Active Halt with OFF Only AWU
OFF @
MVR auto power off | (Low Power LSl onl OFF and IWDG if AWtU or etXtema't
(---) Regulator ON) excep only activated interrupts, rese
OFF
Halt (Low Power OFF OFF OFF External®@ interrupts,
(----) Regulator ON) reset

1. If the periph

eral clock is not disabled by Peripheral Clock Gating function.

2. Including communication peripheral interrupts (see interrupt vector table).

9.3.1

9.3.2

Wait mode

Wait mode is entered from Run mode by executing a WFI (Wait For Interrupt) instruction:
this stops the CPU but allows the other peripherals and interrupt controller to continue to
run. Therefore the consumption decreases accordingly. Wait mode can be combined with
PCG (peripheral clock gating), reduced CPU clock frequency and low mode clock source
selection (LSI, HSI) to further reduce the power consumption of the device. Refer to the
Clock control (CLK) description.

In Wait mode, all the registers and RAM contents are preserved, the previously defined
clock configuration remains unchanged (Clock master status register (CLK_CMSR)).

When an internal or external interrupt request occurs, the CPU wakes-up from Wait mode
and resumes processing.

Halt mode

In this mode the master clock is stopped. This means that the CPU and all the peripherals
clocked by fy asTER OF by derived clocks are disabled. As a result, none of the peripherals
are clocked and the digital part of the MCU consumes almost no power.

In Halt mode, all the registers and RAM contents are preserved, by default the clock
configuration remains unchanged (Clock master status register (CLK_CMSR)).

The MCU enters Halt mode when a HALT instruction is executed. Wakeup from Halt mode is
triggered by an external interrupt, sourced by a GPIO port configured as interrupt input or an
Alternate Function pin capable of triggering a peripheral interrupt.

87/430

Power management RMO0016

9.3.3

88/430

In this mode the MVR regulator is switched off to save power. Only the LPVR regulator (and
brown-out reset) is active.

Fast clock wakeup

The HSI RC start-up time is much faster than the HSE crystal start-up time (refer to the
Electrical Parameters in the datasheet). Therefore, to optimize the MCU wakeup time, it is
recommended to select the HSI clock as the fy agTER Clock source before entering Halt
mode.

This selection can be done without clock switching using the FHWU bit in the Internal clock
register (CLK_ICKR). Refer to the Clock control (CLK) chapter.

Active Halt modes

Active Halt mode is similar to Halt mode except that it does not require an external interrupt
for wakeup. It uses the AWU to generate a wakeup event internally after a programmable
delay.

In Active Halt mode, the main oscillator, the CPU and almost all the peripherals are stopped.

Only the LSI RC or HSE oscillators are running to drive the AWU counters and IWD counter
if enabled.

To enter Active Halt mode, first enable the AWU as described in the AWU section. Then
execute a HALT instruction.

Main voltage regulator (MVR) auto power-off

By default the main voltage regulator is kept on Active Halt mode. Keeping it active ensures
fast wakeup from Active Halt mode. However, the current consumption of the MVR is non-
negligible.

To further reduce current consumption, the MVR regulator can be powered off automatically
when the MCU enters Active Halt mode. To configure this feature, set the REGAH bit in the
Internal clock register (CLK_ICKR) register. In this mode:

® The MCU core is powered only by the LPVR regulator (same as in Halt mode).

® Only the LSI clock source can be used, as the HSE clock current consumption is too
high for the LPVR.

The Main voltage regulator is powered on again at wakeup and it requires a longer wakeup
time (Refer to the datasheet electrical characteristics section for wakeup timing and current
consumption data).

Fast clock wakeup

As described for Halt mode, in order to get the shortest wakeup time, it is recommended to
select HSI as the fyyasTER Clock source. The FHWU bit is also available to save switching
time.

A fast wakeup time is very important in Active Halt mode. It supplements the effect of CPU
processing performance by helping to minimize the time MCU stays in Run mode between
two periods in low power mode and thus reduces the overall average power consumption.

RMO0016

Power management

9.4

9.4.1

9.4.2

Additional analog power controls

Fast Flash wakeup from Halt mode

By default the Flash is in Power-down state when the microcontroller enters Halt mode. The
current leakage is negligible, resulting in very low consumption in Halt mode. However the
Flash wakeup time is relatively slow (several ps).

If you need the application to wakeup quickly from Halt mode, set the HALT bit in

Section 4.9.1: Flash control register 1 (FLASH_CR1). This ensures that the Flash is in
Standby mode when the microcontroller enters in Halt mode. Its wakeup time is reduced to
a few ns. However, in this case the consumption is increased up to several pAs.

Refer to the Electrical characteristics section of the datasheet for more details.

Very low Flash consumption in Active Halt mode

By default, in Active-Halt mode, the Flash remains in operating mode to ensure the fastest
wakeup time, however in this case the power consumption is not optimized.

To optimize the power consumption you can set the AHALT bit in Flash control register 1
(FLASH_CR1). This will switch the Flash to Power-down state when entering Active-Halt
mode. The consumption decreases but the wakeup time increases up to a few ps.

89/430

Interrupt controller (ITC) RMO0016

10

10.1

10.2

90/430

Interrupt controller (ITC)

ITC introduction

® Management of hardware interrupts

— External interrupt capability on all I/O pins with dedicated interrupt vector per port
and dedicated flag per pin

— Peripheral interrupt capability
® Management of software interrupt (TRAP)

® Nested or concurrent interrupt management with flexible interrupt priority and level
management:

— Up to 4 software programmable nesting levels

— Up to 32 interrupt vectors fixed by hardware

— 2 non maskable events: RESET, TRAP

— 1 non-maskable top level hardware interrupt (TLI)

This interrupt management is based on:
e Bit 1 and 10 of the CPU Condition Code register (CCR)
@ Software priority registers (ITC_SPRXx)

® Reset vector address 0x00 8000 at the beginning of program memory. In devices with
boot ROM, the Reset initialization routine is programmed in ROM by
STMicroelectronics.

@ Fixed interrupt vector addresses located at the high addresses of the memory map
(0Ox00 8004 to 0x00 807Ch) sorted by hardware priority order.

Interrupt masking and processing flow

The interrupt masking is managed by bits 11 and |0 of the CCR register and by the
ITC_SPRXx registers which set the software priority level of each interrupt vector (see
Table 13). The processing flow is shown in Figure 17.

When an interrupt request has to be serviced:
1. Normal processing is suspended at the end of the current instruction execution.
2. The PC, XY, A and CCR registers are saved onto the stack.

3. Bits 11 and |0 of CCR register are set according to the values in the ITC_SPRXx registers
corresponding to the serviced interrupt vector.

4. The PC is then loaded with the interrupt vector of the interrupt to service and the first
instruction of the interrupt service routine is fetched (refer to Table 16: Interrupt
mapping for details on vector addresses).

The interrupt service routine should end with the IRET instruction which causes the content
of the saved registers to be recovered from the stack. As a consequence of the IRET
instruction, bits I1 and 10 are restored from the stack and the program execution resumes.

RM0016 Interrupt controller (ITC)
Table 13. Software priority levels
Software priority Level " 10
Level 0 (main) 1 0
Low
Level 1 L 0 1
Level 2 0 0
High
Level 3 (= software priority disabled) 1 1
Figure 17. Interrupt processing flowchart
PENDING Y rap Y
INTERRUPT
N Interrupt has the same or a N
lower software priority
than current one
Li ‘ 11:0
FETCH NEXT THE INTERRUPT E
INSTRUCTION STAYS PENDING 228
o 2e
g3t
EEE
EoS
oS
RESTORE PC, X, Y, A, CCR EXECUTE
FROM STACK INSTRUCTION STACK PC, X, Y, A, CCR
LOAD I1:0 FROM INTERRUPT SW REG.
LOAD PC FROM INTERRUPT VECTOR
10.2.1 Servicing pending interrupts
Several interrupts can be pending at the same time. The interrupt to be taken into account is
determined by the following two-step process:
1. The highest software priority interrupt is serviced.
2. If several interrupts have the same software priority then the interrupt with the highest
hardware priority is serviced first.
When an interrupt request is not serviced immediately, it is latched and then processed
when its software priority combined with the hardware priority becomes the highest one.
Note: 1 The hardware priority is exclusive while the software one is not. This allows the previous
process to succeed with only one interrupt.
2 RESET, TLI and TRAP are considered as having the highest software priority in the decision
process.
3 A TLlinterrupts all level-3 interrupts including TRAP and RESET.

See Figure 18 for a description of pending interrupt servicing process.

91/430

Interrupt controller (ITC) RMO0016

10.2.2

Caution:

92/430

Figure 18. Priority decision process

PENDING
INTERRUPTS

Different

SOFTWARE
PRIORITY

HIGHEST SOFTWARE
PRIORITY SERVICED

HIGHEST HARDWARE
PRIORITY SERVICED

Interrupt sources

Two interrupt source types are managed by the STM8 interrupt controller:
® Non-maskable interrupts: RESET, TLI and TRAP
® Maskable interrupts: external interrupts or interrupts issued by internal peripherals

Non-maskable interrupt sources

Non-maskable interrupt sources are processed regardless of the state of bits 11 and 10 of
the CCR register (see Figure 17). PC, X, Y, A and CCR registers are stacked only when a
TRAP interrupt occurs. The corresponding vector is then loaded in the PC register and bits
I1 and 10 of the CCR register are set to disable interrupts (level 3).

® TRAP (non-maskable software interrupt)

This software interrupt source is serviced when the TRAP instruction is executed. It is
serviced as a TLI according to the flowchart shown in Figure 17.

A TRAP interrupt does not allow the processor to exit from Halt mode.
e RESET

The RESET interrupt source has the highest STM8 software and hardware priorities.
This means that all the interrupts are disabled at the beginning of the reset routine.
They must be re-enabled by the RIM instruction (see Table 15: Dedicated interrupt
instruction set).

A RESET interrupt allows the processor to exit from Halt mode.

See RESET chapter for more details on RESET interrupt management.

® TLI (top level hardware interrupt)
This hardware interrupt occurs when a specific edge is detected on the corresponding
TLI input.

A TRAP instruction must not be used in a TLI service routine.

RMO0016

Interrupt controller (ITC)

10.3

10.4

Maskable interrupt sources

Maskable interrupt vector sources are serviced if the corresponding interrupt is enabled and
if its own interrupt software priority in ITC_SPRXx registers is higher than the one currently
being serviced (I1 and 10 in CCR register). If one of these two conditions is not met, the
interrupt is latched and remains pending.

e External interrupts

External interrupts can be used to wake up the MCU from Halt mode. The device
sensitivity to external interrupts can be selected by software through the External
Interrupt Control registers (EXTI_CRXx).

When several input pins connected to the same interrupt line are selected
simultaneously, they are logically ORed.

When external level-triggered interrupts are latched, if the given level is still present at
the end of the interrupt routine, the interrupt remains activated except if it has been
inactivated in the routine.

® Peripheral interrupts

Most peripheral interrupts cause the MCU to wake up from Halt mode. See Table 16:
Interrupt mapping for the list.

A peripheral interrupt occurs when a specific flag is set in the peripheral status register
and the corresponding enable bit is set in the peripheral control register.

The standard sequence for clearing a peripheral interrupt performs an access to the
status register followed by a read or write to an associated register. The clearing
sequence resets the internal latch. A pending interrupt (that is an interrupt waiting to be
serviced) is therefore lost when the clear sequence is executed.

Interrupts and low power modes

All interrupts allow the processor to exit from Wait mode.

Only external and other specific interrupts allow the processor to exit from Halt mode (see
Wakeup from Halt and Wakeup from Active Halt columns in Table 16: Interrupt mapping).

When several pending interrupts are present while waking up from Halt mode, the first
interrupt serviced can only be an interrupt with exit-from-Halt mode capability. It is selected
through the decision process shown in Figure 18. If the highest priority pending interrupt
cannot wake up the device from Halt mode, it will be serviced next.

If any internal or external interrupt (from a timer for example) occurs while the HALT
instruction is executing, the HALT instruction is completed but the interrupt invokes the
wakeup process immediately after the HALT intruction has finished executing.

In this case the MCU is actually waking up from Halt mode to Run mode, with the
corresponding delay of tyy as specified in the datasheet.

Activation level/low power mode control

The MCU activation level is configured by programming the AL bit in the CFG_GCR register
(see Section 1.3: Global configuration register (CFG_GCR) on page 26).

This bit is used to control the low power modes of the MCU. In very low power applications,
the MCU spends most of the time in WFI/Halt mode and is woken up (through interrupts) at
specific moments in order to execute a specific task. Some of these recurring tasks are

93/430

Interrupt controller (ITC) RMO0016

10.5

10.5.1

short enough to be treated directly in an ISR (Interrupt Service Routine), rather than going
back to the main program. To cover this case, you can set the AL bit before going to low
power (by executing WFI/HALT instruction), then the interrupt routine returns directly to low
power mode. The run time/ISR execution is reduced due to the fact that the register context
is saved only on the first interrupt.

In a very simple application all the operations can be therefore executed in ISR only. In more
complex ones, an interrupt routine may take the decision to relaunch the main program by
simply resetting the AL bit.

For example, an application may need to be woken up by the Auto wakeup Unit (AWU) every
50 ms in order to check the status of some pins/sensors/push-buttons. Most of the time, as
these pins are not active, the MCU can return to low-power without running the main
program. If one of these pins is active, the ISR will decide to launch the main program and
will do this by resetting the AL bit.

Concurrent and nested interrupt management

STM8 devices feature two interrupt management modes:
® Concurrent mode
® Nested mode

Concurrent interrupt management mode

In this mode, all interrupts are interrupt priority level 3 so that none of them can be
interrupted, except by a TLI, RESET, or TRAP.

The hardware priority is given in the following order from the lowest to the highest priority,
that is: MAIN, IT4, IT3, IT2, IT1, ITO, TRAP/TLI (same priority), and RESET.

Figure 19 shows an example of concurrent interrupt management mode.

Figure 19. Concurrent interrupt management

HARDWARE PRIORITY

o
N - %t o x O SOFTWARE
E B EE FE PRIORITY . o
| LEVEL _l _lf
--------------------- 2 EE -
--------------------- B RV G 11D L EE TR T FEEE T PPPPRY. 11
--------------- 1 T -t 3 1 1
-------- I - 11
-------- I 1 1
RIM ! '
R AR R R R REEEREREREEE M4) 3 11
-------------------------------------- 30 |
11/10 10 <«

94/430

RMO0016

Interrupt controller (ITC)

10.5.2

Caution:

Table 14.

Nested interrupt management mode

In this mode, interrupts are allowed during interrupt routines. This mode is activated as soon
as an interrupt priority level lower than level 3 is set.

The hardware priority is given in the following order from the lowest to the highest priority,
that is: MAIN, IT4, IT3, IT2, IT1, ITO, and TRAP.

The software priority is configured for each interrupt vector by setting the corresponding
I1_x and I0_x bits of the ITC_SPRx register. I11_x and 10_x bits have the same meaning as
I1 and 10 bits of the CCR register (see Table 14).

Level 0 can not be programmed (11_x=1, 10_x=0). In this case, the previously stored value is
kept. For example: if previous value is CFh, and programmed value equals 64h, the result is
44h.

The RESET and TRAP vectors have no software priorities. When one is serviced, bits 11
and 10 of the CCR register are both set.

If bits 11_x and 10_x are modified while the interrupt x is executed, the device operates as
follows: if the interrupt x is still pending (new interrupt or flag not cleared) and the new
software priority is higher than the previous one, then the interrupt x is re-entered.
Otherwise, the software priority remains unchanged till the next interrupt request (after the
IRET of the interrupt x).

During the execution of an interrupt routine, the HALT, POPCC, RIM, SIM and WFI
instructions change the current software priority till the next IRET instruction or one of the
previously mentioned instructions is issued. See Section 10.7 for the list of dedicated
interrupt instructions.

Figure 20 shows an example of nested interrupt management mode.

Warning: A stack overflow may occur without notifying the software of
the failure.

Vector address map versus software priority bits

Vector address ITC_SPRXx bits

0x00 8008h 11_0 and 10_0 bits()

0x00 800Ch 11_1 and 10_1 bits

0x00 807Ch 11_29 and 10_29 bits

1. ITC_SPRXx register bits corresponding to the TLI can be read and written. However they are not significant in the interrupt
process management.

95/430

Interrupt controller (ITC) RMO0016

Figure 20. Nested interrupt management

o

N - o+ oo E oo SOFTWARE y 0

E E E E F E PRIORITY
4 I LEVEL
e €1 3 11 @
O E LRt LR TR TP R R SR A @i D SEREEER PR EREPRERP 3 11 @&
= | ' o
o IR I S D e 2 00 G
A R ERETE GPI TP EEPE S ELELCEEEE PEP M2 - --oe - 1 0 1 é
< ' ' X .
e R S e T8) -~ 3 11 b
@) RIM . b a
SRR [T4 1 e T 3 11 &
TH MBI - 30 |

11/10 10 «—

96/430 Ky_’

RMO0016

Interrupt controller (ITC)

10.6

External interrupts

Five interrupt vectors are dedicated to external Interrupt events:

5 lines on Port A: PA[6:2]
8 lines on Port B: PB[7:0]
8 lines on Port C: PC[7:0]
7 lines on Port D: PD[6:0]
8 lines on Port E: PE[7:0]

PD(7) is the Top Level Interrupt source (TLI).

To generate an interrupt, the corresponding GPIO port must be configured in input mode
with interrupts enabled. Refer to the register description in the GPIO chapter for details.

The interrupt sensitivity must be configured in the external interrupt control register 1
(EXTI_CR1) and external interrupt control register 2 (EXTI_CR2) (see Section 10.9.3 and
Section 10.9.4.)

97/430

Interrupt controller (ITC)

RMO0016

10.7 Interrupt instructions
Table 15 shows the interrupt instructions.
Table 15. Dedicated interrupt instruction set
Instruction New description Function/example " H |10 | N Y4 C
HALT Entering Halt mode 1 0
IRET Interrupt routine return Pop CCR, A, X, Y, PC I H 10 | N 4 C
JRM Jump if 11:0=11 (level 3) 11:0=117?
JRNM Jump if [1:0<>11 11:0<>11?
POP CC Pop CCR from the Stack Mem => CCR I H 10 N Z C
RIM Enable interrupt (level 0 set) Load 10 in 11:0 of CCR 1 0
SIM Disable interrupt (level 3 set) Load 11in 11:0 of CCR 1 1
TRAP Software trap Software NMI 1 1
WFI Wait for interrupt 1 0
10.8 Interrupt mapping
Table 16 shows the interrupt mapping.
Table 16. Interrupt mapping
Iﬁc? S;:g;ie Description frzi:(iluaﬁt frc‘:\rll‘:l I:\il:i?/e a\;:c::s
) mode Halt mode
RESET |Reset Yes Yes 0x00 8000
TRAP Software interrupt - - 0x00 8004
0 TLI External Top level Interrupt - - 0x00 8008
1 AWU Auto Wake up from Halt - Yes 0x00 800C
2 CLK Clock controller - - 0x00 8010
3 EXTIO Port A external interrupts Yes Yes 0x00 8014
4 EXTI1 Port B external interrupts Yes Yes 0x00 8018
5 EXTI2 Port C external interrupts Yes Yes 0x00 801C
6 EXTI3 | Port D external interrupts Yes Yes 0x00 8020
7 EXTI4 | Port E external interrupts Yes Yes 0x00 8024
8 CAN CAN RX interrupt Yes Yes 0x00 8028
9 CAN CAN TX/ER/SC interrupt - - 0x00 802C
10 SPI End of Transfer Yes Yes 0x00 8030
11 TIMA1 Update /Overflow/Underflow/Trigger/Break - - 0x00 8034
12 TIMA1 Capture/Compare - - 0x00 8038
13 TIM2 Update /Overflow - - 0x00 803C
98/430 KY_[

RM0016 Interrupt controller (ITC)
Table 16. Interrupt mapping (continued)

I,i? Sbc: g:l:(e Description f‘r’z?'n:(el-luaplt frc‘:\: ,I:\‘.Jcl:ir:le a\::;:‘::srs

’ mode Halt mode

14 TIM2 Capture/Compare - - 0x00 8040

15 TIM3 Update /Overflow - - 0x00 8044

16 TIM3 Capture/Compare - - 0x00 8048

17 UART1 |Tx complete - - 0x00 804C

18 UART1 | Receive Register DATA FULL - - 0x00 8050

19 12C 12C interrupt Yes Yes 0x00 8054

20 | UART2/3 |Tx complete - - 0x00 8058

21 | UART2/3 |Receive Register DATA FULL - - 0x00 805C

22 ADC End of Conversion - - 0x00 8060

23 TIM4 Update/Overflow - - 0x00 8064

24 FLASH |EOP/WR_PG_DIS - - 0x00 8068

Reserved 0x00 806C to
0x00 807C

‘y_l 99/430

Interrupt controller (ITC)

RMO0016

10.9 ITC registers
10.9.1 CPU Condition Code register interrupt bits (CCR)
Address: refer to the general hardware register map table in the datasheet
Reset value: 0x28
7 6 5 4 3 2 1 0
\ 1 H 10 N 4 Cc

Bits 5, 3(") 1[1:0]: Software Interrupt Priority bits®®

These two bits indicate the software priority of the current interrupt request. When an
interrupt request occurs, the software priority of the corresponding vector is loaded
automatically from the software priority registers (ITC_SPRx).

The I[1:0] bits can be also set/cleared by software using the RIM, SIM, HALT, WFI, IRET or
PUSH/POP instructions (see Figure 20: Nested interrupt management).

b
1

0
0

1

10

0
1
0
1

Priority Level
Level 0 (main)
Low
Level 1 i
Level 2)
High

Level 3 (= software priority disabled*)

1. Refer to the central processing section for details on the other CCR bits.

2. TLI, TRAP and RESET events can interrupt a level-3 program.

100/430

RM0016 Interrupt controller (ITC)
10.9.2 Software priority register x (ITC_SPRXx)
Address offset: 0x00 to 0x07
Reset value: OxFF
7 6 5 4 3 2 1 0
ITC_SPR1 VECT3SPR[1:0] VECT2SPR[1:0] VECT1SPR[1:0] VECTOSPR[1:0]
ITC_SPR2 VECT7SPR[1:0] VECT6SPR[1:0] VECT5SPR[1:0] VECT4SPR[1:0]
ITC_SPR3 VECT11SPR[1:0] VECT10SPR[1:0] VECT9SPR[1:0] VECT8SPR[1:0]
ITC_SPR4 VECT15SPR[1:0] VECT14SPR[1:0] VECT13SPR[1:0] VECT12SPR[1:0]
ITC_SPR5 VECT19SPR[1:0] VECT18SPR[1:0] VECT17SPR[1:0] VECT16SPR[1:0]
ITC_SPR6 VECT23SPR[1:0] VECT22SPR[1:0] VECT21SPR[1:0] VECT20SPRI[1:0]
ITC_SPR7 VECT27SPR[1:0] VECT26SPR[1:0] VECT25SPR[1:0] VECT24SPR[1:0]
ITC_SPR8 Reserved VECT29SPR[1:0] VECT28SPR[1:0]
rw w rw rw rw w rw rw

Bits 7:0 VECTxSPR[1:0]: Vector x Software Priority bits
These eight read/write registers (ITC_SPR1 to ITC_SPRS8) are written by software to
define the software priority of each interrupt vector.
The list of vectors is given in Table 14: Veector address map versus software priority bits.
Refer to Section 10.9.1: CPU Condition Code register interrupt bits (CCR) for the values to
be programmed for each priority.
ITC_SPR1 bits 1:0 are forced to 1 by hardware (TLI)
ITC_SPR8 bits 7:4 are forced to 1 by hardware.
Note: It is forbidden to write 10b (priority level 0). If 10b is written, level 3 (value 11b) is
forced by hardware.

‘y_l 101/430

Interrupt controller (ITC) RMO0016

10.9.3 External interrupt control register 1 (EXTI_CR1)
Address offset: 0x00

Reset value: 0x00

PDIS[1:0]

PCIS[1:0] PBIS[1:0] PAIS[1:0]

Bits 7:6 PDIS[1:0]: Port D external interrupt sensitivity bits

These bits can only be written when 11 and 10 in the CCR register are both set to 1 (level 3).
They define the sensitivity of Port D external interrupts.

00: Falling edge and low level

01: Rising edge only

10: Falling edge only

11: Rising and falling edge

Bits 5:4 PCIS[1:0]: Port C external interrupt sensitivity bits

These bits can only be written when 11 and 10 in the CCR register are both set to 1 (level 3).
They define the sensitivity of Port C external interrupts.

00: Falling edge and low level

01: Rising edge only

10: Falling edge only

11: Rising and falling edge

Bits 3:2 PBIS[1:0]: Port B external interrupt sensitivity bits

These bits can only be written when 11 and 10 in the CCR register are both set to 1 (level 3).
They define the sensitivity of Port B external interrupts.

00: Falling edge and low level

01: Rising edge only

10: Falling edge only

11: Rising and falling edge

Bits 1:0 PAIS[1:0]: Port A external interrupt sensitivity bits

102/430

These bits can only be written when 1 and 10 in the CCR register are both set to 1 (level 3).
They define the sensitivity of Port A external interrupts.

00: Falling edge and low level

01: Rising edge only

10: Falling edge only

11: Rising and falling edge

RMO0016

Interrupt controller (ITC)

10.9.4

External interrupt control register 1 (EXTI_CR2)
Address offset: 0x01

Reset value: 0x00

TLIS PEIS[1:0]
Reserved

Bits 7:4 Reserved, must be kept cleared.

Bit 2 TLIS: Top Level interrupt sensitivity
This bit is set and cleared by software. This bit can be written only when external interrupt
is disabled on the corresponding GPIO port (PD7).
0: Falling edge
1: Rising edge

Bits 1:0 PEIS[1:0]: Port E external interrupt sensitivity bits
These bits can only be written when I1 and 10 in the CCR register are both setto 1 (level 3).
They define the sensitivity of the Port E external interrupts.
00: Falling edge and low level
01: Rising edge only
10: Falling edge only
11: Rising and falling edge

103/430

Interrupt controller (ITC) RMO0016
10.9.5 ITC register map and reset values
Table 17. Interrupt register map
Address Register
offset name 7 6 5 4 3 2 1 0
ITC-SPR block("
0x00 ITC_SPR1 | VECT3SPR1 | VECT3SPRO | VECT2SPR1 | VECT2SPRO | VECT1SPR1 | VECT1SPRO Reserved Reserved
Reset value 1 1 1 1 1 1 1 1
0x01 ITC_SPR2 | VECT7SPR1 | VECT7SPRO | VECT6SPR1 | VECT6SPRO | VECT5SPR1 | VECTS5SPRO | VECT4SPR1 | VECT4SPRO
Reset value 1 1 1 1 1 1 1 1
0x02 ITC_SPR3 | VECT11SPR1 | VECT11SPRO | VECT10SPR1 | VECT10SPRO | VECT9SPR1 | VECT9SPRO | VECT8SPR1 | VECT8SPRO
Reset value 1 1 1 1 1 1 1 1
0x03 ITC_SPR4 | VECT15SPR1 | VECT15SPRO | VECT14SPR1 | VECT14SPRO | VECT13SPR1 | VECT13SPRO | VECT12SPR1 | VECT12SPRO
Reset value 1 1 1 1 1 1 1 1
0x04 ITC_SPR5 | VECT19SPR1 | VECT19SPRO | VECT18SPR1 | VECT18SPRO | VECT17SPR1 | VECT17SPRO | VECT16SPR1 | VECT16SPRO
Reset value 1 1 1 1 1 1 1 1
0x05 ITC_SPR6 | VECT23SPR1 | VECT23SPRO | VECT22SPR1 | VECT22SPRO | VECT21SPR1 | VECT21SPRO | VECT20SPR1 | VECT20SPRO
Reset value 1 1 1 1 1 1 1 1
0x06 ITC_SPR7 | VECT27SPR1 | VECT27SPRO | VECT26SPR1 | VECT26SPRO | VECT25SPR1 | VECT25SPRO | VECT24SPR1 | VECT24SPRO
Reset value 1 1 1 1 1 1 1 1
0x07 ITC_SPR8)))) VECT28SPR1 | VECT28SPRO
Reset value 1 1
ITC-EXTI block(®
PDIS1 PDISO PCIS1 PCISO PBIS1 PBISO PAIS1 PAISO
0x00 EXTI_CR1 o o 0 o o 0 0 0
- - - TLIS PEIS1 PEISO
0x01 EXTI_CR2 0 0 0 0 0 0 0 0

1. The address offsets are expressed for the ITC-SPR block base address (see CPU/SWIM/debug module/interrupt controller

registers table in the datasheet).

2. The address offsets are expressed for the ITC-EXTI block base address (see General hardware register map table in the
datasheet).

104/430

RMO0016

General purpose I/O ports (GPIO)

11

11.1

11.2

General purpose I/O ports (GPIO)

Introduction

General purpose input/output ports are used for data transfers between the chip and the
external world. An I/O port can contain up to eight pins. Each pin can be individually
programmed as a digital input or digital output. In addition, some ports may have alternate
functions like analog inputs, external interrupts, input/output for on-chip peripherals. Only
one alternate function can be mapped to a pin at a time, the alternate function mapping is
controlled by option byte. Refer to the datasheet for a description of the option bytes.

An Output Data register, Input pin register, Data Direction register, Option register, and
Configuration register are associated with each port. A particular port will behave as an
input or output depending on the status of the Data direction register of the port.

GPIO main features

Port bits can be configured individually

Selectable input modes: floating input or input with pull-up
Selectable output modes: push-pull output or pseudo-open-drain.
Separate registers for data input and output

External interrupts can be enabled and disabled individually
Output slope control for reduced EMC noise

Alternate Function 1/Os for on-chip peripherals

Input Schmitt trigger can be disabled on analog inputs for reduced power consumption
Read-Modify-Write possible on data output latch

5 V-tolerant inputs

I/O state guaranteed in voltage range 1.6 V t0 Vppiomax

105/430

General purpose I/O ports (GPIO)

RMO0016

106/430

Figure 21. GPIO block diagram
P-BUFFER
gﬂ_l_E;{UNTATE 1 (see table below)
mr — T pPAD
0
ALTERNATE — | Voo |
ENABLE |
M :||)"_ PULL-UP
OUTPUT | (see table below)
L 9 |
K=>|0PR REGISTER| ﬂD_l _Dt j)’_:_—‘{ Voo |
]] PULL-UP | 52/
K —>|DDR REGISTER CONDTION—92 |
[—{H)— | N
{—>| CR1 REGISTER | |
- L —>—
> —
3 SLOPE /‘ |
@ CONTROL 1
c — PROTECTION
SK—>|CR2 REGISTER N-BUFFEH | DIODES
L — — | _ __ _(seetable below)

<j:">{ ADC_TDR REGISTER I

INPUT
IDR REGISTER

(Read only)

d

q

ALTERNATE FUNCTION
INPUT TO ON-CHIP
PERIPHERAL

EXTERNAL
INTERRUPT
TO INTERRUPT
CONTROLLER

FROM

OTHER

BITS

CMOS
SCHMITT
TRIGGER
<
ANALOG
INPUT TO A/D CONVERTER

RMO0016 General purpose I/O ports (GPIO)
11.3 Port configuration and usage
An Output Data Register (ODR), Pin Input Register (IDR), Data Direction Register (DDR)
are always associated with each port.
The Control Register 1 (CR1) and Control Register 2 (CR2) allow input/output options. An
I/0 pin is programmed using the corresponding bits in the DDR, ODR, CR1 and CR2
registers.
Bit nin the registers corresponds to pin n of the Port.
The various configurations are summarized in Table 18.
Table 18. 1/O port configuration summary
DDR| CR1 | CR2 _ Diodes
Mode . . . Function Pull-Up | P-Buffer
bit bit bit to Vpp to Vss
0 0 0 Floating without Off
interrupt
Pull-up without
Input | O 1 O linterrupt On Off
0 0 1 | Floating with interrupt Off
0 1 1 | Pull-up with interrupt On On
1 0 0 | Open Drain Output Off On
1 1 0 | Push Pull Output off On
1 x 1 Output speed limited to Depends
Output 10 MHz on CR1 bit
. Not Im-
1 X X True .Qpef‘ Drain (on Not Implemented | plemented
specific pins) (see note)
Note: The diode to Vpp is not implemented in true open drain pads. A local protection between the
pad and V, is implemented to protect the device against positive stress.
11.3.1 Input modes

Clearing the DDRXx bit selects input mode. In this mode, reading a IDR bit returns the digital
value of the corresponding 1/O pin.

Refer to Section 11.7: Input mode details on page 108 for information on analog input,
external interrupts and Schmitt trigger enable/disable.

As shown in Table 18, four different input modes can be theoretically be configured by
software: floating without interrupt, floating with interrupt, pull-up without interrupt or pull-up
with interrupt. However in practice, not all ports have external interrupt capability or pull-ups.
You should refer to the datasheet pin-out description for details on the actual hardware
capability of each port.

107/430

General purpose I/O ports (GPIO) RMO0016

11.3.2

11.4

11.5

11.6

Note:

11.7

11.7.1

11.7.2

108/430

Output modes

Setting the DDRXx bit selects output mode. In this mode, writing to the ODR bits applies a
digital value to the 1/O through the latch. Reading IDR bit returns the digital value from the
corresponding I/O pin. Using the CR1, CR2 registers, different output modes can be
configured by software: Push-Pull output, Open-drain output.

Refer to Section 11.8: Output mode details on page 109 for more information.

Reset configuration

At reset, all ports are input floating.

Unused I/O pins

Unused I/O pins must be connected to fixed voltage levels. Either connect a pull-up or pull-
down to the unused I/O pins.

Low power modes

Table 19. Effect of low power modes on GPIO ports

Mode Description

No effect on I/O ports. External interrupts cause the device to exit from
WAIT

WAIT mode.
HALT No effect on I/O ports. External interrupts cause the device to wakeup from

HALT mode.

If PA1/PA2 pins are used to connect an external oscillator, to ensure a lowest power
consumption in Halt mode, PA1 and PA2 must be configured as input pull-up.

Input mode details

Alternate function Input

Some I/Os can be used as alternate function input. For example as the port may be used as
the input capture input to a timer. Alternate function inputs are not selected automatically,
you select them by writing to a control bit in the registers of the corresponding peripheral.
For Alternate Function input, you should select floating or pull-up input configuration in the
DDR and CR1 registers.

Interrupt capability

You can configure an I/O as an input with interrupt by setting the CR2x bit while the 1/O is in
input mode. In this configuration, a signal edge or level input on the 1/0O generates an
interrupt request.

Falling or rising edge sensitivity is programmed independently for each interrupt vector in
the EXTI_CR[2:1] registers.

574

RMO0016

General purpose I/O ports (GPIO)

11.7.3

Table 20.

External interrupt capability is only available if the port is configured in input mode.

Interrupt masking

Interrupts can be enabled/disabled individually by programming the corresponding bit in the
Configuration Register (Px_CR2). At reset the interrupts are disabled.

Analog channels

Analog channels of the 1/0 port can be selected by the ADC peripheral. As mentioned in the
next section, the input Schmitt trigger should be disabled in the ADC_TDR register when
using the analog channels.

Recommended and non-recommended configurations for analog input

DDR

CR1

CR2 | ADC_TDR Configuration Comments

Floating Input without interrupt, | Recommended analog input

0 1 Schmitt trigger disabled configuration

X X Input with pull-up enabled Not recommended for analog input, if

" x Output analog voltage is present, these

configurations cause excess current flow
X X Output on the input pin.

11.7.4

11.8

11.8.1

11.8.2

Schmitt trigger

An internal input Schmitt trigger is included in some I/Os. The Schmitt trigger can be
enabled/disabled using the ADC_TDR Schmitt Trigger Disable Register.

Output mode details

Alternate function output

Alternate function outputs provide a direct path from a peripheral to an output or to an I/O
pad, taking precedence over the port bit in the Data Output Latch Register (Px_ODR) and
forcing the Px_DDR corresponding bit to 1.

An alternate function output can be push-pull or pseudo-open drain depending on the
peripheral and Control register 1 (Px_CR1) and slope can be controlled depending on the
Control register 2 (Px_CR2) values.

Examples:

SPI output pins must be set-up as push-pull, fast slope for optimal operation. UART_Tx can
be configured either in push-pull or open drain with an external pull-up in order to implement
multi slave configuration.

Slope control

The output frequency can be controlled by software using the CR2 bit. Setting the CR bit
selects 10 MHz output frequency. This feature can be applied in either Open Drain or Push-
Pull output mode on 1/O ports of output type O3 or O4. Refer to the pin description table for
the specific output type information for each port.

109/430

General purpose I/O ports (GPIO) RMO0016

11.9 GPIO registers

Note: The bit of each port register drives the corresponding pin of the port.

11.9.1 Port x output data register (Px_ODR)
Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0
ODR7 ODR6 ODR5 ODR4 ODR3 ODR2 ODR1 ODRO
w w w w rw rw rw w

Bits 7:0 ODR[7:0]: Output data register bits

Writing to the ODR register when in output mode applies a digital value to the 1/0 through the latch.
Reading the ODR returns the previously latched value in the register.

In Input mode, writing in the ODR register, latches the value in the register but does not change the
pin state. The ODR register is always cleared after reset. Bit read-modify-write instructions (BSET,
BRST) can be used on the DR register to drive an individual pin without affecting the others.

11.9.2 Port x pin input register (Px_IDR)
Address offset: 0x01

Reset value: 0x00
7 6 5 4 3 2 1 0

IDR7 IDR6 IDR5 IDR4 IDR3 IDR2 IDR1 IDRO

Bits 7:0 IDR[7:0]: Pin input values
The Pin register can be used to read the pin value irrespective of whether port is in input or output
mode. This register is Read-only.
0: Low logic level
1: High logic level

110/430 Kﬁ

RMO0016 General purpose I/O ports (GPIO)
11.9.3 Port x data direction register (Px_DDR)
Address offset: 0x02
Reset value: 0x00
7 6 5 4 3 2 1 0
DDR7 DDR6 DDR5 DDR4 DDR3 DDR2 DDR1 DDRO
w rw rw rw rw rw rw rw

Bits 7:0 DDR[7:0]: Data direction bits

These bits are set and cleared by software to select input or output mode for a particular pin of a
port.

0: Input mode

1: Output mode

11.94 Port x control register 1 (Px_CR1)
Address offset: 0x03

Reset value: 0x00

7 6 5 4 3 2 1 0
Cc17 C16 C15 C14 C13 C12 C11 C10
w w w w rw w rw w

Bits 7:0 C1[7:0]: Control bits

These bits are set and cleared by software. They select different functions in input mode and output
mode see Table 18 on page 107.

® Ininput mode (DDR=0):
0: Floating input
1: Input with pull-up

® In output mode (DDR=1):
0: Pseudo Open Drain
1: Push-pull, slope control for the output depends on the corresponding CR2 bit

Note: This bit has no effect on true open drain ports (refer to pin marked “T” in datasheet pin

description table).

Ky_l 111/430

General purpose I/O ports (GPIO)

RMO0016

11.9.5 Port x control register 2 (Px_CR2)
Address offset: 0x04
Reset value: 0x00
7 6 5 4 3 2 1 0
c27 C26 C25 C24 c23 c22 c21 C20
w rw rw rw rw rw rw rw
Bits 7:0 C2[7:0]: Control bits
These bits are set and cleared by software. They select different functions in input mode and output
mode. In input mode, the CR2 bit enables the interrupt capability if available. If the 1/0 does not have
interrupt capability, setting the CR2 bit has no effect.
In output mode, setting the bit increases the speed of the I/O. This applies to ports with O3 and O4
output types (see pin description table).
® Ininput mode (DDR=0):
0: External interrupt disabled
1: External interrupt enabled
® In output mode (DDR=1):
0: Output speed up to 2 MHz
1: Output speed up to 10 MHz
11.9.6 GPIO register map and reset values
Each GPIO port has five registers mapped as shown in Table 21. Refer to the register map
in the corresponding datasheet for the base address for each port.
Note: At reset, all ports are input floating. Exceptions are indicated in the pin description table of

112/430

the corresponding datasheet.

Table 21. GPIO register map
A:::::S Rﬁg:f:r 7 6 5 4 3 2 1 0
0x00 Px_ODR OIZ())R7 ODORG OE())RS OI%FM OI%RS O%RZ OI%FH ODORO
0x01 Px_IDR IDgW ID(I)RG IDgKS IDgM ID(I)RS ID(I)R2 ID(I;H IDORO
0x02 Px_DDR DDOR7 DDOF{6 DDORS DDOR4 DDORS DDOF{Z DDOR1 DDORO
0x03 Px_CR1 037 CSB C(1)5 C(1)4 C(1)3 C(1)2 C(1)1 CSO
0x04 Px_CR2 C§7 C§6 C§5 C§4 C§3 C§2 C(2)1 Cgo
1574

RMO0016 Auto-wakeup (AWU)

12 Auto-wakeup (AWU)

12.1 Introduction

The AWU is used to provide an internal wakeup time base that is used when the MCU goes
into Active-halt power saving mode. This time base is clocked by the low speed internal
(LSI) RC oscillator clock or the HSE crystal oscillator clock divided by a prescaler.

LSI clock measurement
To ensure the best possible accuracy when using the LSI clock, its frequency can be
measured with TIM3 timer input capture 1.

Figure 22. AWU block diagram

) CKAWUSEL
PRSC[1:0] OPTION bit
OPTION bits
HSE clock | S
(1-24 MHz)
— Prescaler MSR
~128kHzLSclock b to Timer Input Capture
LSIRC (for measurement) >
128 kHz
fis
APR[5:0]
|
fis
6-BIT PROG
COUNTER
l AWUTBJ3:0]
AWU COUNTERS AWU Interrupt
15 time bases ’7)
AWUEN & HALT/WAIT
Note: The LS clock source is selected by programming the CKAWUSEL option bit as explained in

Clock Controller chapter.

Ky_l 113/430

Auto-wakeup (AWU) RMO0016

12.2

12.2.1

Note:

114/430

AWU functional description

AWU operation

To use the AWU, perform the following steps in order:

1.

4.
5,

Measure the LS clock frequency using the MSR bit in AWU_CSR register and TIM3
input capture 1.

Define the appropriate prescaler value by writing to the APR [5:0] bits in the
Asynchronous prescaler register (AWU_APR).

Select the desired auto-wakeup delay by writing to the AWUTB[3:0] bits in the
Timebase selection register (AWU_TBR).

Set the AWUEN bit in the Control/status register (AWU_CSR).
Execute the HALT instruction.

The counters only start when the MCU enters Active-halt mode after a HALT instruction
(Refer to the Active-halt mode section in the Power Management chapter). The AWU
interrupt is then enabled at the same time.

The prescaler counter starts to count only if APR[5:0] value is different from its reset value,
Ox3F.

Idle mode

If the AWU is not in use, then the AWUTBJ3:0] bits the Timebase selection register
(AWU_TBR) should be loaded with 0b0000 to reduce power consumption.

RMO0016 Auto-wakeup (AWU)
12.2.2 Time base selection
Please refer to the Asynchronous prescaler register (AWU_APR) and Timebase selection
register (AWU_TBR) descriptions.
The AWU time intervals depend on the values of AWUTBJ[3:0] bits and on the values of APR
[5:0] bits (APRp,y values). 15 non-overlapped ranges of time intervals can be defined as
follows:
Table 22. AWUTBI[3:0] selection
AWUTBI3:0] Time interval range APRp,y range
0b0001 2/f|_s - 64/f|_s 2to 64
0b0010 2x32/f g - 2x64/f g 32 to 64
0b0011 2x2x32/f g - 2%x64/f, g 32 to 64
0b0100 22x2x32/f g - 23x64/f g 32 to 64
0b1100 210x2x32/f) o - 211x64/f g 321t0 64
0b1101 21x2x32/f| g - 212x64/f g 321t0 64
0b1110 211130/ g - 2''x320/f g 26 to 64
Ob1111 211x330/f, g - 212x960/f, g 11 to 64
In order to obtain the right values for AWUTBI[3:0] and APRp,y, you have first to search the
interval range corresponding to the desired time interval. This gives the AWUTB[3:0] value.
Then APRp,y can be chosen to get a time interval value as close as possible to the desired
one. This can be done using the formulas listed in the description of the Timebase selection
register (AWU_TBR).
Note: If the target value is between 2'°x64/f, g and 2'"x130/f; g or between 2'"x320/f, g and

27x330/f, 5, the value closer to the target one must be chosen.

Table 23. Example where f| g=128 kHz and target time is 78.5 ms

AWUTBJ3:0] Interval range APRpy range
0001 0.015625 ms - 0.5 ms 210 64
0010 0.5ms-1.0ms 3210 64
1000 32 ms - 64 ms 3210 64
1001 64 ms - 128 ms 3210 64
1101 1.024s-2.048 s 32 to 64
1110 2.080s-5.120s 26 to 64
1111 5.280s-30.720 s 11 to 64

The right TB[3:0] value is 1001. The “ideal APRp,y “= 0.0785xf|_3/28 = 39.25. Therefore the
value to be assigned to APRp,y is 39, which gives a time interval of 78 ms.

115/430

Auto-wakeup (AWU) RMO0016

12.2.3

116/430

LSI clock frequency measurement

The frequency dispersion of the Low Speed Internal RC (LSI) oscillator after RC factory
trimming is 128 kHz +/- 12.5% on the whole temperature range. To obtain a precise AWU
time interval or Beeper output, the exact LSI frequency has to be measured.

Use the following procedure:

1. Setthe MSR bit in the Control/status register (AWU_CSR) to connect the LSI clock
internally to ICAP1 of the TIM3 timer.

2. Measure the frequency of LSI clock using the Timer input capture interrupt.

3. Write the appropriate value in the APR [5:0] bits in the Asynchronous prescaler register
(AWU_APR) to adjust the AWU time interval to the desired length. The AWUTB[3:0]
bits can be modified to select different time intervals.

LSI clock frequency measurement can also be used to calibrate the Beeper frequency (see
Section 13.2.2)

RMO0016 Auto-wakeup (AWU)

12.3 AWU registers

12.3.1 Control/status register (AWU_CSR)
Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0
AWUF AWUEN MSR
Reserved Reserved
r w w

Bits 7:6 Reserved, must be kept cleared.

Bit 5 AWUF: Auto-wakeup flag

This bit is set by hardware when the AWU module generates an interrupt and cleared by reading the
AWU_CSRH1 register. Writing to this bit does not change its value.

0: No AWU interrupt occurred

1: AWU interrupt occurred

Bit 4 AWUEN: Auto-wakeup enable

This bit is set and cleared by software. It enables the Auto-wakeup feature. If the microcontroller
enters Active-halt or Wait mode, the AWU feature wakes up the microcontroller after a
programmable time delay.

0: AWU (Auto-wakeup) disabled

1: AWU (Auto-wakeup) enabled

Bits 3:1 Reserved, must be kept cleared.

Bit 0 MSR: Measurement enable
This bit connects the f g clock to the TIM3 input capture. This allows the timer to be used to measure
the LS frequency (. g).
0: Measurement disabled
1: Measurement enabled

Ky_l 117/430

Auto-wakeup (AWU) RMO0016

12.3.2 Asynchronous prescaler register (AWU_APR)
Address offset: 0x01

Reset value: 0x3F

7 6 5 4 3 2 1 0

APR[5:0]
Reserved

Bits 7:6 Reserved, must be kept cleared.

Bits 5:0 APR[5:0]: Asynchronous Prescaler divider

These bits are written by software to select the prescaler divider (APRp,y) feeding the counter clock.
0x00: APRD|V =2
0x01: APRD|V =3

0x06: APRD|V =8

0XOE: APRpyy = 16
OxOF: APRD|V =17

OX3E: APRpyy = 64

Note: This register must not be kept at its reset value (0x3F)

118/430 Ky_’

RMO0016 Auto-wakeup (AWU)

12.3.3 Timebase selection register (AWU_TBR)
Address offset: 0x02

Reset value: 0x00

AWUTBI[3:0]
Reserved

rw

Bits 7:4 Reserved, must be kept cleared.

Bits 3:0 AWUTB[3:0]: Auto-wakeup timebase selection

These bits are written by software to define the time interval between AWU interrupts.

AWU interrupts are enabled when AWUEN=1.
0000: No interrupt

0001: APRp/fL g 0010: 2xAPRp/fLg 0011: 22APRp,\/fLs
0100: 23APRp,\/fLs 0101: 2*APRp,\/fLs 0110: 2°APRp,\/fL s
0111: 26APRp,y/fL s 1000: 2’ APRp/fLs 1001: 28APRp/fLs
1010: 2°APRp/fLg 1011: 2'°APRp\/fLg 1100: 2" APRp\/fLg
1101: 2'2APRp /s 1110: 5x2"'APRp,/f 5 1111: 30x2""APRp/fL g

12.3.4 AWU register map and reset values

Table 24. AWU register map

Agﬁ:is Register name 7 6 5 4 3 2 1 0
0x00 AWU_CSR ; ; AWUF | AWUEN ; ; . MSR
0x01 AWU_APR (—) (—) AP1F{5 AP1R4 AP1R3 AP1F{2 AP1R1 AF;RO
0x02 AWU_TBR 0 6 6 (—) AWléTBS AWléTB2 AWlEJ)TB1 AWL(J)TBO

IS72 119/430

RMO0016

Beeper (BEEP)
13 Beeper (BEEP)
13.1 Introduction

120/430

This function generates a beep signal in the range of 1, 2 or 4 kHz when the LS clock is
operating at a frequency of 128 kHz.

Figure 23. Beep block diagram

HSE clock (4- 24 MHz)

MSR
_+ _ toTimer Input Capture

CKAWUSEL
PRSC[1:0] X
OPTION bits OPTION bit
Prescaler [——
128 kHz LS clock
LSIRC
128 kHz

BEEPDIV[4:0] bits

L

(for measurement)

BEEPSEL[1:0] bits
|

fis 5-BIT BEEPER PROG | ~8 kHz

COUNTER

3-BIT COUNTER :1 kHz, 2 kHz, 4 kHz
’—‘ BEEP pin

BEEPEN

RMO0016

Beeper (BEEP)

13.2

13.2.1

Note:

13.2.2

BEEP functional description

Beeper operation

To use the Beep function, perform the following steps in order:

1.

Calibrate the LS clock frequency as described in Section 13.2.2: Beeper calibration to
define BEEPDIV[4:0] value.

Select 1 kHz, 2 kHz or 4 kHz output frequency by writing to the BEEPSEL[1:0] bits in
the Beep control/status register (BEEP_CSR).

Set the BEEPEN bit in the Beep control/status register (BEEP_CSR) to enable the LS
clock source.

The prescaler counter starts to count only if BEEPDIV[4:0] value is different from its reset
value, Ox1F.

Beeper calibration

This procedure can be used to calibrate the LS 128 kHz clock in order to reach the standard
frequency output, 1 kHz, 2 kHz or 4 kHz.

Use the following procedure:

1.

Measure the LSI clock frequency (refer to Section 12.2.3: LS| clock frequency
measurement above)

Calculate the BEEPpy value as follows, where A and x are the integer and fractional
part of f ¢/8 (in kHz):

BEEPp,y = A-2 when x is less than or equal to A/(1+2*A), else

BEEPpy = A-1

Write the resulting BEEPp,y value in the BEEPDIV[4:0] bits in the Beep control/status
register (BEEP_CSR).

121/430

Beeper (BEEP) RMO0016

13.3 BEEP registers

13.3.1 Beep control/status register (BEEP_CSR)
Address offset: 0x00

Reset value: Ox1F

7 6 5 4 3 2 1 0
BEEPSEL[1:0] BEEPEN BEEPDIV[4:0]
w w w w rw rw rw w

Bits 7:6 BEEPSEL[1:0]: Beep selection

These bits are set and cleared by software to select 1, 2 or 4 kHz beep output when calibration is
done.

00: fLS/(S X BEEPD|V) kHz output
01: fLS/(4 X BEEPD|V) kHz output
1x: fLS/(2 X BEEPD|V) kHz output

Bit 5 BEEPEN: Beep enable
This bit is set and cleared by software to enable the beep feature.
0: Beep disabled
1: Beep enabled
Bits 4:0 BEEPDIV[4:0]: Beep prescaler divider

These bits are set and cleared by software to define the Beeper prescaler dividing factor BEEPp)y.
0x00: BEEPD|V =2
0x01: BEEPD|V =3

OxOE: BEEPD|V =16
OxOF: BEEPD|V =17

Ox1E: BEEPD|V =32
Note: This register must not be kept at its reset value (0x1F)

13.3.2 BEEP register map and reset values

Table 25. BEEP register map

Address .

Register name 7 6 5 4 3 2 1 0
offset
0x00 BEEP_CSR BEEI?)SELZ BEEI?)SEU BEEOPEN BEEI?DIV4 BEEF1’DIV3 BEEF1’DIV2 BEEF1’D|V1 BEEI?DIVO

122/430 Ky_’

RMO0016

Independent watchdog (IWDG)

14

14.1

14.2

Independent watchdog (IWDG)

Introduction

The independent watchdog peripheral can be used to resolve processor malfunctions due to
hardware or software failures. It is clocked by the 128 kHz LSl internal RC clock source, and
thus stays active even if the main clock fails.

IWDG functional description

Figure 24 shows the functional blocks of the independent Watchdog module.

When the independent watchdog is started by writing the value OxCC in the Key Register
(IWDG_KR), the counter starts counting down from the reset value of OxFF. When it reaches
the end of count value (0x00) a reset signal is generated (WDG RESET).

The independent watchdog is configured through the IWDG_PR, and IWDG_RLR registers.
The IWDG_PR register is used to select the prescaler divider feeding the counter clock.
Whenever the KEY_REFRESH value (0xAA) is written in the IWDG_KR register, the INDG
is refreshed by reloading the IWDG_RLR value into the counter and the watchdog reset is
prevented.

The IWDG_PR and IWDG_RLR registers are write protected. To modify them, first write the
KEY_ACCESS code (0x55) in the IWDG_KR register. The sequence can be aborted by
writing AAh in the IWDG_KR register to refresh it.

Refer to Section 14.3: IWDG registers for details on the IWDG registers.

Figure 24. Independent watchdog block diagram

128KHz LS| IWDG_PR IWDG_RLR IWDG_KR
clock ‘ Register Reloj FLeQister Key Re|g|ster
64kHz
7-bit WDG RESET
2 8-bit Down-counter ——»
Prescaler

Hardware watchdog feature

If the Hardware watchdog feature has been enabled through the IWDG_HW option byte, the
watchdog is automatically enabled at power on, and generates a reset unless the Key
register is written by the software before the counter reaches end of count. Refer to the
Option Byte description in the datasheet.

Timeout period

The timeout period is a function of this value and the clock prescaler.Refer to Table 26 for
the values of the minimum timeout periods.

123/430

Independent watchdog (IWDG)

RMO0016

124/430

Table 26. Watchdog timeout period (with 64 kHz counter clock)

Prescaler divider PR[2:0] bits Min timeout Max timeout
RL[7:0]= 0x00 RL[7:0]= OXFF
4 0 62.5 s 15.90 ms
8 1 125 ps 31.90 ms
/16 2 250 pis 63.70 ms
132 3 500 pis 127 ms
/64 4 1.00 ms 255 ms
/128 5 2.00 ms 510 ms
/256 6 4.00 ms 1.02s

RMO0016

Independent watchdog (IWDG)

14.3

14.3.1

IWDG registers

Key register (IWDG_KR)
Address offset: 0x00

Reset value: undefined

KEY[7:0]

Bits 7:0 KEY[7:0]: Key value

14.3.2

The KEY_REFRESH value must be written by software at regular intervals, otherwise the watchdog
generates an MCU reset when the counter reaches 0.

KEY_ENABLE value = 0xCC

Writing the KEY_ENABLE value starts the IWDG.

KEY_REFRESH value = OxAA

Writing the KEY_REFRESH value refreshes the IWDG.

KEY_ACCESS value = 0x55

Writing the KEY_ACCESS value enables the access to the protected IWDG_PR and IWDG_RLR
registers (see Section 14.2)

Prescaler register (IWDG_PR)
Address offset: 0x01

Reset value: 0x00

6 5 4 3 2 1 0

Reserved PR[2:0]

Bits 7:3 Reserved, must be kept cleared.

Bits 2:0 PR[2:0]: Prescaler divider

These bits are write access protected (see Section 14.2). They can be written by software to select
the prescaler divider feeding the counter clock.

000: divider /4
001: divider /8
010: divider /16
011: divider /32
100: divider /64
101: divider /128
110: divider /256
111: Reserved

125/430

Independent watchdog (IWDG)

RMO0016

14.3.3 Reload register (IWDG_RLR)
Address offset: 0x02
Reset value: OxFF
7 6 5 4 3 2 1 0
RL[7:0]
w rw rw rw rw rw rw rw
RL[7:0]: Watchdog counter reload value
These bits are write access protected (see Section 14.2). They are written by software to define the
Bits 7:0 value to be loaded in the watchdog counter each time the value 0xAA is written in the IWDG_KR
register. The watchdog counter counts down from this value. The timeout period is a function of this
value and the clock prescaler. Refer to Table 26.
14.3.4 IWDG register map and reset values
Table 27. IWDG register map
Address Register 7 6 5 4 3 2 1 0
offset name
IWDG_KR KEY7 KEY6 KEY5 KEY4 KEY3 KEY2 KEY1 KEYO
0x00
Reset value X X X X X X X X
0x01 IWDG_PR - - - - - PR2 PR1 PRO
Reset value 0 0 0 0 0 0 0 0
0x02 IWDG_RLR RL7 RL6 RL5 RL4 RL3 RL2 RL1 RLO
Reset value 1 1 1 1 1 1 1 1

126/430

RMO0016

Window watchdog (WWDG)

15

15.1

15.2

15.3

Window watchdog (WWDG)

Introduction

The Window Watchdog is used to detect the occurrence of a software fault, usually
generated by external interference or by unforeseen logical conditions, which causes the
application program to abandon its normal sequence. The Watchdog circuit generates an
MCU reset on expiry of a programmed time period, unless the program refreshes the
contents of the downcounter before the T6 bit becomes cleared. An MCU reset is also
generated if the 7-bit downcounter value (in the control register) is refreshed before the
downcounter has reached the window register value. This implies that the counter must be
refreshed in a limited window.

WWDG main features

® Programmable free-running downcounter
e Conditional reset

— Reset (if watchdog activated) when the downcounter value becomes less than
0x40

— Reset (if watchdog activated) if the downcounter is reloaded outside the window
(see Figure 27)

® Hardware/Software Watchdog activation (selectable by option byte)
® Optional reset on HALT instruction (configurable by option byte)

WWDG functional description

If the watchdog is activated (the WDGA bit is set) and when the 7-bit downcounter (T[6:0]
bits) rolls over from 0x40 to 0x3F (T6 becomes cleared), it initiates a reset cycle pulling low
the reset pin. If the software refreshes the counter while the counter is greater than the value
stored in the window register, then a reset is generated.

127/430

Window watchdog (WWDG) RM0016

Note:

128/430

Figure 25. Watchdog block diagram

RESET WATCHDOG WINDOW REGISTER (WDGWR)

W6| W5| W4 | w3 | W2 | W1 | WO

comparator
=1 when
T6:0 > W6:0 CMP

Write WDGCR
, WATCHDOG CONTROL REGISTER (WDGCR)
WDGA| T6 T5 | T4 | T3 [T2 T1| TO
6-BIT DOWNCOUNTER (CNT)
fepu
(from clock) | WDG PRESCALER

- DIV 12288

The application program must write in the WDGCR register at regular intervals during
normal operation to prevent an MCU reset. This operation must occur only when the counter
value is lower than the window register value. The value to be stored in the WDGCR register
must be between OxFF and 0xCO (see Figure 26):

Enabling the watchdog:

When Software Watchdog is selected (by option byte), the watchdog is disabled after a
reset. It is enabled by setting the WDGA bit in the WDGCR register, then it cannot be
disabled again except by a reset.

When Hardware Watchdog is selected (by option byte), the watchdog is always active
and the WDGA bit is not used.

Controlling the downcounter:

This downcounter is free-running: It counts down even if the watchdog is disabled.
When the watchdog is enabled, the T6 bit must be set to prevent generating an
immediate reset.

The T[5:0] bits contain the number of increments which represents the time delay
before the watchdog produces a reset (see Figure 26: Approximate timeout duration).
The timing varies between a minimum and a maximum value due to the unknown
status of the prescaler when writing to the WDGCR register (see Figure 27).

The window register (WDGWR) contains the high limit of the window: To prevent a
reset, the downcounter must be reloaded when its value is lower than the window
register value and greater than 0x3F. Figure 27 describes the window watchdog
process.

The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is
cleared).

Watchdog Reset on Halt option
If the watchdog is activated and the watchdog reset on halt option is selected, then the
HALT instruction will generate a Reset.

RMO0016 Window watchdog (WWDG)
15.4 Using Halt mode with the WWDG
If Halt mode with Watchdog is enabled by option byte (no watchdog reset on HALT
instruction), it is recommended before executing the HALT instruction to refresh the WDG
counter, to avoid an unexpected WDG reset immediately after waking up the microcontroller.
15.5 How to program the watchdog timeout

Figure 26 shows the linear relationship between the 6-bit value to be loaded in the
Watchdog Counter (CNT) and the resulting timeout duration in milliseconds. This can be
used for a quick calculation without taking the timing variations into account. If more
precision is needed, use the formulae in Figure 27.

Warning: When writing to the WDGCR register, always write 1 in the T6
bit to avoid generating an immediate reset.

Figure 26. Approximate timeout duration

7F

74 B R ——

70 b — — — — — — — —

68 F— — — — — — — — — — — — — >~ — — = — — — — -

60+ —— — — — — — - — — = = — = — — = — — — —

58 f — —'— — - - _~Z__ ' ']

CNT Value (hex.)

50 F—— — — > — —— — — — — —— — — = = — — —

4841+ — > — —--— - —— - - J

40 I
0.768 6.144 12.288 18.432 24576 30.72 36.864 43.008 49.152
Watchdog timeout (ms) @ 16 MHz fcpy

129/430

Window watchdog (WWDG) RM0016

Figure 27. Window watchdog timing diagram

T[5:0] CNT downcounter
A

WDGWR
0x7F
time >
Refresh not allowed Refresh Winde (step = 12288/fcik_wwdg_ck)
T6 bit
Reset l—|
|
[
Example:
Counter code | Oh 7Fh
fckc_wwdg_ck | 1 step 64 steps
16 MHz 0.768 ms 49.152 ms
16 MHz/8 6.144 ms 393 ms

15.6 WWDG low power modes

Table 28. Effect of low power modes on WWDG

Mode | Description

WAIT | No effect on Watchdog: The downcounter continues to decrement.

WWDG_HALT
in Option Byte

No Watchdog reset is generated. The MCU enters Halt mode. The Watchdog counter
is decremented once and then stops counting and is no longer able to generate a
watchdog reset until the MCU receives an external interrupt or a reset.

0 If an interrupt is received (refer to interrupt table mapping to see interrupts which can
occur in halt mode), the Watchdog restarts counting after the stabilization delay. If a
reset is generated, the Watchdog is disabled (reset state) unless Hardware Watchdog
is selected by option byte. For application recommendations see Section 15.8 below.

HALT

1 A reset is generated instead of entering halt mode.

No reset is generated. The MCU enters Active Halt mode. The Watchdog counter is
ACTIVE not decremented. It stops counting. When the MCU receives an oscillator interrupt or

HALT external interrupt, the Watchdog restarts counting immediately. When the MCU
receives a reset the Watchdog restarts counting after the stabilization delay.

130/430 Ky_’

RMO0016 Window watchdog (WWDG)

15.7 Hardware watchdog option

If Hardware Watchdog is selected by option byte, the watchdog is always active and the
WDGA bit in the WDGCR is not used. Refer to the Option Byte description in the datasheet.

15.8 Using Halt mode with the WWDG (WWDGHALT option)

The following recommendation applies if Halt mode is used when the watchdog is enabled.

Before executing the HALT instruction, refresh the WDG counter, to avoid an unexpected
WDG reset immediately after waking up the microcontroller.

15.9 WWDG interrupts

None.

15.10 WWDG registers

15.10.1 Control register (WWDG_CR)
Address offset: 0x00

Reset value: Ox7F

7 6 5 4 3 2 1 0
WDGA T6 T5 T4 T3 T2 T TO
w w w w rw rw rw w

Bit 7 WDGA: Activation bit (1)

This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the
watchdog can generate a reset.
0: Watchdog disabled
1: Watchdog enabled

Bits 6:0 T[6:0]: 7-bit counter (MSB to LSB)
These bits contain the value of the watchdog counter. It is decremented every 12288 foy¢ wwdg ck
cycles (approx.). A reset is produced when it rolls over from 0x40 to 0x3F (T6 becomes cleared).

1. This bit is not used if the hardware watchdog option is enabled by option byte.

Ky_l 131/430

Window watchdog (WWDG) RM0016
15.10.2 Window register (WWDG_WR)
Address offset: 0x01
Reset value: Ox7F
7 6 5 4 3 2 1 0
Reserved Wé W5 Wz W3 W2 W1 Wo
rw rw w rw rw w rw rw
Bit 7 Reserved
Bits 6:0 W[6:0]: 7-bit window value
These bits contain the window value to be compared to the downcounter.
15.11 Window watchdog register map and reset values
Table 29. WWDG register map and reset values
Address | Register 7 6 5 4 3 2 1 0
offset name
0X00 WWDG_CR | wbpaa T6 T5 T4 T3 T2 T To
Reset value 0 1 1 1 1 1 1 1
0x01 WWDG_WR - we w5 w4 w3 w2 Wi WO
Reset value 0 1 1 1 1 1 1 1

132/430

RMO0016

Timer overview

16

Timer overview

There are three types of TIM timers: advanced control (TIM1), general purpose (TIM2/
TIM3/TIM5), and basic timers (TIM4/TIM6). They have different features but are based on a
common architecture. This makes it easier to design applications using the various timers
(identical register mapping, common basic features).

In STM8S devices with TIM1, TIM5 and TIM6, the timers do not share any resources but
they can be linked together and synchronized as described in Synchronization from
TIM5/TIM6 timers on page 157. In STM8S devices with TIM1, TIM2, TIM3 and TIM4, the
timers are not linked together.

This section gives a comparison of the different timer features and glossary of internal timer
signal names.

Section 17: 16-bit advanced control timer (TIM1) contains a full description of all the various
timer modes. The other timer sections are more brief and give only specific details on each
timer, its block diagram, and register description.

Table 30. Timer characteristics
Symbol Parameter Min Typ Max Unit
twicAP)in Input capture pulse time 2 tMASTER
tres(TIM) Timer resolution time 1 tMASTER
Timer resolution with 16-bit counter 16 bit
Res-nM
Timer resolution with 8-bit counter 8 bit
t Counter clock period when internal clock is 1 t
COUNTER selected MASTER
Maximum possible count with 16-bit counter 65,536 tMASTER
tMAX_COUNT
- Maximum possible count with 8-bit counter 256 tMASTER
17 133/430

Timer overview RMO0016
16.1 Timer feature comparison
Table 31. Timer feature comparison
Capture/ Timer
) Counter | counter | Prescaler compare Comple- F\‘_e_pet- Ex_ternal External syncl?r-
Timer resol- chan- mentary | ition trigger break |onization
ution type factor nels outputs | counter | input input /
chaining
@ d-l\-/lxle d Any integer With
control Up/down from 1 to 4 3 Yes 1 1 TIM5/
. 65536 TIM6
timer)
TIM2
(general |y by 3
purpose
timer) Any power of
2 from 1 to
TIM3 32768
(general Up 5 None No 0 0 No
purpose
timer)
TIM4 Any power of
(basic 8-bit 2from1to 0
timer) 128
(Er?i?al Any power of
e | 16-bit 2 from 1 to 3
purp 32768
timer) Up None No 0 0 Yes
TIM6 Any power of
(basic 8-bit 2 from 1 to 0
timer) 128
134/430 KYI

RMO0016

Timer overview

16.2

Table 32.

Glossary of timer signal names

Glossary of internal timer signals

Internal signal name

Description

Related figures

Bl

Break interrupt

Figure 28: TIM1 general block diagram on

CCil, CC1l, CC2I, CC3l, ceal | Sapture/compare page 139
interrupt
CK_CNT Counter clock Figure 32: Counter update when ARPE=0
CK_PSC Prescaler clock (ARR not preloaded) with prescaler = 2 on
CNT_EN Counter enable page 143
CNT_INIT Counter initialize Figure 42: TI2 external clock connection
example on page 151
External trigger from
ETR TIMx_ETR pin
ETRF External trigger filtered Figure 44: External trigger input block on
page 152
ETRP External trigger
prescaled
Timer peripheral clock
fMASTER from clock controller Figure 13: Clock tree on page 61
(CLK)
ICi, IC1, IC2 Input capture

IC/PS, IC1PS, IC2PS

Input capture prescaled

Figure 61: Input stage of TIM 1 channel 1
on page 165

MATCH1

Compare match

Figure 51: Trigger/master mode selection
blocks on page 157 and Section 17.7.2:
Control register 2 (TIM1_CR2) on

page 185

OCj, OC1, OC2

Timer output channel

OC/REF, OC1REF, OC2REF

Qutput compare
reference signal

Figure 65: Detailed output stage of
channel with complementary output
(channel 1) on page 169

Figure 40: Clock/trigger controller block

TGl Trigger interrupt diagram on page 150

T, T, TI2 Timer input

TIF, THF TI2F Timer input filtered

TIH_ED Timer input edge Figure 61: Input stage of TIM 1 channel 1

detector

TIFPx, TIHFP1, THFP2,

Timer input filtered

on page 165

TI2FP1, TI2FP2 prescaled
TRC Trigger capture
Trigger input to . . L
TRGI clock/trigger/slave Figure 41: Control circuit in normal mode,

mode controller

fMASTER divided by 1 on page 151

135/430

Timer overview

RMO0016

136/430

Table 32.

Glossary of internal timer signals (continued)

Internal signal name

Description

Related figures

UEV

Update event

UIF

Update interrupt

Figure 32: Counter update when ARPE=0
(ARR not preloaded) with prescaler = 2 on

page 143

RMO0016 16-bit advanced control timer (TIM1)
17 16-bit advanced control timer (TIM1)

This section gives a description of the full set of timer features.
17.1 Introduction

TIM1 consists of a 16-bit up-down auto-reload counter driven by a programmable prescaler.

In this section, the index i, may be 1, 2, 3 or 4 referring to the four capture/compare
channels.

The timer may be used for a variety of purposes, including:

Time base generation

Measuring the pulse lengths of input signals (input capture)

Generating output waveforms (output compare, PWM and One Pulse Mode)
Interruptcapability on various events (capture, compare, overflow, break, trigger)

Synchronization with TIM5/TIM6 timers or external signals (external clock, reset, trigger
and enable)

This timer is ideally suited for a wide range of control applications, including those requiring
center-aligned PWM capability with complementary outputs and dead-time insertion.

The timer clock can be sourced from internal clocks or from an external source selectable
through a configuration register.

137/430

16-bit advanced control timer (TIM1) RMO0016

17.2

138/430

TIM1 main features

TIM1features include:
16-bit up, down, up/down counter auto-reload counter.

Repetition counter to update the timer registers only after a given number of cycles of
the counter.

16-bit programmable prescaler allowing the counter clock frequency to be divided “on
the fly” by any factor between 1 and 65536.

Synchronization circuit to control the timer with external signals and to interconnect
several timers (timer interconnection not implemented in some devices).

4 independent channels that can alternately be configured as:

Input capture

Output compare

PWM generation (edge and center-aligned mode)
6-step PWM generation

One Pulse Mode output

Complementary Outputs on three channels with programmable dead-time
insertion

Break input to put the timer output signals in reset state or in a known state.
Interrupt generation on the following events:

Update: counter overflow/underflow, counter initialization (by software or
internal/external trigger)

Trigger event (counter start, stop, initialization or count by internal/external trigger)
Input capture

Output compare

Break input

RMO0016

16-bit advanced control timer (TIM1)

Figure 28. TIM1 general block diagram

fmasTER

TIM1_TRIG [}

ETR

»
|

TRGO from other TIM timers*’.
TRC

CLOCK/TRIGGER CONTROLLER

TRGO to TIM5/TIM6 or to ADC

Clock/reset/enable

CK_PSC CK_CNT,
- | Prescaler I—’l UP-DOWN COUNTER

TIME BASE UNIT

Repetition
counter

’4—' AutoReload Register i

A 4
CAPTURE COMPARE ARRAY
/\;Cﬂ
UEV~h
™ IC1 IC1PS OC1REF
T|M1ch1[]—’ 4’ Capture/Compare 1 Register TIM1_CH1
ccal TIM1_CHIN
o
UEWA
Ti2 IC2 IC2PS OC2RE!
TIM1_CH2[———P 4} Capture/Compare 2 Register H OUTPUT TIM1_CH2
INPUT STAGE TIM1_CH2N
STAGE /;cal
o I3 Ic3 1c3ps VEV OC3REF
TIM1_CHO[}———— L[Proscater || CaptureiGompare 3 Register ——— P TIM1_CHa
ccal TIM1_CH3N
T Ica 4ps VBN OC4RER
T|M1—CH4[E_’ 4} Capture/Compare 4 Register TIM1_CH4
TIM1_BKIN———————— |
Legend:
Preload registers transferred
to shadow registers on update
event (UEV) according to
control bit
~A event
/\(interrupt

16-bit advanced control timer (TIM1) RMO0016

17.3

Note:

140/430

TIM1 time base unit

The timer has a Time base unit that includes:
® 16-bit up/down counter

® 16-bit auto-reload register

® Repetition counter

® Prescaler

Figure 29. Time base unit

TIM1_ARRH, ARRL TIM1_RCR
UEV-| Auto-reload register Repetition counter register
] L j o UIF
CKPSCy | prescaler [CK-CNT 16-bit Counter Repetition Counter UEV~
TIM1_PSCRH, PS(I_)RL TIM1_CNTRH, CNTRL

Legend:

Preload registers transferred
to shadow registers on update
event (UEV) according to
control bit

~B event
N interrupt

The 16-bit counter, the prescaler, the auto-reload register and the repetition counter register
can be written or read by software.

The auto-reload register is composed of a preload register plus a shadow register.

Writing to the auto-reload register can be done in two modes:

e Auto-reload preload enabled (ARPE bit set in the TIM1_CR1 register). In this mode,
when data is written to the autoreload register, it is kept in the preload register and
transferred into the shadow register at the next update event (UEV).

o Auto-reload preload disabled (ARPE bit cleared in the TIM1_CR1 register). In this
mode, when data is written to the autoreload register it is transferred into the shadow
register immediately.

An update event is generated:

® On a counter overflow or underflow.

® By software, setting the UG bit in the TIM1_EGR register.

® By an trigger event from the clock/trigger controller.

With preload enabled (ARPE=1), when an update event occurs: the auto-reload shadow

register is updated with the preload value (TIM1_ARR) and the buffer of the prescaler is
reloaded with the preload value (content of the TIM1_PSCR register).

The update event (UEV) can be disabled by setting the UDIS bit in the TIM1_CR1

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIM1_CR1 register is set.

The actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

RMO0016

16-bit advanced control timer (TIM1)

17.3.1

Note:

17.3.2

17.3.3

Reading and writing to the 16-bit counter

There is no buffering when writing the counter. Both TIM1_CNTRH and TIM1_CNTRL can
be written at any time, so it is suggested not to write a new value into the counter while it is
running to avoid loading a wrong intermediate content.

An 8-bit buffer is implemented for the read. The user must read the MS byte first, then the
LS byte value is buffered automatically, as described in Figure 30. This buffered value
remains unchanged until the 16-bit read sequence is completed.

Do not use the LDW instruction to read the 16-bit counter, because it reads the LS byte first,
and would return a wrong result.

Figure 30. 16-bit read sequence for the counter (TIM1_CNTR)

Beginning of the sequence

Read LS Byte
At t0 MS byte g is buffered
vV _
r Other
|_in§trvu_ctig18_,

Read | |, |Returns the buffered
At 10 +Dt| |S Byte LS Byte value at t0

Sequence completed

Write sequence for 16-bit TIM1_ARR register

16-bit values are loaded in the TIM1_ARR register through preload registers. This must be
performed by two write instructions, one for each byte. The MS byte must be written first.

The shadow register update is blocked as soon as the MS byte has been written, and stays
blocked until the LS byte has been written. Do not use the LDW instruction, as this writes the
LS byte first, and would produce wrong results in this case.

Prescaler

The prescaler implementation is as follows:

® The TIM1 prescaler is based on a 16-bit counter controlled through a 16-bit register (in
TIM1_PSCR register). It can be changed on the fly as this control register is buffered. It
can divide the counter clock frequency by any factor between 1 and 65536.

The counter clock frequency is calculated as follows:
fok_ont = fok_psc/(PSCR[15:0]+1)

The prescaler value is loaded through a preload register. The shadow register, which
contains the current value to be used is loaded as soon as the LS Byte has been written.

To update the 16-bit prescaler, load two bytes in separate write operations, MSB-first. Do not
use the LDW instruction for this purpose, as it writes LSB-first.

The new prescaler value is taken into account in the following period (after the next counter
update event).

141/430

16-bit advanced control timer (TIM1) RMO0016

17.3.4

142/430

Read operations to the TIM1_PSCR registers access the preload registers, so no special
care needs to be taken to read them.
Up-counting mode

In up-counting mode, the counter counts from 0 to a user-defined compare value (content of
the TIM1_ARR register), then restarts from 0 and generates a counter overflow event, and
an update event (UEV) if the UDIS bit is 0 in the TIM1_CR1 register.

Figure 31 shows an example of this counting mode.

Figure 31. Counter in up-counting mode

Counter
TIMx_ARR
o |
Overflow Overflow Overflow Overflow Time

An update event can also be generated by setting the bit UG in the TIM1_EGR register (by
software or by using the trigger controller).

The UEV event can be disabled by software by setting the UDIS bit in the TIM1_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event will occur until UDIS bit has been written to 0.
However, the counter restarts from 0, as well as the counter of the prescaler (but the
prescaler division factor does not change). In addition, if the URS bit (update request
selection) in TIM1_CR1 register is set, setting the UG bit generates an update event UEV
but without setting the UIF flag (thus no interrupt request is sent). This is to avoid generating
both update and capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIM1_SR1 register) is set (depending on the URS bit):

The auto-reload shadow register is updated with the preload value (TIM1_ARR),

The buffer of the prescaler is reloaded with the preload value (content of the TIM1_PSCR
register).

RMO0016

16-bit advanced control timer (TIM1)

The following figures show two examples of the counter behavior for different clock
frequencies when TIM1_ARR=36h.

In Figure 32 the prescaler divider is set to 2, so the counter clock (CK_CNT) frequency is at
half the frequency of the the prescaler clock source (CK_PSC).

In Figure 32 the autoreload preload is disabled (ARPE=0), so the shadow register is
changed immediately and counter overflow occurs when upcounting reaches 36h. This
generates an update event.

Figure 32. Counter update when ARPE=0 (ARR not preloaded) with prescaler = 2

e A A

ONTEN |
mmerctock-ckont [U UUUUUUUUUUU]
COUNTER REGISTER __ 31

COUNTER OVERFLOW

UPDATE EVENT (UEV)

UPDATE INTERRUPT FLAG (UIF)

AUTO-RELOAD PRELOAD REGISTER FF ‘X 36

A

AUTO-RELOAD SHADOW REGISTER FF X 36

Write a new value in TIMx_ARR

New value transferred immediately in shadow register

143/430

16-bit advanced control timer (TIM1) RMO0016

17.3.5

144/430

In Figure 33 the prescaler divider is set to 1, so CK_CNT has the same frequency as
CK_PSC.

In Figure 33 autoreload preload is enabled (ARPE=1), so the next counter overflow occurs
at FFh. The new autoreload value register value of 36h is taken into account after the
overflow which generates an update event.

Figure 33. Counter update event when ARPE=1 (TIM1_ARR preloaded)

CK_PSC J_I_I_LI_II_H_II_ILI_H_II_ILII_H_II_ILI

ONTEN |
TIMER CLOCK = CK_CNT
COUNTER REGISTER FA 00)01Y02)(03}04 JosYos}07)

COUNTER OVERFLOW

UPDATE EVENT (UEV)

UPDATE INTERRUPT FLAG (UIF)

AUTO-RELOAD PRELOAD REGISTER FF ‘X 36

/

AUTO-RELOAD SHADOW REGISTER FF 36

Write a new value in TIMx_ARR

New value transferred in shadow register
on counter overflow

Down-counting mode

In down-counting mode, the counter counts from the auto-reload value (content of the
TIM1_ARR register) down to 0, then restarts from the auto-reload value and generates a
counter underflow and an update event (UEV) if the UDIS bit is 0 in the TIM1_CR1 register.

Figure 34 shows an example of this counting mode.

Figure 34. Counter in down-counting mode

Counter A
TIMx_ARR
-
0 Underflow Underflow Underflow Underflow Time

An update event can also be generated by setting the bit UG in the TIM1_EGR register (by
software or by using the clock/trigger mode controller).

The UEV update event can be disabled by software by setting the UDIS bit in TIM1_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event will occur until UDIS bit has been written to 0.

574

RMO0016

16-bit advanced control timer (TIM1)

However, the counter restarts from the current auto-reload value, whereas the counter of the
prescaler restarts from 0 (but the prescale rate doesn’t change).

In addition, if the URS bit (update request selection) in TIM1_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt
request is sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIM1_SR1 register) is set (depending on the URS bit):

The buffer of the prescaler is reloaded with the preload value (content of the TIM1_PSCR
register),

The auto-reload shadow register is updated with the preload value (content of the
TIM1_ARR register). Note that the auto-reload is updated before the counter is reloaded, so
that the next period is the expected one.

The following figures show some examples of the counter behavior for different clock
frequencies when TIM1_ARR=36h.

In downcounting mode, preload is normally not used so that the new value is taken into
account in the next period (see Figure 35).

Figure 35. Counter update when ARPE=0 (ARR not preloaded) with prescaler = 2

ckese [T

CNTEN |
mmercrock=ckont [T UUUUUU UYL LN
COUNTER REGISTER 06 35/34Yas}fs2)(31)30f2F|

COUNTER UNDERFLOW

UPDATE EVENT (UEV)]

UPDATE INTERRUPT FLAG (UIF)

AUTO-RELOAD PRELOAD REGISTER FF ‘X 36

AUTO-RELOAD SHADOW REGISTER FF X 36

Write a new value in TIMx_ARR

New value transferred immediately in shadow register

145/430

16-bit advanced control timer (TIM1) RMO0016

Figure 36. Counter update when ARPE=1 (ARR preloaded), with prescaler = 1

CK_PSC J_I_I_L UL_JUU

CNT_EN
TIMER CLOCK = CK_CNT - J |_|

COUNTER UNDERFLOW —l _ J_L

UPDATE EVENT (UEV)

Cleared by software

UPDATE INTERRUPT FLAG (UIF) — __|

AUTO-RELOAD PRELOAD REGISTER FF ‘X 36

7

AUTO-RELOAD SHADOW REGISTER FF 36

Write a new value in TIMx_ARR

New value transferred in shadow register
on counter underflow

17.3.6 Center-aligned mode (up/down counting)

In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the
TIM1_ARR register) -1, generates a counter overflow event, then counts down to 0 and
generates a counter underflow event. Then it restarts counting from 0.

In this mode, the DIR direction bit in the TIM1_CR1 register cannot be written. It is updated
by hardware and gives the current direction of the counter.

The Figure 37 shows an example of this counting mode.

Figure 37. Counter in center-aligned mode

Counter,

TIMx_ARR

: >

Overflow Underflow Overflow Underflow Time

If the timer has a repetition counter (in TIM1 for example), the update event (UEV) is
generated after up and down-counting is repeated for the number of times programmed in
the repetition counter register (TIM1_RCR). Else the update event is generated at each
counter overflow and at each counter underflow.

Setting the bit UG in the TIM1_EGR register (by software or by using the clock/trigger mode
controller) also generates an update event. In this case, the counter restarts counting from
0, as well as the counter of the prescaler.

The update event (UEV) can be disabled by software setting the UDIS bit in TIM1_CR1
register. This is to avoid updating the shadow registers while writing new values in the

146/430 [s74

RMO0016

16-bit advanced control timer (TIM1)

preload registers. Then no update event will occur until UDIS bit has been written to 0.
However, the counter continues counting up and down, based on the current auto-reload
value. In timers with a repetition counter, the new update rate will be used because the
repetition register is not double buffered. For this reason, you must take care when changing
the update rate.

In addition, if the URS bit (update request selection) in TIM1_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt
request will be sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIM1_SR1 register) is set (depending on the URS bit).

The buffer of the prescaler is reloaded with the preload value (content of the TIM1_PSCR
register).

The auto-reload shadow register is updated with the preload value (content of the
TIM1_ARR register). Note that if the update source is a counter overflow, the auto-reload is
updated before the counter is reloaded, so that the next period is the expected one (the
counter is loaded with the new value).

Hereafter are some examples of the counter behavior for different clock frequencies.
Figure 38. Counter timing diagram, CK_PSC divided by 1, TIM1_ARR=06h, ARPE=1

orse JUUUUUUUUUUTUULL
CNT_EN |
TIMER CLOCK = CK_CNT
COUNTER REGISTER 04 Jo3f02}{o1{0of01)02Y0s}o4{0sYos Jos o4} o]

COUNTER UNDERFLOW

COUNTER OVERFLOW [

UPDATE EVENT (UEV) [

UPDATE INTERRUPT FLAG (UIF)

AUTO-RELOAD PRELOAD REGISTER FD ‘X 06

/

AUTO-RELOAD SHADOW REGISTER FD 06

Write a new value in TIMx_ARR

New value transferred in shadow register
on update event

Hints on using center-aligned mode:

® When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter will start counting up or down depending on the value written in

147/430

16-bit advanced control timer (TIM1) RMO0016

17.3.7

148/430

the DIR bit in the TIM1_CR1 register. Moreover, the DIR and CMS bits must not be
changed at the same time by the software.

® Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:

— The direction is not updated if you write a value in the counter that is greater than
the auto-reload value (TIM1_CNT>TIM1_ARR). For example, if the counter was
counting up, it will continue to count up.

— The direction is updated if you write 0 or write the TIM1_ARR value in the counter
but no Update Event UEV is generated.

® The safest way to use center-aligned mode is to generate an update by software
(setting the UG bit in the TIM1_EGR register) just before starting the counter and not to
write the counter while it is running.

Repetition down-counter

Section 17.3: TIM1 time base unit describes how the update event (UEV) is generated with
respect to the counter overflows/underflows. It is actually generated only when the repetition
down-counter has reached zero. This can be useful while generating PWM signals.

This means that data are transferred from the preload registers to the shadow registers
(TIM1_ARR auto-reload register, TIM1_PSCR prescaler register, but also TIM1_CCRx
capture/compare registers in compare mode) every N counter overflows or underflows,
where N is the value in the TIM1_RCR repetition counter register.

The repetition down-counter is decremented:
® At each counter overflow in up-counting mode,
® At each counter underflow in down-counting mode,

® At each counter overflow and at each counter underflow in center-aligned mode.
Although this limits the maximum number of repetitions to 128 PWM cycles, it makes it
possible to update the duty cycle twice per PWM period. When refreshing compare
registers only once per PWM period in center-aligned mode, maximum resolution is
2 X tck_psc, due to the symmetry of the pattern.

The repetition down-counter is an auto-reload type; the repetition rate will be maintained as
defined by the TIM1_RCR register value (refer to Figure 39). When the update event is
generated by software (by setting the UG bit in the TIM1_EGR register) or by hardware
through the clock/trigger controller, it occurs immediately whatever is the value of the
repetition down-counter and the repetition down-counter is reloaded with the content of the
TIM1_RCR register.

RMO0016 16-bit advanced control timer (TIM1)

Figure 39. Update rate examples depending on mode and TIM1_RCR register settings

Center-aligned mode Edge-aligned mode

Up-counting Down-counting

Counter

TIMLCNTW

TMIRCR=0 UEWa AAAAANAAAAL AANANAAAAL AAAALAAAAS

JAVAVAVAVA\

TMIRCR=1 uewa 4,444,404 4 4 4 4 4 4 4 4 44

JAVAVAVAVA\

TMIRCR=2 UEWa & & 4 4 4 4 4 & 4 4 4 &

JAVAVAVAVA\

TIMI_RCR=3 UEVs 4 4 A 4 4 A A A A
re-synchronization ' ,
' VRV 4 4 4 44 444
(by SW) (by SW) (by SW)

UEVGA Update Event: Preload registers transferred to shadow registers and update interrupt generated

/]\ Update Event if the repetition down-counter underflow occurs when the counter is equal to
to the auto-reload value.

149/430

16-bit advanced control timer (TIM1) RMO0016

17.4

17.4.1

17.4.2

150/430

TIM1 clock/trigger controller

The clock/trigger controller allows you to configure the timer clock sources, input triggers
and output triggers. The block diagram is shown in Figure 40.

Figure 40. Clock/trigger controller block diagram

fmasTER
ETRP ETRF Trigger
TIM1_TRIG ETR Controller TRGO
- Polarity Selection & Edge)
7> Deteyctor & Prescalerg ‘AD{Input filter :O other
imers
TRGO from TIM6 (ITRO) » Tal
L» TRC o ||Clock/Trigger TJeS/%tY Enagle,
TRGO from TIMS5 (ITR2) — > |Tray || Mode p/Down, Count
|| Controller
From input stage TI{F_ED cKPsc
to Time Base Unit
_’
. TIHHFP1 Encoder
From input stage
P 9 TI2EP2 Interface

Prescaler clock (CK_PSC)

The Time base unit prescaler clock (CK_PSC) can be provided by the following clock
sources:

® Internal clock (fyasTER)

® External clock mode 1: external timer input (TIx)
® External clock mode 2: external trigger input ETR
°

Internal trigger inputs (ITRx): using one timer as prescaler for another timer. Refer to
Using one timer as prescaler for another timer on page 158 for more details.

Internal clock source (fy asTeR)

If both the clock/trigger mode controller and the external trigger input are disabled
(SMS=0b000 in TIM1_SMCR and ECE=0 in the TIM1_ETR register), then the CEN, DIR
and UG bits are actual control bits and can be changed only by software (except UG which
remains cleared automatically). As soon as the CEN bit is written to 1, the prescaler is
clocked by the internal clock.

The Figure 41 shows the behavior of the control circuit and the up-counter in normal mode,
without prescaler.

RMO0016 16-bit advanced control timer (TIM1)

Figure 41. Control circuit in normal mode, fyaster divided by 1

weren 4 U UUUUUTUUTUUTUT]

CEN=CNT_EN |

UG []

CNT_INIT (=UG synchronized: UG or UG+1 clock) []

COUNTER CLOCK = CK_CNT = CK_PSC

COUNTER REGISTER 31 _ {32)33)34)3536)00J0102}03)04 0506 }07)

17.4.3 External clock source mode 1

The counter can count at each rising or falling edge on a selected timer input. This mode is
selected when SMS=0b111 in the TIM1_SMCR register.

Figure 42. TI2 external clock connection example

TIM1_SMCR
TS[2:0]
o TI2F K orY
TRGO from other timers TIHHFAoryY [encoder
—_— —— Imode
THHF_ED 100
TRGI external clock
o THFP1 | | TRGL & |extemng CK_PSC
i2f_rising —>
DL| Filter H D6or | iz fall TI2FP2 1 110
i2f_falling ETRF external clock
| 2 g ETRE |4y S0P A 190303
fmasTER A internal clock
TIM1_CCMR2 TIM1_CCER1 (internal clock) mode
SMS[2:0]
TIM1_ETR TIM1_SMCR

For example, to configure the up-counter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S= ‘01’ in the
TIM1_CCMR2 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIM1_CCMR2
register (if no filter is needed , keep IC2F=0000).
Note: The capture prescaler is not used for triggering, so you don’t need to configure it. Also you
don’t need to configure the TI2S bits, they only select the input capture source.
3. Select rising edge polarity by writing CC2P=0 in the TIM1_CCER1 register.

4. Configure the timer in external clock mode 1 by writing SMS=0b111 in the TIM1_SMCR
register.

5. Select TI2 as the input source by writing TS=110 in the TIM1_SMCR register.
6. Enable the counter by writing CEN=1 in the TIM1_CR1 register.
When a rising edge occurs on TI2, the counter counts once and the trigger flag is set (TIF bit

in the TIM1_SR1 register) and an interrupt request can be sent if enabled (depending on the
TIE bit in the TIM1_IER register).

Ky_l 151/430

16-bit advanced control timer (TIM1) RMO0016

17.4.4

152/430

The delay between the rising edge on TI2 and the actual reset of the counter is due to the
resynchronization circuit on TI2 input.

Figure 43. Control circuit in external clock mode 1

1T
CNT_EN |
COUNTER CLOCK = CK_CNT = CK_PSC [[
COUNTER REGISTER 34 35 | 36
TIF [N

Write TIF=0 /

External clock source mode 2

The counter can count at each rising or falling edge on the external trigger input ETR. This
mode is selected by writing ECE=1 in the TIM1_ETR register.

The Figure 44 gives an overview of the external trigger input block.

Figure 44. External trigger input block

or TI2F A orv
THF Aory |encoder
—————mode

external clock
mode 1 CK_PSC
>

. ETR
ETR pin O divider ETRP filter ETRF & external clock
I N,/2,14,18| fmasTer __| down-counter mode 2
O

fuaster4 |internal clock
——— —imode

‘ (internal clock)
ETP ETPS[1:0] ETF[3:0]
TIM1_ETR TIM1_ETR TIM1_ETR SMS[2:0]
TIMI_ETR TIM1_SMCR

TRGI &

For example, to configure the up-counter to count each 2 rising edges on ETR, use the
following procedure:

1. Asnofilter is needed in this example, write ETF[3:0]=0b0000 in the TIM1_ETR register.
Set the prescaler by writing ETPS[1:0]=0b01 in the TIM1_ETR register

Select rising edge detection on the ETR pin by writing ETP=0 in the TIM1_ETR register
Enable external clock mode 2 by writing ECE=1 in the TIM1_ETR register.

Enable the counter by writing CEN=1 in the TIM1_CR1 register.

o M~ wDn

The counter counts once each 2 ETR rising edges.

The delay between the rising edge on ETR and the actual reset of the counter is due to the
resynchronization circuit on the ETRP signal.

RMO0016

16-bit advanced control timer (TIM1)

17.4.5

Figure 45. Control circuit in external clock mode 2

fmMASTER
CNT_EN |
ETR | L []
e [L [
ETRFE [T]

COUNTER CLOCK = CK_CNT = CK_PSC |_|

ks

COUNTER REGISTER 34 X 35

Trigger synchronization

There are four trigger inputs (refer to Table 32: Glossary of internal timer signals on
page 135):

e ETR
e TH
e TI2

e TRGO from TIM5/TIM6

The TIM1 timer can be synchronized with an external trigger in three modes: trigger
standard mode, trigger reset mode and trigger gated mode.

Trigger standard mode

The counter can start in response to an event on a selected input.

In the following example, the up-counter starts in response to a rising edge on TI2 input:

® Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC2F=0b0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. TI2S bits are
selecting the input capture source only, and don’t need to be configured too. Write
CC2P=0 in TIM1_CCER1 register to select rising edge polarity.

® Configure the timer in trigger mode by writing SMS=0b110 in the TIM1_SMCR register.
Select TI2 as the input source by writing TS=0b110 in the TIM1_SMCR register.

When a rising edge occurs on T12, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual reset of the counter is due to the
resynchronization circuit on TI2 input.

153/430

16-bit advanced control timer (TIM1) RMO0016

Figure 46. Control circuit in trigger mode

CH— m
CNT_EN [

COUNTER CLOCK = CK_CNT = CK_PSC
COUNTER REGISTER 34 35 Y36)37)38]
TIF

Trigger reset mode

The counter and its prescaler can be re-initialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIM1_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIM1_ARR, TIM1_CCRXx) are updated.

In the following example, the up-counter is cleared in response to a rising edge on TI1 input:

® Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0b0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits
select the input capture source only, and do not need to be configured either. Write
CC1P=0in TIM1_CCER1 register to validate the polarity (and detect rising edges
only).

® Configure the timer in reset mode by writing SMS=100 in TIM1_SMCR register. Select
TI1 as the input source by writing TS=0b101 in TIM1_SMCR register.

@ Start the counter by writing CEN=1 in the TIM1_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIM1_SR1 register) and an interrupt request can be sent if
enabled (depending on the TIE in the TIM1_IER register).

The following figure shows this behaviour when the auto-reload register TIM1_ARR=36h.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 47. Control circuit in trigger reset mode

m o 1]
UG []
COUNTER CLOCK = CK_CNT = CK_PSC
COUNTER REGISTER _ Y30)31)32)33)(34) 35) 36 00}01}02j03)00 01 o2} 03)
TIF [

154/430 Ky_’

RMO0016

16-bit advanced control timer (TIM1)

Trigger gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the up-counter counts only when TI1 input is low:

1. Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0b0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits
select the input capture source only, and do not need to be configured either. Write
CC1P=1in TIM1_CCER1 register to validate the polarity (and detect low level only).

2. Configure the timer in trigger gated mode by writing SMS=0b101 in TIM1_SMCR
register. Select TI1 as the input source by writing TS=101 in TIM1_SMCR register.

3. Enable the counter by writing CEN=1 in the TIM1_CR1 register (in trigger gated mode,
the counter doesn’t start if CEN=0, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag is set both when the counter starts or stops.

The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 48. Control circuit in trigger gated mode

ul
CNT.EN — |
COUNTER CLOCK = CK_CNT = CK_PSC

COUNTER REGISTER _{30)(31)32)(3s] 34
T

Write TIF=0 /

Combining trigger modes with external clock mode 2

The external clock mode 2 can be used in addition to another trigger mode. In this case,
ETR is used as external clock input, and another input can be selected as trigger input (in
trigger standard mode, trigger reset mode or trigger gated mode). Take care that you must
not select ETR as TRGI (through the TS bits in TIM1_SMCR register).

In the following example, the up-counter counts at each rising edge on ETR as soon as a
rising edge has occured on TI1 (standard trigger mode with external ETR clock):

® Configure the external trigger input circuit by writing the TIM1_ETR register. In this
example, we don’t need any filter and write ETF=0b0000. Write ETPS=00 to disable
the prescaler, ETP=0 to detect rising edges on ETR and ECE=1 to enable the external
clock mode 2.

® Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0b0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits

155/430

16-bit advanced control timer (TIM1) RMO0016

156/430

select the input capture source only, and do not need to be configured either. Write
CC1P=0 in TIM1_CCER1 register to select rising edge polarity.

® Configure the timer in trigger mode by writing SMS=0b110 in TIM1_SMCR register.
Select TI1 as the input source by writing TS=0b101 in TIM1SMCR register.

A rising edge on TI1 enables the counter and sets the TIF flag. Then the counter counts on
ETR rising edges.

The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input. The delay between the rising edge on ETR and the
actual reset of the counter is due to the resynchronization circuit on the ETRP signal.

Figure 49. Control circuit in external clock mode 2 + trigger mode

™ |—|

CEN |
e | L1 L1 L1

COUNTER CLOCK = CK_CNT = CK_PSC J_I ﬂ

COUNTER REGISTER 34 { 3 Y 36

TIF |

RMO0016

16-bit advanced control timer (TIM1)

17.4.6

Synchronization from TIM5/TIM6 timers

On some products, the timers are linked together internally for timer synchronization or
chaining. When one timer is configured in master mode, it can output a trigger (TRGO) to

reset, start, stop or clock the counter of any other Timer configured in slave mode.

Figure 50. Timer chaining system implementation example

TRGO
>

N

TIM1
TRGO from TIM6 | ITRO |
L
TRGO from TIM5 |-TR2
>
Trigger RGO TIM 5
Controller »
TRGO from TiMe |- TR0y,
TRGOfrom TIMI|-TR3 g | 5
TIM_CH1 T » .
TIM1_CH Ti2 > oo
_C » Controller
TIM 6
TIM5_CH1 Ll »
TIM5_CH2. Ti2 »
Trigger TRGO
TRGO from TIMs | ITR2 | Controller »
TRGO from TIM1 | ITR3 EE—

The following figure presents an overview of the trigger selection and the master mode

selection blocks.

Figure 51. Trigger/master mode selection blocks

TRIGGER SELECTION BLOCK
TIMx_SMCR
TS[2:0]
-
TRGO from TIM6 1291
ITR

TRGO from TIM5 I:bﬂ TRC|

THF_ED |

. TRGI
From the Capture/ | TI1FP1 E
Compare block

TI2FP2

ETRF

MASTER MODE SELECTION BLOCK

e 7
CNT_EN
UEV

MATCHT | | TRGO
—>

_OCIREF |
OC3REF |
OC3REF |
OC4REF |

TIMx_CR2

157/430

16-bit advanced control timer (TIM1) RMO0016

Note:

Note:

158/430

Using one timer as prescaler for another timer

Figure 52. Master/Slave timer example

TIMER A TIMER B
Clock MMS TS SI\IIIS
|
uevp| MASTER | 1Rrco1 |lITR1 SLAVE |CK_PSC
MODE > MODE |—3]
PRESCALER COUNTER | CONTROL CONTROL PRESCALER COUNTER
INPUT
TRIGGER
SELECTION

For example, you can configure Timer A to act as a prescaler for Timer B. Refer to
Figure 52. To do this:

1. Configure Timer A in master mode so that it outputs a periodic trigger signal on each
update event UEV. To configure that a rising edge is output on TRGO1 each time an
update event is generated, write MMS=010 in the TIMx_CR2 register,.

2. Connect the TRGO1 output of Timer A to Timer B, Timer B must be configured in slave
mode using ITR1 as internal trigger. Select this through the TS bits in the TIMx_SMCR
register (writing TS=001).

3. Put the clock/trigger controller in external clock mode 1, by writing SMS=111 in the
TIMx_SMCR register. This causes Timer B to be clocked by the rising edge of the
periodic Timer A trigger signal (which corresponds to the Timer A counter overflow).

4. Finally enable both timers by setting their respective CEN bits (TIMx_CR1 register).

If OCi is selected on Timer A as trigger output (MMS=1xx), its rising edge is used to clock
the counter of Timer B.

Using one timer to enable another timer

In this example, we control the enable of Timer B with the output compare 1 of Timer A.
Refer to Figure 53 for connections. Timer B counts on the divided internal clock only when
OC1REF of Timer A is high. Both counter clock frequencies are divided by 4 by the
prescaler compared to fyasrer (fok_oNT = fwaster/4)-

1. Configure Timer A master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIMx_CR2 register).

2. Configure the Timer A OC1REF waveform (TIMx_CCMR1 register).

3. Configure Timer B to get the input trigger from Timer A (TS=001 in the TIMx_SMCR
register).

4. Configure Timer B in trigger gated mode (SMS=101 in TIMx_SMCR register).

5. Enable Timer B by writing ‘1’ in the CEN bit (TIMx_CR1 register).

6. Start Timer A by writing ‘1’ in the CEN bit (TIMx_CR1 register).

The counter 2 clock is not synchronized with counter 1, this mode only affects the Timer B
counter enable signal.

RMO0016 16-bit advanced control timer (TIM1)

Figure 53. Gating Timer B with OC1REF of Timer A

fmAsTER
Timer A-OC1REF |

Timer A-CNT X rc X { FE X FF X 00 X ot K

Timer B-CNT 3045 X 3046 X 3047 X 3048

Timer B-TIF

Write TIF=0 /

In the example in Figure 53, the Timer B counter and prescaler are not initialized before
being started. So they start counting from their current value. It is possible to start from a
given value by resetting both timers before starting Timer A. You can then write any value
you want in the timer counters. The timers can easily be reset by software using the UG bit
in the TIMx_EGR registers.

In the next example, we synchronize Timer A and Timer B. Timer A is the master and starts
from 0. Timer B is the slave and starts from E7h. The prescaler ratio is the same for both
timers. Timer B stops when Timer A is disabled by writing ‘0’ to the CEN bit in the TIMx_CR1
register:

1. Configure Timer A master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIMx_CR2 register).

2. Configure the Timer A OC1REF waveform (TIMx_CCMR1 register).

Configure Timer B to get the input trigger from Timer A (TS=001 in the TIMx_SMCR
register).

Configure Timer B in trigger gated mode (SMS=101 in TIMx_SMCR register).

Reset Timer A by writing ‘1’ in UG bit (TIMx_EGR register).

Reset Timer B by writing ‘1’ in UG bit (TIMx_EGR register).

Initialize Timer B to OXE7 by writing ‘E7h’ in the Timer B counter (TIMx_CNTRL).
Enable Timer B by writing ‘1’ in the CEN bit (TIMx_CR1 register).

Start Timer A by writing ‘1’ in the CEN bit (TIMx_CR1 register).

0. Stop Timer A by writing ‘0’ in the CEN bit (TIMx_CR1 register).

w

o> © e N OB

Ky_l 159/430

16-bit advanced control timer (TIM1) RMO0016

Figure 54. Gating Timer B with the counter enable signal of Timer A (CNT_EN)

fmasTER

Timer A-CEN = CNT_EN |

Timer A-UG ,_|
Timer A-CNT 75 X 00 X 01 X 02
Timer B-CNT AB E7 Y Es X E9

Timer B-UG ,_‘

Timer B ,_|
write CNT
Timer B-TIF

Write TIF0 /

Using one timer to start another timer

In this example, we set the enable of Timer B with the update event of Timer A. Refer to

Figure 52 for connections. Timer B starts counting from its current value (which can be non-

zero) on the divided internal clock as soon as the update event is generated by Timer A.

When Timer B receives the trigger signal its CEN bit is automatically set and the counter

counts until we write ‘0’ to the CEN bit in the TIM1_CR1 register. Both counter clock

frequencies are divided by 4 by the prescaler compared to fy asteR (fok_onT = fmasTER/4)-

1. Configure Timer A master mode to send its Update Event (UEV) as trigger output
(MMS=010 in the TIM1_CR2 register).

2. Configure the Timer A period (TIM1_ARR registers).

3. Configure Timer B to get the input trigger from Timer A (TS=001 in the TIM1_SMCR
register).

4. Configure Timer B in trigger mode (SMS=110 in TIM1_SMCR register).

5. Start Timer A by writing ‘1’ in the CEN bit (TIM1_CR1 register).

160/430 Ky_’

RMO0016 16-bit advanced control timer (TIM1)

Figure 55. Triggering Timer B with update event of Timer A (TIMERA-UEV)

fmasTER

Timer A-UEV]

Timer A-CNT X o X FE X FF ¥ o0 X o1 X o2 X:

Timer B-CNT 45 46 N a7\ 48

Timer B-CEN = CNT_EN

X
|
Timer B-TIF

Write TIF=0

As in the previous example, you can initialize both counters before starting counting.
Figure 56 shows the behaviour with the same configuration as in the Figure 54 but in trigger
standard mode instead of trigger gated mode (SMS=110 in the TIM1_SMCR register).

Figure 56. Triggering Timer B with counter enable CNT_EN of Timer A

fmasTER

Timer A-CEN = CNT_EN | |—
Timer A-UG ,_‘

Timer A-CNT 75 X 00 X o1 X 02

Timer B-CNT cD X o0 X E7 X E8 X Eo XEA

Timer B-UG I_l
Timer B ,_|

write CNT

Timer B-TIF

Write TIF=0

Ky_l 161/430

16-bit advanced control timer (TIM1) RMO0016

Note:

162/430

Starting 2 timers synchronously in response to an external trigger

In this example, we set the enable of Timer A when its TI1 input rises, and the enable of
Timer B with the enable of Timer A. Refer to Figure 52 for connections. To ensure the
counters alignment, Timer A must be configured in master/slave mode (slave with respect to
T, master with respect to Timer B).

1.

6.

Configure Timer A master mode to send its Enable as trigger output (MMS=001 in the
TIMx_CR2 register).

Configure Timer A slave mode to get the input trigger from TI1 (TS=100 in the
TIMx_SMCR register).

Configure Timer A in trigger mode (SMS=110 in the TIMx_SMCR register).
Configure the Timer A in Master/Slave mode by writing MSM="1" (TIMx_SMCR
register).

Configure Timer B to get the input trigger from Timer A (TS=001 in the TIMx_SMCR
register).

Configure Timer B in trigger mode (SMS=110 in the TIMx_SMCR register).

When a rising edge occurs on TI1 (Timer A), both counters starts counting synchronously
on the internal clock and both TIF flags are set.

In this example both timers are initialized before starting (by setting their respective UG
bits). Both counters starts from 0, but you can easily insert an offset between them by
writing any of the counter registers (TIMx_CNT). You can see that the master/slave mode
insert a delay between CNT_EN and CK_PSC on Timer A.

Figure 57. Triggering Timer A and B with Timer A TI1 input

wsren | LTI U UL L UL

Timer A-TH
Timer A-CEN = CNT_EN |
Timer A-CK_PSC NERERERERERERERERE]
Timer A-CNT 00
Timer A-TIF |

Timer B-CEN = CNT_EN |

Timer B-CNT 00 {010203) 04X 05X 0607} 08)09)
Timer B-TIF |

RMO0016

16-bit advanced control timer (TIM1)

17.5

TIM1 capture/compare channels

The timer 1/O pins (TIM1_CC/) can be configured either for input capture or output compare
functions. The choice made by configuring the CCiS channel selection bits in the
capture/compare channel mode register (TIM1_CCMRI), where iis the channel number.

Each Capture/Compare channel is built around a capture/compare register (including a

shadow register), an input stage for capture (with digital filter, multiplexing and prescaler)
and an output stage (with comparator and output control).

Figure 58. Capture/compare channel 1 main circuit

g | write CCR1H
read CCR1H[g write_in_progress —
] read_in_progress 6 CCRIL
i write
read CCRI1L A |Capture/Compare Preload Reglster| R
CC18[1]
capture_transfer compare_transfer —
— CC18[0]
CC18[1] input
mode J [Capture/c hadow Register|
cC18[0] apture/Compare shadow Register
7 TIMx_CCMR1
icips capture comparator base unit)
CCIE | CNT>CCR1
>
| Counter | CNT=CCR{
CC1G I ==
TIMx_EGR

The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register. In capture mode, captures are actually done in
the shadow register, which is copied into the preload register. In compare mode, the content
of the preload register is copied into the shadow register which is compared to the counter.

When the channel is configured in output mode (CCiS=0b00 in the TIM1_CCMRi register)

where i is the channel number, the TIM1_CCRi/ register can be accessed without any
restriction.

When the channel is configured in input mode, the sequence for reading the TIM1_CCRj
register is the same as for the counter. See Figure 59. When a capture occurs, the content
of the counter is captured into the TIM1_CCR/ shadow register. Then this value is loaded

into the preload register, except during the read sequence, when the preload register is
frozen.

163/430

16-bit advanced control timer (TIM1) RMO0016

17.5.1

17.5.2

164/430

Figure 59. 16-bit read sequence for the TIM1_CCRi register in capture mode

T Other ! shadow register
inshiner |~ is buffered into
L= the preload register

Beginning of the sequence

Read Preload register

At t0 MS Byte is frozen
v

" Other

Linstructions,

Read N Preload register
At t0 +At LS Byte is no longer frozen
Sequence completed

r th— = shadow register

instrhc?iro ns is buffered into

L= the preload register

Figure 59 shows the sequence for reading the CCR/ registers in the 16-bit timers. This
buffered value remains unchanged until the 16-bit read sequence is completed.

After a complete reading sequence, if only the TIM1_CCRAL register is read, it returns the
LS Byte of the count value at the time of the read.

If the MS byte is read after the LS byte, it no longer corresponds to the same captured value
as the LS byte.

Write sequence for 16-bit TIM1_CCRi registers

16-bit values are loaded in the TIM1_CCRij registers through preload registers. This must
be performed by two write instructions, one for each byte. The MS byte must be written first.

The shadow register update is blocked as soon as the MS byte has been written, and stays
blocked until the LS byte has been written. Do not use the LDW instruction, as this writes the
LS byte first, and would produce wrong results in this case.

Input stage

Figure 60. Channel input stage block diagram

THF_ED TRC
»

to clock/trigger controller

IC2

Input Filter &
EdgeDetector

TIM1_CH1 [}

TIM1_CH2[

| to capture/compare channels

TI3FP3

T3 Input Filter & Ic3
TIM1_CH3 [TI3FP4 _’J_> |

TRC—Hp

T4 o MooFie e T4FP31N Ica |
| e [Tgpa
TRC

RMO0016 16-bit advanced control timer (TIM1)
As shown in Figure 61, the input stage samples the corresponding Tli input to generate a
filtered signal TI/F. Then, an edge detector with polarity selection generates a signal (TI/FPx)
which can be used as trigger input by the clock/trigger controller or as the capture
command. It is prescaled before the capture register (IC/PS).

Figure 61. Input stage of TIM 1 channel 1
THF_ED
to clock/trigger controller
T THF_rising 0
O———— filter THF | Edge) TIHFP o
fuasTER |[down-counter Detector| TI1F_falling
| U TizFP ol1Ct | divider | 'CPS
' 1,12,/4,/8
ICF[3:0 CC1P—e
TIMx_CCMRH1 TIMx_CCER1| |(from clockfirigger
T controller)
TI2F_rising | o
(”"”‘Tclzfl’i’f‘;”ﬁg; [ccisrof icpsi0) | [ccre]
(from channel 2) 1/ TIMx_CCMR1 TIMx_CCER1
17.5.3 Input capture mode

In Input capture mode, the Capture/Compare Registers (TIM1_CCRi) are used to latch the
value of the counter after a transition detected on the corresponding IC/ signal. When a
capture occurs, the corresponding CCilF flag (TIM1_SR1 register) is set.

An interrupt can be sent if it is enabled by setting the CCIlE bit in the TIM1_IER register. If a
capture occurs while the CCIlF flag was already high, then the over-capture flag CC/OF
(TIM1_SR2 register) is set. CCilF can be cleared by software by writing it to ‘0’ or by reading
the captured data stored in the TIMx_CCRIL register. CCIiOF is cleared when you write it to
‘0.

The following example shows how to capture the counter value in TIM1_CCR1 when TI1
input rises. To do this, use the following procedure:

1. Select the active input: For example, to link the TIM1_CCR1 register to the TI1 input,
write the CC18S bits to 0b01 in the TIM1_CCMR1 register. This configures the channel
in input mode and the TIM1_CCR1 register becomes read-only.

2. Program the input filter duration that is needed for the type of the signal to be
conntected to the timer. This is done for each Tliinput using the IC/F bits in the
TIM1_CCMRiregister. For example, if you know that when, the input signal toggles, it is
unstable for up to 5 fy asTER CYCles, you must program the filter duration longer than 5
clock cycles. The filter bits allow you to select a duration of 8 cycles by writing the value
0b0011 in in these bits the TIMx_CCMR1 register. With this filter setting, a transition on

165/430

16-bit advanced control timer (TIM1) RMO0016

Note:

166/430

TI1 is valid only when 8 consecutive samples with the new level have been detected
(sampled at f\asTER frequency).

3. Select the edge of the active transition on the TI1 channel by writing CC1P bit to ‘0’ in
the TIM1_CCERT1 register (rising edge in this case).

4. Program the input prescaler. In our example, we want the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to 0b00 in the
TIM1_CCMRH1 register).

5. Enable capture from the counter into the capture register by setting the CC1E bit in the
TIM1_CCER1 register.

6. If needed, enable the related interrupt request by setting the CC1IE bit in the TIM1_IER
register.

When an input capture occurs:

® The TIM1_CCR1 register gets the value of the counter on the active transition.

® The input capture flag (CC1IF) is set (interrupt flag). The overcapture flag CC10F is
also set if at least two consecutive captures occured while the flag was not cleared.

® Aninterrupt is generated depending on the CC1IE bit.
To handle the overcapture event (CC10F flag), it is recommended to read the data before

the overcapture flag. This is to avoid missing an overcapture which could happen after
reading the flag and before reading the data.

IC interrupts can be generated by software by setting the corresponding CCiG bit in the
TIM1_EGR register.

PWM input signal measurement

This mode is a particular case of input capture mode. The procedure is the same except:
® Two ICjare mapped on the same Tli input.
® These 2 ICi are active on edges with opposite polarity.

® One of the two TIFP is selected as trigger input and the clock/trigger controller is
configured in trigger reset mode.

Figure 62. PWM input signal measurement

PWM Input
Signal

TIM1_ARR
value

Counter
value

(o]

IC1: Period measurement |
in TIM1_CCR1 register. : measurement in :
Reset counter. | TIM1_CCR2 register

RMO0016

16-bit advanced control timer (TIM1)

For example, you can measure the period (in the TIM1_CCR1 register) and the duty cycle
(in the TIM1_CCR2 register) of the PWM applied on TI1 using the following procedure
(depending on f\asTER frequency and prescaler value):

1.

Select the active input capture or trigger input for TIM1_CCR1: write the CC1S bits to
0b01 in the TIM1_CCMR1 register (TI1FP1 selected).

Select the active polarity for TIHHFP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P bit to ‘0’ (active on rising edge).

Select the active input for TIM1_CCR2: write the CC2S bits to Ob10 in the
TIM1_CCMR2 register (TI1FP2 selected).

Select the active polarity for TI1{FP2 (used for capture in TIM1_CCR2): write the CC2P
bit to ‘1’ (active on falling edge).

Select the valid trigger input: write the TS bits to Ob101 in the TIM1_SMCR register
(THFP1 selected).

Configure the clock/trigger controller in reset mode: write the SMS bits to ‘100’ in the
TIM1_SMCR register.

Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIM1_CCER1 register.

167/430

16-bit advanced control timer (TIM1) RMO0016

Figure 63. PWM input signal measurement example

i 41\ I\\ T

TIMI_CNT 0004 N 0000)\ o001 _ } ooo2 A\ 0003 X o004 X oooo X

TIM1_CCR1 \ 0004 \
TIM1_CCR2 \ 0002 \
IC1 Capture IC2 Capture
period measurement pulse width measurement

reset counter

17.5.4 Output stage

The output stage generates an intermediate waveform called OC/REF (active high) which is
then used for reference. Break functions and polarity act at the end of the chain.

Figure 64. Channel output stage block diagram

Dead time generation

DTG registers
4,—>D TIM1_CH1

I
OC1REF »| DTG output oc1
| control 7] TIM1_CHIN
OC1N
: ’—M TIM1_CH2
OC2REF »| DTG output—aEs
from capture/compare | controll — p™ TIM1_CH2N
OC2N
|
channels | ’—>D TIM1_CH3
| OC3REF »| DTG output| OC3
control ooaN »] TIM1_CH3N
|
| OC4REF tput
| outpu
| 'control oca »] TIM1_CH4

A
BI T
TIMLBKINI:I—| Polarity Selection H Enable I/\{

168/430 Ky_’

RMO0016

16-bit advanced control timer (TIM1)

17.5.5

17.5.6

Figure 65. Detailed output stage of channel with complementary output (channel 1)

ETR
—] Output TIM1_CH1
‘o Enaple [— U
—1x0 ’. Circuit

v 01
0C1.DT cciP 4
Counter > CCR1 %

Output Mode | OC1REF Dead-Time TIM1_CCER1
Counter = CCR1| Controller Generator

OC1IN_DT

A L 0
o Ouput | TIM1_CHIN
O lox —— Enable ——1O
L — 1 Circuit
A J

CC1NE/CC1E [TIM1_CCER1

OC1M[2:0] DTG[7:0] |CC1 NE|CC1 E | |CC1 NP | |MOE|OSSIIOSSR | TIM1_BKR

TIM1_CCMR1 TIM1_DTR TIM1_CCER1 TIM1_CCER1 OIS1N TIM1_OISR

Forced output mode

In output mode (CCiS bits = 0b00 in the TIM1_CCMRj register) where i is the channel
number, each output compare signal can be forced to high or low level directly by software,
independently of any comparison between the output compare register and the counter.

To force an output compare signal to its active level, you just need to write ‘101’ in the OCiM
bits in the corresponding TIM1_CCMR:i register. Thus OCIREF is forced high (OC/REF is
always active high) and the OCi output is forced to high or low level depending on the CC/P
polarity bit.

For example: CCiP=0 (OCi active high) => OCi s forced to high level.

The OC/REF signal can be forced low by writing the OCM bits to 0b100 in the
TIMx_CCMRXx register.

Anyway, the comparison between the TIM1_CCR/ shadow register and the counter is still
performed and allows the flag to be set. Interrupt requests can be sent accordingly. This is
described in the Output Compare Mode section below.

Output compare mode

This function is used to control an output waveform or indicate when a period of time has
elapsed.
When a match is found between the capture/compare register and the counter:
® Depending on the output compare mode, the corresponding OCi/ output pin:
— keeps its level (OCiM=0b000),
— is set active (OCM=0b001),
— is set inactive (OCM=0b010)
— ortoggles (OCM=0b011)
® Sets a flag in the interrupt status register (CCIlF bit in the TIM1_SR1 register).

® Generates an interrupt if the corresponding interrupt mask is set (CCIlE bit in the
TIM1_IER register).

169/430

16-bit advanced control timer (TIM1) RMO0016

The output compare mode is defined by the OCiM bits in the TIM1_CCMRi register. The
active or inactive level polarity is defined by the CC/P bit in the TIM1_CCERi register.

The TIM1_CCRi registers can be programmed with or without preload registers using the
OCI/PE bit in the TIM1_CCMRi register.

In output compare mode, the update event UEV has no effect on the OC/REF and OCi
output. The timing resolution is one count of the counter. Output compare mode can also be
used to output a single pulse.
Procedure:
1. Select the counter clock (internal, external, prescaler).
2. Write the desired data in the TIM1_ARR and TIM1_CCRi registers.
3. Setthe CCIlE bit if an interrupt request is to be generated.
4. Select the output mode as follows:
— Write OCM = 0b011 to toggle OCi output pin when CNT matches CCRi/
— Write OC/PE = 0 to disable preload register
— Write CC/P = 0 to select active high polarity
— Write CCiE = 1 to enable the output
5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.
The TIM1_CCRi register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OC/PE="0’, else TIMx_CCRi

shadow register will be updated only at the next update event UEV). An example is given in
Figure 66.

Figure 66. Output compare mode, toggle on OC1
Write B201h in the CC1R register

TIMx_CNT 0039 X 003A X 003B - B200 X B201 X:

2
TIMx_CCR1 003A ‘X B201

OC1REF=0CH1 \ / _
i y

Match detected on OCR1
Interrupt generated if enabled

170/430 Ky_’

RMO0016

16-bit advanced control timer (TIM1)

17.5.7

PWM mode

Pulse Width Modulation mode allows you to generate a signal with a frequency determined
by the value of the TIM1_ARR register and a duty cycle determined by the value of the
TIM1_CCRi register.

The PWM mode can be selected independently on each channel (one PWM per OCi output)
by writing 0b110 (PWM mode 1) or Ob111 (PWM mode 2) in the OCM bits in the
TIM1_CCMR; register. You must enable the corresponding preload register by setting the
OC/PE bit in the TIM1_CCMRIi register, and optionally enable the auto-reload preload
register (in up-counting or center-aligned modes) by setting the ARPE bit in the TIM1_CR1
register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, you have to initialize all the registers by setting the UG
bit in the TIM1_EGR register.

OCi polarity is software programmable using the CC/P bit in the TIM1_CCERj/ register. It can
be programmed as active high or active low. OCj output is enabled by a combination of
CCiE, MOE, OIS/, OSSR and OSSI bits (TIM1_CCERi and TIM1_BKR registers). Refer to
the TIM1_CCERi register description for more details.

In PWM mode (1 or 2), TIM1_CNT and TIM1_CCR;j are always compared to determine
whether TIM1_CCRTIM1_CNT or TIM1_CNT<TIM1_CCRi (depending on the direction of
the counter).

The timer is able to generate PWM in edge-aligned mode or center-aligned mode
depending on the CMS bits in the TIM1_CR1 register.

PWM edge-aligned mode

Up-counting configuration

Up-counting is active when the DIR bit in the TIM1_CR1 register is low.

In the following example, we consider the PWM mode 1. The reference PWM signal
OC/REF is high as long as TIM1_CNT <TIM1_CCRi else it becomes low. If the compare
value in TIM1_CCRi is greater than the auto-reload value (in TIM1_ARR) then OC/REF will
be held at ‘1’. If the compare value is 0 then OCI/REF will be held at ‘0. Figure 67 shows
some edge-aligned PWM waveforms in an example where TIM1_ARR=8.

171/430

16-bit advanced control timer (TIM1) RMO0016

Figure 67. Edge-aligned counting mode PWM mode 1 waveforms (ARR=8)

COUNTER REGISTER

OCREF
CCRx =4

CCiF |

OCREF _|
CCiF

CCRx=8

OCREF 1’

CCRx > 8
cciF _|

OCREF ‘O’
CCilF J

CCRx =0

Down-counting configuration

Down-counting is active when DIR bit in TIM1_CR1 register is high. Refer to Down-counting
mode on page 144

In PWM mode 1, the reference signal OC/REF is low as long as TIM1_CNT> TIM1_CCRi
else it becomes high. If the compare value in TIM1_CCRi is greater than the auto-reload
value in TIM1_ARR, then OC/REF will be held at ‘1’. 0% PWM is not possible in this mode.

PWM center-aligned mode

Center-aligned mode is active when the CMS bits in TIM1_CR1 register are different from
‘00’ (all the remaining configurations having the same effect on the OC/REF/OC; signals).

The compare flag is set when the counter counts up, when it counts down or both when it
counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the
TIM1_CR1 register is updated by hardware and is read-only in this mode. Refer to Center-
aligned mode (up/down counting) on page 146.
Figure 68 shows some center-aligned PWM waveforms in an example where:
® The TIM1_ARR=8,
e PWM mode is PWM mode 1,
o theflag is set (arrow symbol in Figure 68) in three different cases:

— only when the counter counts down (CMS=0b01)

— only when the counter counts up (CMS=0b10) .

— when the counter counts up and down (CMS=0b11) .

172/430 Ky_’

RMO0016

16-bit advanced control timer (TIM1)

Figure 68. Center-aligned PWM waveforms (ARR=8)

CMS=0b01
CCRx=4 ceiF ﬁ
CMS=0b10 ﬁ
CMS=0b11 f f
OCREF
CCRx=7 I l_l

CCiF CMS=0b10 or Ob11 |

CCRx=8 OCREF ‘1’
CMS=0b01 f
CCIF CMS=0b10
CMS=0b11 ﬁ

CCRx>8 OCREF ‘1’

CMS=0b01
CCiF CMS=0b10

CMS=0b11

A A DA

OCREF ‘0’

CCRx=0

CMS=0b01
CCilF f CMS=0b10

f CMS=0b11

SATA

173/430

16-bit advanced control timer (TIM1) RMO0016

One pulse mode

One Pulse Mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the clock/trigger controller. Generating the
waveform can be done in output compare mode or PWM mode. You select One Pulse Mode
by setting the OPM bit in the TIM1_CR1 register. This makes the counter stop automatically
at the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be:

In up-counting: CNT<CCRI<ARR (in particular, 0<CCRJ),
In down-counting: CNT>CCR4.

Figure 69. Example of one pulse mode

TI2
OC1REF
OC1
TIMx_ARR
o
g
=z TIMx_CCR1
2
Q
o
0 >
< lpeay ><——> t
tpuLsE

For example you may want to generate a positive pulse on OC1 with a length of tp|y g and
after a delay of tpg oy @s soon as a positive edge is detected on the TI2 input pin.

Let’s use IC2 as trigger 1:

® Map IC2 on TI2 by writing CC2S=0b01 in the TIM1_CCMR2 register.

® |C2 must detect a rising edge, write CC2P="0’ in the TIM1_CCER1 register.

® Configure IC2 as trigger for the clock/trigger controller (TRGI) by writing TS=0b110 in
the TIM1_SMCR register.

® [C2 is used to start the counter by writing SMS to 0b110 in the TIM1_SMCR register
(trigger mode).

174/430 Ky_’

RMO0016

16-bit advanced control timer (TIM1)

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).

® The tpg Ay is defined by the value written in the TIM1_CCR1 register.

® The tpy g is defined by the difference between the auto-reload value and the compare
value (TIM1_ARR - TIM1_CCR?1).

® Let’'s say you want to build a waveform with a transition from ‘0’ to ‘1’ when a compare
match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the auto-reload
value. To do this you enable PWM mode 2 by writing OCiM=0b111 in the
TIM1_CCMR1 register. You can optionally enable the preload registers by writing
OC1PE="1’ in the TIM1_CCMR1 register and ARPE in the TIM1_CR1 register. In this
case you have to write the compare value in the TIM1_CCR1 register, the auto-reload
value in the TIM1_ARR register, generate an update by setting the UG bit and wait for
external trigger event on T12. CC1P is written to ‘0’ in this example.

In our example, the DIR and CMS bits in the TIM1_CR1 register should be low.

You only want 1 pulse, so you write ‘1’ in the OPM bit in the TIM1_CR1 register to stop the
counter at the next update event (when the counter rolls over from the auto-reload value
back to 0).

Particular case: OCi fast enable:

In One Pulse Mode, the edge detection on Tli input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tpg oy min we can get.

If you want to output a waveform with the minimum delay, you can set the OC/FE bit in the
TIM1_CCMRi register. Then OC/REF (and OC)) will be forced in response to the stimulus,
without taking in account the comparison. Its new level will be the same as if a compare
match had occured. OCJFE acts only if the channel is configured in PWM1 or PWM2 mode.

Complementary outputs and dead-time insertion

TIM1 can output two complementary signals per channel and manage the switching-off and
the switching-on instants of the outputs. See Figure 28: TIM1 general block diagram on
page 139

This time is generally known as dead-time. Dead-times must be adjusted depending on the
characteristics of the devices connected to the outputs (ex: intrinsic delays of level-shifters,
delays due to power switches).

The polarity of the outputs can be selected (main output OCi or complementary OCj N)
independently for each output. This is done by writing to the CCi P and CC/ NP bits in the
TIM1_CCERi register.

The complementary signals OCiand OCi N are activated by a combination of several
control bits: the CC/ E and CCi NE bits in the TIM1_CCERi register and, if the break feature
is implemented, the MOE, OIS/, OISiN, OSSI and OSSR bits in the TIM1_BKR register.
Refer to Table 34: Output control for complementary OCi and OCIiN channels with break
feature on page 204 for more details. In particular, the dead-time is activated when switching
to the IDLE state (MOE falling down to 0).

Dead-time insertion is enabled by setting both CCi E and CCi NE bits, and the MOE bit if the
break circuit is present. Each channel embeds an 8-bit dead-time generator. From a

175/430

16-bit advanced control timer (TIM1) RMO0016

176/430

reference waveform OC/ REF, it generates 2 outputs OCjand OC/ N. If OCjand OCi N are
active high:

® The OCjoutput signal is the same as the reference signal except for the rising edge,
which is delayed relative to the reference rising edge.

® The OC/ N output signal is the opposite of the reference signal except for the rising
edge, which is delayed relative to the reference falling edge.

If the delay is greater than the width of the active output (OCior OC/ N) then the
corresponding pulse is not generated.

The following figures show the relationships between the output signals of the dead-time
generator and the reference signal OCi REF. (we suppose CCiP=0, CCi NP=0, MOE=1,
CCiE=1 and CC/iNE=1 in these examples)

Figure 70. Complementary output with dead-time insertion

OCIREF | [

oCi | |
-

delay
OCMN

-

delay

Figure 71. Dead-time waveforms with delay greater than the negative pulse

OCIREF L

OCi | |

OCN

Figure 72. Dead-time waveforms with delay greater than the positive pulse

OCREF
oCi
OCN |
-

delay

The dead-time delay is the same for each of the channels and is programmable with the
DTG bits in the TIM1_DTR register. Refer to Section 17.7.31: Dead-time register
(TIM1_DTR) on page 214 for delay calculation.

Re-directing OC/REF to OCior OCiN

In output mode (forced, output compare or PWM), OC/REF can be re-directed to the OCj
output or to OCIN output by configuring the CC/E and CCINE bits in the corresponding
TIM1_CCERi register. This means bypassing the dead-time generator

574

RMO0016

16-bit advanced control timer (TIM1)

Note:

This allows you to send a specific waveform (such as PWM or static active level) on one
output while the complementary remains at its inactive level. Other alternative possibilities
are to have both outputs at inactive level or both outputs active and complementary with
dead-time.

When only OCiN is enabled (CCiE=0, CCiNE=1), it is not complemented and becomes
active as soon as OCIREF is high. For example, if CCiNP=0 then OCiN=OCIREF. On the
other hand, when both OCi and OCiN are enabled (CCiE=CCiNE=1) OCi becomes active
when OCIREF is high whereas OCiN is complemented and becomes active when OCIiREF
is low.

6-step PWM generation for motor control

When complementary outputs are implemented on a channel, preload bits are available on
the OCi M, CCi E and CCi NE bits. The preload bits are transferred to the active bits at the
Commutation event (COM). This allows you to program the configuration for the next step in
advance and change the configuration of all the channels at the same time. The COM event
can be generated by software by setting the COMG bit in the TIM1_EGR register or by
hardware trigger (on the rising edge of TRGI).

A flag is set when the COM event occurs (COMIF bit in the TIM1_SR register), which can
generate an interrupt (if the COMIE bit is set in the TIM1_IER register).

Figure 73 describes the behavior of the OCjand OCi N outputs when a COM event occurs,
in three different examples of programmed configurations.

Figure 73. 6-step generation, commutation event (COM) example (OSSR=1)

(CCRx)
counter (CNT)
OC/REF
Write COMG to 1
Commutation (COM) N
CCiE=1 Write CC/E to 0 CCiE=1
CCINE=0 CCINE=0
OCM=0b110 (PWM1) ¥ OCiM=0b100
EXAMPLE 1 oo L] | | |
OCN
CCE=1 Write CCNE to 1 CCIiE=0
CCINE=0 CCINE=1
OCM=0b100 (forced inactive) x OCM=0b101
OCi
EXAMPLE 2
OCN |
CCiE=1 Write CC/E and CxNE to 0 CCiE=1
CCINE=1 CCINE=0
OCM=0b110 (PWM1) ¥ OCM=0b100
OCi
EXAMPLE 3 S l
OCN

177/430

16-bit advanced control timer (TIM1) RMO0016

17.5.8

Note:

178/430

Using the break function

The break function is often used in motor control. When using the break function, the output
enable signals and inactive levels are modified according to additional control bits (MOE,
OSSR and OSSI bits in the TIM1_BKR register).

When exiting from reset, the break circuit is disabled and the MOE bit is low. You can enable
the break function by setting the BKE bit in the TIM1_BKR register. The break input polarity
can be selected by configuring the BKP bit in the same register. BKE and BKP can be
modified at the same time.

Because MOE falling edge can be asynchronous, a resynchronization circuit has been
inserted between the actual signal (acting on the outputs) and the synchronous control bit
(accessed in the TIM1_BKR register). It results in some delays between the asynchronous
and the synchronous signals. In particular, if you write MOE to 1 whereas it was low, you
must insert a delay (dummy instruction) before reading it correctly.

When a break occurs (selected level on the break input):

® The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle state
or in reset state (selected by the OSSI bit). This feature functions even if the MCU
oscillator is off.

® [Each output channel is driven with the level programmed in the OIS/ bit in the
TIM1_OISR register as soon as MOE=0. If OSSI=0 then the timer releases the enable
output else the enable output remains high.

® When complementary outputs are implemented:

— The outputs are first put in reset state inactive state (depending on the polarity).
This is done asynchronously so that it works even if no clock is provided to the
timer.

— If the timer clock is still present, then the dead-time generator is reactivated in
order to drive the outputs with the level programmed in the OISiand OIS/ N bits
after a dead-time. Even in this case, OCiand OCi N cannot be driven to their
active level together. Note that because of the resynchronization on MOE, the
dead-time duration is a bit longer than usual (around 2 ck_tim clock cycles).

® The break status flag (BIF bit in the TIM1_SR1 register) is set. An interrupt can be
generated if the BIE bit in the TIM1_IER register is set.

o If the AOE bit in the TIM1_BKR register is set, the MOE bit is automatically set again at
the next update event UEV. This can be used to perform a regulation, for instance. Else,
MOE remains low until you write it to ‘1’ again. In this case, it can be used for security
and you can connect the break input to an alarm from power drivers, thermal sensors
or any security components.

The break inputs are acting on level. Thus, the MOE cannot be set while the break input is
active (neither automatically nor by software). In the meantime, the status flag BIF cannot be
cleared.

The break can be generated by the break input (BKIN) which has a programmable polarity
and can be enabled or disabled by setting or resetting the BKE bit in TIM1_BKR register.

In addition to the break inputs and the output management, a write protection has been
implemented inside the break circuit to safeguard the application. It allows you to freeze the
configuration of several parameters (OC/ polarities and state when disabled, OCiM
configurations, break enable and polarity). You can choose from 3 levels of protection
selected by the LOCK bits in the TIM1_BKR register. The LOCK bits can be written only
once after an MCU reset.

574

RMO0016 16-bit advanced control timer (TIM1)

Figure 74 shows an example of behavior of the outputs in response to a break.

Figure 74. Behavior of outputs in response to a break (channel without
complementary output)

BREAK (MOE 1)

OCREF |
OCi :
|

(CCiP=0, OISi=1)
oCi

(CCiP=0, OISi=0) I I
|

OCi

(CCiP=1, OISi=1) | |

OCi ‘

(CCiP=1, OISi=0)

Figure 75 shows an example of behavior of the complementary outputs (TIM1 only) in
response to a break.

Figure 75. Behavior of outputs in response to a break (TIM1 complementary
outputs)

BREAK (MOE 1)

R

OCi
(OCN not implemented, CCiP=1, OIS/=0)

OCi I N
- -4 -4
OCN delay delay delay|

(CCiE=1, CCiP=0, OIS/=0, CCINE=1, CCNP=0, OISIN=1)

OCi
- - -
OCNMN delay delay delay

(CCiE=1, CC/P=0, OISi=1, CCINE=1, CCINP=1, OISIN=1)

OCi

-
OCIN delay|
(CCiE=1, CC/P=0, OIS/=0, CC/INE=0, CCINP=0, OISIN=1)

oci D L |
-

OCN delay
(CCiE=1, CCiP=0, OISi=1, CCINE=0, CC/NP=0, OISiN=0)

OCi

OCMN
(CCiE=1, CCiP=0, CCINE=0, CCINP=0, OIS/=0OISIN=0 or OIS/i=OISN=1)

Ky_l 179/430

16-bit advanced control timer (TIM1) RMO0016

17.5.9

17.5.10

180/430

Clearing the OC/REF signal on an external event

The OC/REF signal of a given channel can be cleared when a high level is detected on
ETREF (if OCICE="1" in the TIM1_CCMRi register, one enable bit per channel). The OC/REF
signal remains low until the next UEV update event occurs. This function can be used in
output compare mode and PWM mode only, it does not work in forced mode.

It can be connected to the output of a comparator and be used for current handling, for
instance.

For example, the OC/REF signal can be connected to the output of a comparator to be used
for current handling. In this case, the external trigger must be configured as follows:

1. The External Trigger Prescaler should be kept off: bits ETPS[1:0] in the TIM1_ETR
register set to ‘00’.

2. The external clock mode 2 must be disabled: bit ECE in the TIM1_ETR register set to
‘0.

3. The External Trigger Polarity (ETP) and the External Trigger Filter (ETF) can be
configured as desired.

Refer to the external trigger input block diagram Figure 44 on page 152

Figure 76 shows the behavior of the OC/REF signal when the ETRF input becomes high, for
both values of the enable bit OCICE. In this example, the timer is programmed in PWM
mode.

Figure 76. ETR activation

(CCRx)
counter (CNT)
ETRF
OC/REF
(OCICE="0")
OCIREF
(OCICE='1")] L /l / I
ETRF ETRF
becomes high still high

Encoder interface mode

This mode is typically used for motor control. To select Encoder Interface mode write
SMS=0b001 in the TIM1_SMCR register if the counter is counting on TI2 edges only,
SMS=0b010 if it is counting on TI1 edges only and SMS=0b011 if it is counting on both TI1
and TI2 edges.

Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the
TIM1_CCER1 register. When needed, you can program the input filter as well.

The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to
Table 33. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2
after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted,

574

RMO0016

16-bit advanced control timer (TIM1)

TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in
TIM1_CR1 register written to ‘1’). The sequence of transitions of the two inputs is evaluated
and generates count pulses as well as the direction signal. Depending on the sequence the
counter counts up or down, the DIR bit in the TIM1_CR1 register is modified by hardware
accordingly. The DIR bit is calculated at each transition on any input (T11 or TI2), whatever
the counter is counting on TI1 only, TI2 only or both TI1 and TI2.

Encoder interface mode acts simply as an external clock with direction selection. This
means that the counter just counts continuously between 0 and the auto-reload value in the
TIM1_ARR register (0 to ARR or ARR down to 0 depending on the direction). So you must
configure TIM1_ARR before starting. In the same way, the capture, compare, prescaler,
trigger output features continue to work as normal. Encoder mode and External clock mode
2 are not compatible and must not be selected together.

In this mode, the counter is modified automatically following the speed and the direction of
the incremental encoder and its content, therefore, always represents the encoder’s
position. The count direction correspond to the rotation direction of the connected sensor.
The table summarizes the possible combinations, assuming TI1 and TI2 don’t switch at the
same time.

Table 33. Counting direction versus encoder signals

Level on TIHFP1 signal TI2FP2 signal
opposite
Active edge signal (TI1FP1
for TI2,
TI2FP2 for Rising Falling Rising Falling
TI1)
Counting on High Down Up No count No count
TI1 only Low Up Down No count No count
Counting on High No count No count Up Down
TI2 only Low No count No count Down Up
Counting on High Down Up Up Down
Ti1 and TI2 Low Up Down Down Up

An external incremental encoder can be connected directly to the MCU without external
interface logic. However, comparators will normally be used to convert the encoder’s
differential outputs to digital signals. This greatly increases noise immunity. The third
encoder output which indicate the mechanical zero position, may be connected to an
external interrupt input and trigger a counter reset.

The Figure 77 gives an example of counter operation, showing count signal generation and
direction control. It also shows how input jitter is compensated where both edges are

181/430

16-bit advanced control timer (TIM1) RMO0016

182/430

selected. This might occur if the sensor is positioned near to one of the switching points. For
this example we assume that the configuration is the following:

e CC1S=0b01 (TIM1_CCMR1 register, IC1 mapped on TI1).
CC2S = 0b01 (TIM1_CCMR2 register, IC2 mapped on TI2).
CC1P =0 (TIM1_CCER1 register, IC1 non-inverted, IC1=TI1).
CC2P =0 (TIM1_CCER2 register, IC2 non-inverted, IC2=TI2).

SMS = 0b011 (TIM1_SMCR register, both inputs are active on both rising and falling
edges).
® CEN =1 (TIM1_CR1 register, Counter is enabled).

Figure 77. Example of counter operation in encoder interface mode

forward jitter backward jitter forward

mo e T
e [1. [l L

COUNTER

up down up

Figure 78 gives an example of counter behaviour when IC1 polarity is inverted (same
configuration as above except CC1P="1").

Figure 78. Example of encoder interface mode with IC1 polarity inverted

forward jitter backward jitter forward

LS e T e e e e N s IR e N e OO
LIS eI e IR eI e e e O e A e O

COUNTER

down up down

The timer, when configured in Encoder Interface mode provides information on the sensor’s
current position. You can obtain dynamic information (speed, acceleration, decceleration) by
measuring the period between two encoder events using a second timer configured in
capture mode. The output of the encoder which indicates the mechanical zero can be used
for this purpose. Depending on the time between two events, the counter can also be read
at regular times. You can do this by latching the counter value into a third input capture

574

RMO0016

16-bit advanced control timer (TIM1)

17.6

register if available (then the capture signal must be periodic and can be generated by
another timer).

TIM1 interrupts

TIM1 has 8 interrupt request sources, mapped on 2 interrupt vectors:
Break interrupt

Trigger interrupt

Commutation interrupt

Capture/Compare 4 interrupt

Capture/Compare 3 interrupt

Capture/Compare 2 interrupt

Capture/Compare 1 interrupt

Update Interrupt (ex: overflow, underflow, counter initialization)

To use the interrupt features, for each interrupt channel used, set the desired “Interrupt
Enable” bit: BIE, TIE, COMIE, CCIlE, UIE bits in the TIM1_IER register to enable interrupt
requests.

The different interrupt sources can be also generated by software using the corresponding
bits in the TIM1_EGR register.

183/430

16-bit advanced control timer (TIM1) RMO0016

17.7 TIM1 registers

17.71 Control register 1 (TIM1_CR1)
Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0
ARPE CMSJ[1:0] DIR OPM URS UDIS CEN
w w w w rw w rw rw

Bit 7 ARPE: Auto-reload preload enable

0: TIM1_ARR register is not buffered through a preload register. It can be written directly.
1: TIM1_ARR register is buffered through a preload register.

Bits 6:5 CMS[1:0]: Center-aligned mode selection
00: Edge-aligned mode. The counter counts up or down depending on the direction bit (DIR).
01: Center-aligned mode 1. The counter counts up and down alternately. Output compare interrupt
flags of channels configured in output (CCiS=00 in TIM1_CCMRX register) are set only when the
counter is counting down.
10: Center-aligned mode 2. The counter counts up and down alternately. Output compare interrupt
flags of channels configured in output (CCiS=00 in TIM1_CCMRXx register) are set only when the
counter is counting up.
11: Center-aligned mode 3. The counter counts up and down alternately. Output compare interrupt
flags of channels configured in output (CCiS=00 in TIM1_CCMRX register) are set both when the
counter is counting up and down.

® Itis not allowed to switch from edge-aligned mode to center-aligned mode as long as the counter
is enabled (CEN=1)

® Encoder mode (SMS=001, 010 or 011 in TIM1_SMCR register) must be disabled in center-
aligned mode.
Bit 4 DIR: Direction
0: Counter used as up-counter.
1: Counter used as down-counter.
Note: This bit is read-only when the timer is configured in Center-aligned mode or Encoder mode.

Bit 3 OPM: One pulse mode
0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the CEN bit).

Bit 2 URS: Update request source

0: When enabled by the UDIS bit, the UIF bit is set and an update interrupt request is sent when one
of the following events occurs:

- Registers are updated (counter overflow/underflow)
— UG bit is set by software
— Update event is generated through the clock/trigger controller

1: When enabled by the UDIS bit, the UIF bit is set and an update interrupt request is sent only
when:

- Registers are updated (counter overflow/underflow)

184/430 Ky_’

RMO0016

16-bit advanced control timer (TIM1)

Bit 1 UDIS: Update disable.

0: An Update event is generated as soon as a counter overflow occurs or a software update is
generated or an hardware reset is generated by the clock/trigger mode controller. Buffered registers
are then loaded with their preload values

1: An Update event is not generated, shadow registers keep their value (ARR, PSC, CCRx). The
counter and the prescaler are re initialized if the UG bit is set or if an hardware reset is received from
the clock/trigger mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

Note: External clock, trigger gated mode and encoder mode can work only if the CEN bit has been
previously set by software. However trigger mode can set the CEN bit automatically by

hardware.
17.7.2 Control register 2 (TIM1_CR2)
Address offset: 0x01
Reset value: 0x00
7 6 5 4 3 2 1 0
TS MMS[2:0] COMS ccPC
Reserved Reserved
rw rw rw rw rw rw

Bit 7 THS: TI1 selection.

0: TI1 (input of the digital filter) is connected to CC1 input pin.
1: TI1 is connected to the 3 inputs CC1, CC2, CC3 (XOR combination)

Bits 6:4 MMS[2:0]: Master mode selection

These bits select the information to be sent in master mode to the ADC or to the other timers for
synchronization (TRGO). The combination is as follows:

000: Reset - the UG bit from the TIM1_EGR register is used as trigger output (TRGO). If the reset is
generated by the trigger input (clock/trigger mode controller configured in reset mode) then the
signal on TRGO is delayed compared to the actual reset.

001: Enable - the Counter Enable signal is used as trigger output (TRGO). It is used to start several
timers or the ADC to control a window in which a slave timer or the ADC is enabled. The Counter
Enable signal is generated by a logic OR between CEN control bit and the trigger input when
configured in trigger gated mode. When the Counter Enable signal is controlled by the trigger input,
there is a delay on TRGO, except if the master/slave mode is selected (see the MSM bit description
in TIM1_SMCR register).

010: Update - The update event is selected as trigger output (TRGO).

011: Compare Pulse (MATCH1) - The trigger output send a positive pulse when the CC1IF flag is to
be set (even if it was already high), as soon as a capture or a compare match occurred (TRGO).
100: Compare - OC1REF signal is used as trigger output (TRGO).

101: Compare - OC2REF signal is used as trigger output (TRGO).

110: Compare - OC3REF signal is used as trigger output (TRGO).

111: Compare - OC4REF signal is used as trigger output (TRGO).

Bit 3 Reserved, must be kept cleared.

185/430

16-bit advanced control timer (TIM1) RMO0016

Bit 2 COMS: Capture/compare control update selection
0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting only the
COMG bit.
1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting the
COMG bit or when an rising edge occurs on TRGI.

Note: This bit acts only on channels with complementary outputs.
Bit 1 Reserved, forced by hardware to 0.

Bit 0 CCPC: Capture/compare preloaded control

0: The CCJE, CCINE, CC/P, CCINP bits in the TIM1_CCERX register and the OCM bit in the
TIM1_CCMRX register are not preloaded

1: CC/E, CCINE , CC/P, CC/INP and OCiM bits are preloaded, after having been written, they are
updated only when COMG bit is set in the TIM1_EGR register.

Note: This bit acts only on channels with complementary outputs.

186/430 Ky_’

RMO0016

16-bit advanced control timer (TIM1)

17.7.3 Slave mode control register (TIM1_SMCR)
Address offset: 0x02
Reset value: 0x00
7 6 5 4 3 2 1 0
MSM TS[2:0] Reserved SMS[2:0]
w w w w w rw w

Bit 7 MSM: Master/slave mode

0: No action

1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization
between TIM1 and another timer (through TRGO).

Bits 6:4 TS[2:0]: Trigger selection

This bit-field selects the trigger input (TRGI) to be used to synchronize the counter.
000: internal trigger ITRO connected to TIM6 TRGO

001: reserved

010: internal trigger ITR2 connected to TIM5 TRGO

011: reserved

100: TI1 Edge Detector (TI1F_ED)

101: Filtered Timer Input 1 (TI1FP1)

110: Filtered Timer Input 2 (TI2FP2)

111: External Trigger input (ETRF)

Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong
edge detections at the transition.

Bit 3 Reserved, always read as 0.

Bits 2:0 SMS[2:0]: Clock/trigger/slave mode selection

When external signals are selected the active edge of the trigger signal (TRGI) is linked to the

polarity selected on the external input (see Input Control register and Control Register description).

000: Clock/trigger controller disabled- if CEN = ‘1’ then the prescaler is clocked directly by the

internal clock.

001: Encoder mode 1 - Counter counts up or down on TI2FP2 edge depending on TI1FP1 level.

010: Encoder mode 2 - Counter counts up or down on TI1FP1 edge depending on TI2FP2 level.

011: Encoder mode 3 - Counter counts up or down on both TI1FP1 and TI2FP2 edges depending on

the level of the other input.

100: Reset Mode - Rising edge of the selected trigger signal (TRGI) re-initializes the counter and

generates an update of the registers.

101: Trigger gated Mode - The counter clock is enabled when the trigger signal (TRGI) is high. The

counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the

counter are controlled.

110: Trigger standard Mode - The counter starts at a rising edge of the trigger TRGI (but it is not

reset). Only the start of the counter is controlled.

111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

Note: Trigger gated mode must not be used if TITF_ED is selected as the trigger input (TS="100’).

Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the trigger gated mode
checks the level of the trigger signal.

187/430

16-bit advanced control timer (TIM1)

RMO0016
17.7.4 External trigger register (TIM1_ETR)
Address offset: 0x03
Reset value: 0x00
7 6 4 3 1 0
ETP ECE ETPS[1:0] ETF[3:0]
rw rw rw rw rw rw

Bit 7 ETP: External Trigger Polarity.

This bit selects whether ETR or ETR is used for trigger operations
0: ETR is non-inverted, active at high level or rising edge.
1: ETR is inverted, active at low level or falling edge.

Bit 6 ECE: External Clock Enable.

This bit enables External clock mode 2.

0: External clock mode 2 disabled.
1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF signal.
@ Setting the ECE bit has the same effect as selecting the external clock mode 1 with TRGI

connected to ETRF (SMS=111 and TS=111 in the TIM1_SMCR register).

® ltis possible to use simultaneously the external clock mode 2 with the following modes: trigger
standard mode, trigger reset mode and trigger gated mode. Nevertheless, TRGI must not be

connected to ETRF in this case (TS bits must not be 111 in TIM1_SMCR register).

) If external clock mode 1 and external clock mode 2 are enabled at the same time, the external
clock input will be ETRF.

Bits 5:4 ETPS: External trigger prescaler
External trigger signal ETRP frequency must be at most1/4 of fyasTeR frequency. A prescaler can

188/430

be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks.
00: Prescaler OFF

01: ETRP frequency divided by 2
10: ETRP frequency divided by 4
11: ETRP frequency divided by 8

RMO0016

16-bit advanced control timer (TIM1)

Bits 3:0 ETF: External Trigger Filter.

This bit-field defines the frequency used to sample ETRP signal and the length of the digital filter
applied to ETRP. The digital filter is made of an event counter in which N events are needed to
validate a transition on the output:

0000:

0001:
0010:
0011:
0100:
0101:
0110:
0111:
1000:
1001:
1010:
1011:
1100:
1101:
1110:
1111:

No filter, sampling is done at f\yasTER-

fsampLINnG=fmASTER, N=2.
fsampLING=fmASTER, N=4.
fsampLING=fmASTER, N=8.
fsampLiNG=fmAsTER/2, N=6.
fsampLING=fmAsTER/2, N=8.
fsampLiNG=fmAsTER/4, N=6.
fsampLiNG=fmAsTER/4, N=8.
fsampLING=fmASTER/8, N=6.
fsampLING=fmASTER/8, N=8.

fsampLING=fmMASTER/16, N=5.
fsampLING=fmASTER/16, N=6.
fsampLING=fmMASTER/16, N=8.
fsampLING=fmASTER/32, N=5.
fsampLING=fmASTER/32, N=6.
fsampLING=fmASTER/32, N=8.

189/430

16-bit advanced control timer (TIM1)

RMO0016

17.7.5

Interrupt enable register (TIM1_IER)
Address offset: 0x04

Reset value: 0x00

BIE

TIE COMIE CC4lE CC3IE CC2IE

CC1IE

UIE

rw

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

190/430

BIE: Break interrupt enable
0: Break interrupt disabled.
1: Break interrupt enabled.

TIE: Trigger interrupt enable
0: Trigger Interrupt disabled.
1: Trigger Interrupt enabled.

COMIE: Commutation interrupt enable
0: Commutation interrupt disabled.
1: Commutation interrupt enabled.

CCA4IE: Capture/compare 4 interrupt enable
0: CC4 interrupt disabled.
1: CC4 interrupt enabled.

CC3IE: Capture/compare 3 interrupt enable
0: CC3 interrupt disabled.
1: CCS8 interrupt enabled.

CC2IE: Capture/compare 2 interrupt enable
0: CC2 interrupt disabled.
1: CC2 interrupt enabled.

CCH1IE: Capture/compare 1 interrupt enable

0: CC1 interrupt disabled.
1: CC1 interrupt enabled.

UIE: Update interrupt enable
0: Update interrupt disabled.
1: Update interrupt enabled.

RMO0016

16-bit advanced control timer (TIM1)

17.7.6

Status register 1 (TIM1_SR1)

Address offset: 0x05
Reset Value: 0x00

BIF

TIF COMIF CC4lF CC3IF CC2IF CC1IF UIF

rc_w0

rc_w0 rc_w0 rc_w0 rc_w0 rc_wo0 rc_wo0 rc_wo0

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

BIF: Break Interrupt Flag.

This flag is set by hardware as soon as the break input goes active. It can be cleared by software if
the break input is not active.

0: No break event occurred.
1: An active level has been detected on the break input.

TIF: Trigger Interrupt Flag.
This flag is set by hardware on trigger event (active edge detected on TRGI signal, both edges in
case trigger gated mode is selected). It is cleared by software.
0: No trigger event occurred.
1: Trigger interrupt pending.
COMIF: Commutation Interrupt Flag.

This flag is set by hardware on a Commutation event (COM) (when Capture/compare Control bits -
CCJE, CCINE, OCM - have been updated). It is cleared by software.

0: No Commutation event (COM) occurred.

1: Commutation event (COM) interrupt pending.

CCA4IF: Capture/Compare 4 Interrupt Flag.
Refer to CC1IF description

CC3IF: Capture/Compare 3 Interrupt Flag.
Refer to CC1IF description

CC2IF: Capture/Compare 2 Interrupt Flag.
Refer to CC1IF description

191/430

16-bit advanced control timer (TIM1) RMO0016

Bit 1 CC1IF: Capture/Compare 1 Interrupt Flag.
® If channel CC1 is configured as output:

This flag is set by hardware when the counter matches the compare value, with some exception in

center-aligned mode (refer to the CMS bits from TIM1_CR1 register description). It is cleared by
software.

0: No match.
1: The content of the counter TIM1_CNT has matched the content of the TIM1_CCR1 register.

Note: In center-aligned mode, the counter is considered to count up when its value is 0 and to count
down when it is equal to the ARR value (it counts up from 0 to ARR-1 and from ARR down to
1). Thus, these 2 values are not flagged for all values of the CMS bits. However, CC1IF is set

when CNT reaches the ARR value when the compare value is greater than the auto-reload
value (CCR1>ARR).

® If channel CC1 is configured as input:

This bit is set by hardware on a capture. It is cleared by software or by reading the TIM1_CCR1L
register.

0: No input capture occurred.

1: The counter value has been captured in the TIM1_CCR1 register (An edge has been detected on
IC1 which matches the selected polarity).

Bit 0 UIF: Update Interrupt Flag.

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.

1: Update interrupt pending. This bit is set by hardware when the registers are updated:
— At overflow or underflow if UDIS=0 in the TIM1_CR1 register.

— When CNT is re-initialized by software using the UG bit in TIM1_EGR register, if URS=0
and UDIS=0 in the TIM1_CRH1 register.

When CNT is re-initialized by a trigger event (refer to the TIM1_SMCR register description),
if URS=0 and UDIS=0 in the TIM1_CR1 register.

17.7.7 Status register 2 (TIM1_SR2)
Address offset: 0x06
Reset Value: 0x00

7 6 5 4 3 2 1 0
CC40F CC30F CC20F CC10F
Reserved Reserved
rc_w0 rc_w0 rc_w0 rc_w0
CC30F CC20F CC10F
Reserved Reserved
rc_w0 rc_w0 rc_w0

Bits 7:5 Reserved, must be kept cleared.

Bit 4 CCA4OF: Capture/Compare 4 Overcapture Flag.
Refer to CC10F description

Bit 3 CC3O0F: Capture/Compare 3 Overcapture Flag.
Refer to CC10F description

192/430 Ky_’

RMO0016

16-bit advanced control timer (TIM1)

Bit 2

Bit 1

Bit 0

17.7.8

CC20F: Capture/Compare 2 Overcapture Flag.
Refer to CC10F description

CC10F: Capture/compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input capture
mode. It is cleared by software by writing it to ‘0’.

0: No overcapture has been detected.
1: The counter value has been captured in TIM1_CCR1 register while CC1IF flag was already set

Reserved, must be kept cleared.

Event generation register (TIM1_EGR)
Address offset: 0x07

Reset value: 0x00

BG

TG COMG CC4G CC3G CcC2G CC1G UG

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

BG: Break generation
This bit is set by software in order to generate an event, it is automatically cleared by hardware.
0: No action.
1: A break event is generated. MOE bit is cleared and BIF flag is set. An interrupt is generated if
enabled by the BIE bit.

TG: Trigger generation
This bit is set by software in order to generate an event, it is automatically cleared by hardware.
0: No action.
1: The TIF flag is set in TIM1_SR1 register. An interrupt is generated if enabled by the TIE bit.

COMG: Capture/compare control update generation
This bit can be set by software, it is automatically cleared by hardware
0: No action

1: When the CCPC bit in the TIM1_CR2 register is set, it allows to update CC/E, CC/INE CC/P,
CCINP and OCM bits

Note: This bit acts only on channels that have a complementary output.

CCA4G: Capture/compare 4 generation
Refer to CC1G description

CC3G: Capture/compare 3 generation
Refer to CC1G description

CC2G: Capture/compare 2 generation
refer to CC1G description

193/430

16-bit advanced control timer (TIM1) RMO0016

Bit 1 CC1G: Capture/Compare 1 Generation.
This bit is set by software in order to generate an event, it is automatically cleared by hardware.
0: No action.
1: A capture/compare event is generated on channel 1:
® If the CC1 channel is configured in output mode:
— CCI1IF flag is set, and the corresponding interrupt request is sent if enabled.
® If the CC1 channel configured in input mode:

— The current value of the counter is captured in the TIM1_CCR1 register. The CC1IF flag is
set, and the corresponding interrupt request is sent if enabled. The CC10F flag is set if the
CCI1IF flag was already high.

Bit 0 UG: Update Generation.
This bit can be set by software, it is automatically cleared by hardware.
0: No action.
1: Re-initializes the counter and generates an update of the registers. Note that the prescaler
counter is also cleared. The counter is cleared if the center-aligned mode is selected or if DIR=0 (up-
counting), else it takes the auto-reload value (TIM1_ARR) if DIR=1 (down-counting).

194/430 Ky_’

RMO0016

16-bit advanced control timer (TIM1)

17.7.9 Capture/compare mode register 1 (TIM1_CCMR1)

Address offset: 0x08
Reset value: 0x00
The channel can be used in input (capture mode) or in output (compare mode). The
direction of the channel is defined by configuring the CC1S bits. All the other bits of this
register have a different function in input and in output mode. For a given bit, OCxx
describes its function when the channel is configured in output, ICxx describes its function
when the channel is configured in input. So be aware that the same bit can have a different
meaning for the input stage and for the output stage.
e Channel configured in output

7 6 5 4 3 2 1 0

OC1CE OC1M[2:0] OC1PE OC1FE CC18[1:0]
rw rw w rw w w rw rw

Bit 7 OC1CE: Output Compare 1 Clear Enable.

This bit is used to enable the clearing of the channel 1 output compare signal (OC1REF) by an
external event on the TIM1_TRIG pin. See Section 17.5.9 on page 180.

0: OC1REF is not affected by the ETRF input signal (derived from the TIM1_TRIG pin).

1: OC1REF is cleared as soon as a high level is detected on ETRF input signal (derived from the
TIM1_TRIG pin).

Bits 6:4 OC1M: Output Compare 1 Mode.

These bits define the behavior of the output reference signal OC1REF from which OC1 is derived.
OC1REF is active high whereas OC1 active level depends on the CC1P bit.

000: Frozen - The comparison between the output compare register TIM1_CCR1 and the counter
TIM1_CNT has no effect on the outputs.

001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter
TIM1_CNT matches the capture/compare register 1 (TIM1_CCR1).

010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter
TIM1_CNT matches the capture/compare register 1 (TIM1_CCR1).

011: Toggle - OC1REF toggles when TIM1_CNT=TIM1_CCR1.

100: Force inactive level - OC1REF is forced low.

101: Force active level - OC1REF is forced high.

110: PWM mode 1 - In up-counting, channel 1 is active as long as TIM1_CNT<TIM1_CCR1 else

inactive. In down-counting, channel 1 is inactive (OC1REF='0") as long as TIM1_CNT>TIM1_CCR1
else active (OC1REF="1").
111: PWM mode 2 - In up-counting, channel 1 is inactive as long as TIM1_CNT<TIM1_CCR1 else
active. In down-counting, channel 1 is active as long as TIM1_CNT>TIM1_CCR1 else inactive.
® These bits can no longer be modified as long as LOCK level 3 has been programmed (LOCK bits
in TIM1_BKR register) and CC1S="00" (the channel is configured in output).
® In PWMmode 1 or 2, the OCIiREF level changes only when the result of the comparison changes
or when the output compare mode switches from “frozen” mode to “PWM” mode. Refer to PWM
mode on page 171 for more details.
® On channels that have a complementary output, this bit field is preloaded. If the CCPC bit is set
in the TIM1_CR2 register then the OCM active bits take the new value from the preload bits only
when a commutation event (COM) is generated.

195/430

16-bit advanced control timer (TIM1) RMO0016

Bit 3 OC1PE: Output Compare 1 Preload Enable.

0: Preload register on TIM1_CCR1 disabled. TIM1_CCR1 can be written at anytime, the new value
is taken in account immediately.

1: Preload register on TIM1_CCR1 enabled. Read/Write operations access the preload register.
TIM1_CCRH1 preload value is loaded in the shadow register at each update event.

® These bits can no longer be modified as long as LOCK level 3 has been programmed (LOCK bits
in TIM1_BKR register) and CC1S="00’ (the channel is configured in output).

® For correct operation, preload registers must be enabled when the timer is in PWM mode. This is
not mandatory in one pulse mode (OPM bit set in TIM1_CR1 register).

Bit2 OC1FE: Output Compare 1 Fast Enable.

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.

0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The
minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles.

1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is set to
the compare level independently from the result of the comparison. Delay to sample the trigger input
and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if the channel is configured
in PWM1 or PWM2 mode.

Bits 1:0 CC1S[1:0]: Capture/Compare 1 Selection.

196/430

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.

01: CC1 channel is configured as input, IC1 is mapped on TI1FP1.

10: CC1 channel is configured as input, IC1 is mapped on TI2FP1.

11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode works only if an internal
trigger input is selected through the TS bit (TIM1_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E =0’ in TIM1_CCER1).

RMO

016 16-bit advanced control timer (TIM1)

e Channel configured in input

IC1F[3:0] IC1PSCI[1:0] CC1S[1:0]

Bits 7:4 IC1F[3:0]: Input Capture 1 Filter.

This bit-field defines fgampLing, the frequency used to sample TI1 input and the length of the digital

filter applied to TI1. The digital filter is made of an event counter in which N events are needed to
validate a transition on the output:

0000: No filter, fsapmpLing= fMASTER:
0001: fsampLING=fMASTER: N=2.
0010: fsampLiNG=fmMASTER: N=4.
0011: fsampLiNG=fmMASTER: N=8.
0100: fsampLING=fmASTER/2, N=6.
0101: fsampLING=fmASTER/2, N=8.
0110: fsampLING=fmAsTER/4: N=6.
0111: fsampLING=fmMASTER/4: N=8.
1000: fsampLing=fmASTER/S, N=6.
1001: fsampLING=fmASTER/8, N=8.
1010: fsampLNG=fmASTER/16, N=5.
1011: fsampLng=fmasTER/16, N=6.
1100: fsampLNnG=fmasTER/ 16, N=8.
1101 fsampLing=fmASTER/32, N=5.
1110: fsampLNG=fmASTER/32, N=6.

1111: fsampLing=fMASTER/32, N=8.

Note: Even on channels that have a complementary output, this bit field is not preloaded and does
not take into account the content of the CCPC bit (in the TIM1_CR2 register).

Bits 3:2 IC1PSC[1:0]: Input Capture 1 Prescaler.

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).

The prescaler is reset as soon as CC1E='0’ (TIM1_CCER register).

00: no prescaler, capture is done each time an edge is detected on the capture input.
01: capture is done once every 2 events.

10: capture is done once every 4 events.

11: capture is done once every 8 events.

Bits 1:0 CC1S[1:0]: Capture/Compare 1 Selection.

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.

01: CC1 channel is configured as input, IC1 is mapped on TI1FP1.

10: CC1 channel is configured as input, IC1 is mapped on TI2FP1.

11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode works only if an internal
trigger input is selected through the TS bit (TIM1_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E =0’ in TIM1_CCER1).

197/430

16-bit advanced control timer (TIM1)

RMO0016

17.7.10 Capture/compare mode register 2 (TIM1_CCMR2)
Address offset: 0x09
Reset value: 0x00
e Channel configured in output
7 6 5 4 3 2 1 0
OC2CE 0C2M[2:0] OC2PE OC2FE CC25[1:0]
rw rw w rw w w rw rw
Bit 7 OC2CE: Output Compare 2 Clear Enable.
Bits 6:4 OC2M(2:0]: Output Compare 2 Mode.
Bit 3 OC2PE: Output Compare 2 Preload Enable.
Bit 2 OC2FE: Output Compare 2 Fast Enable.
Bits 1:0 CC2S[1:0]: Capture/Compare 2 Selection.
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output.
01: CC2 channel is configured as input, IC2 is mapped on TI2FP2.
10: CC2 channel is configured as input, IC2 is mapped on TI1FP2.
11: Reserved
Note: CC2S bits are writable only when the channel is OFF (CC2E and CC2NE="0" in TIM1_CCER1
and updated).
e Channel configured in input
7 6 5 4 3 2 1 0
IC2F[3:0] IC2PSCI[1:0] CC25[1:0]
rw rw w w rw w rw rw
Bits 7:4 IC2F: Input Capture 2 Filter.
Bits 3:2 1C2PSC(1:0]: Input Capture 2 Prescaler.
Bits 1:0 CC2S[1:0]: Capture/Compare 2 Selection.
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output.
01: CC2 channel is configured as input, IC2 is mapped on TI2FP2.
10: CC2 channel is configured as input, IC2 is mapped on TI1FP2.
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an internal
trigger input is selected through the TS bit (TIM1_SMCR register)
Note: CC2S bits are writable only when the channel is OFF (CC2E and CC2NE="0" in TIM1_CCER1
and updated).
198/430 17

RMO0016 16-bit advanced control timer (TIM1)
17.7.11 Capture/compare mode register 3 (TIM1_CCMR3)
Address offset: Ox0A
Reset value: 0x00
Refer to the above CCMR1 register description.
e Channel configured in output
7 6 5 4 3 2 1 0
OC3CE OC3M[2:0] OC3PE OC3FE CC3S[1:0]
w w w w w w w w
Bit 7 OC3CE: Output Compare 3 clear enable
Bits 6:4 OC3M[2:0]: Output Compare 3 mode
Bit 3 OC3PE: Output Compare 3 preload enable
Bit2 OC3FE: Output Compare 3 fast enable
Bits 1:0 CC3S[1:0]: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC3 channel is configured as output.

01: CC3 channel is configured as input, IC3 is mapped on TI3FP3.
10: CC3 channel is configured as input, IC3 is mapped on TI4FP3.

11: Reserved

Note: CCS3S bits are writable only when the channel is OFF (CC3E and CC3NE= "0’ in TIM1_CCER2

and updated).

199/430

16-bit advanced control timer (TIM1)

RMO0016

e Channel configured in input
7 6 5 4 3 2

IC3F[3:0] IC3PSCI[1:0]

CC3S[1:0]

rw

Bits 7:4 IC3F: Input Capture 3 Filter.
Bits 3:2 IC3PSC[1:0]: Input Capture 3 Prescaler.
Bits 1:0 CC3S[1:0]: Capture/Compare 3 Selection.

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC3 channel is configured as output.

01: CC3 channel is configured as input, IC3 is mapped on TI3FP3.
10: CC3 channel is configured as input, IC3 is mapped on TI4FP3.

11: Reserved

Note: CCS3S bits are writable only when the channel is OFF (CC3E and CC3NE= "0’ in TIM1_CCER2

and updated).

200/430

RMO0016

16-bit advanced control timer (TIM1)

17.7.12 Capture/compare mode register 4 (TIM1_CCMR4)
Address offset: 0x0B
Reset value: 0x00
Refer to the above CCMR1 register description.
e Channel configured in output
7 6 5 4 3 2 1 0
OC4CE OC4M[2:0] OC4PE OC4FE CC4S[1:0]
rw rw w rw w w rw rw
Bit 7 OCA4CE: Output Compare 4 Clear Enable.
Bits 6:4 OC4M[2:0]: Output Compare 4 Mode.
Bit 3 OC4PE: Output Compare 4 Preload Enable.
Bit 2 OC4FE: Output Compare 4 Fast Enable.
Bits 1:0 CC4S[1:0]: Capture/Compare 4 Selection.
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output.
01: CC4 channel is configured as input, IC4 is mapped on TI3FP4.
10: CC4 channel is configured as input, IC4 is mapped on TI4FP4.
11: Reserved
Note: CCA4S bits are writable only when the channel is OFF (CC4E and CC4NE= "0’ in TIM1_CCERZ2
and updated).
Ays

201/430

16-bit advanced control timer (TIM1)

RMO0016

e Channel configured in input
7 6 5 4 3 2 1 0
IC4F[3:0] IC4PSC[1:0] CC4S[1:0]
rw rw w rw w w rw rw
Bits 7:4 1C4F: Input Capture 4 Filter.
Bits 3:2 IC4PSC[1:0]: Input Capture 4 Prescaler.
Bits 1:0 CC4S[1:0]: Capture/Compare 4 Selection.
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output.
01: CC4 channel is configured as input, IC4 is mapped on TI3FP4.
10: CC4 channel is configured as input, IC4 is mapped on TI1FP4.
11: Reserved
Note: CC4S bits are writable only when the channel is OFF (CC4E and CC4NE= "0’ in TIM1_CCER2
and updated).
17.7.13 Capture/compare enable register 1 (TIM1_CCER1)
Address offset: 0x0C
Reset value: 0x00
7 6 5 4 3 2 1 0
CC2NP CC2NE CC2P CC2E CC1NP CC1NE CC1P CC1E
rw rw w rw rw rw rw rw
Bit 7 CC2NP: Capture/Compare 2 Complementary output polarity
Refer to CC1NP description
Bit 6 CC2NE: Capture/Compare 2 Complementary output enable
Refer to CC1NE description
Bit 5 CC2P: Capture/Compare 2 output polarity
Refer to CC1P description
Bit 4 CC2E: Capture/Compare 2 output enable
Refer to CC1E description
Bit 3 CC1NP: Capture/Compare 1 Complementary output polarity
0: OC1N active high.
1: OC1N active low.
® This bit is no longer writeable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in
TIM1_BKR register) and CC1S="00" (the channel is configured in output).
® Onchannels that have a complementary output, this bit is preloaded. If the CCPC bit is set in the
TIM1_CR2 register then the CC1NP active bit takes the new value from the preload bit only when
a commutation event (COM) is generated.
202/430 17

RMO0016 16-bit advanced control timer (TIM1)

Bit2 CC1NE: Capture/Compare 1 Complementary output Enable.

0: Off - OC1N is not active. OC1N level is then function of MOE, OSSI, OSSR, OIS1, OIS1N and
CCA1E bits.

1: On - OC1N signal is output on the corresponding output pin depending on MOE, OSSI, OSSR,
OIS1, OIS1N and CC1E bits.

Note: On channels that have a complementary output, this bit is preloaded. If the CCPC bit is set in
the TIM1_CR2 register then the CC1NE active bit takes the new value from the preload bit only
when a commutation event (COM) is generated.

Bit 1 CC1P: Capture/Compare 1 output Polarity.

® CC1 channel configured as output:
0 : OC1 active high
1: OC1 active low

® CC1 channel configured as input for trigger function (see Figure 61):
0 : Trigger on a high level or rising edge of TI1F
1 : Trigger on a low level or falling edge of TIHF

® CC1 channel configured as input for capture function (see Figure 61):
0 : Capture on a rising edge of TI1F or TI2F
1 : Capture on a falling edge of TI1F or TI2F

— This bit is no longer writable as soon as LOCK level 2 or 3 has been programmed (LOCK
bits in TIM1_BKR register).

— On channels that have a complementary output, this bit is preloaded. If the CCPC bit is set
in the TIM1_CR2 register then the CC1P active bit takes the new value from the preload bit
only when a commutation event (COM) is generated.

Bit 0 CC1E: Capture/Compare 1 output Enable.
® CC1 channel is configured as output:

0: Off - OC1 is not active. OC1 level is then function of MOE, OSSI, OSSR, OIS1, OIS1N and
CC1NE bits.

1: On - OC1 signal is output on the corresponding output pin depending on MOE, OSSI, OSSR,
OIS1, OIS1N and CC1NE bits.

® CC1 channel is configured as input:

This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIM1_CCR1) or not.

0: Capture disabled.

1: Capture enabled.

Note: On channels that have a complementary output, this bit is preloaded. If the CCPC bit is set in
the TIM1_CRz2 register then the CC1E active bit takes the new value from the preload bit only
when a commutation event (COM) is generated.

Ky_l 203/430

16-bit advanced control timer (TIM1)

RMO0016

Table 34. Output control for complementary OCiand OCIN channels with break feature
Control bits Output states
MOE bit | OSSI bit OﬁﬁR CCiE bit C%'iTt\lE OCi output state OCIiN output state
Output Disabled (not driven by | Output Disabled (not driven by
0 0 0 . !
the timer) the timer)
0 0 1 Output Disabled (not driven by | OCIREF + Polarity
the timer) OCiN=0OCIiREF xor CCiNP
0 1 0 OCIREF + Polarity Output Disabled (not driven by
OCi=0OCiREF xor CCiP the timer)
. . Complementary to OCiREF
0 1 1 |OCIREF + Polarity + dead- | o 5CiREF) + Polarity +
time .
dead-time
1 X 1 0 0 Output Disabled (not driven by | Output Disabled (not driven by
the timer) the timer)
fo-State (output enabled with OCIREF + Polarity
1 0 1 inactive state) OCIN—OGIREF CCINP
OCi=CCiP I=ARER Xor Lt
OCIREF + Polarity fo-State (output enabled with
1 1 0 OCi—OCIREE coip inactive state)
I=DLIRER Xor L OCiN=CCiNP
. . Complementary to OCiREF
1 1 1 |OCIREF + Polarity + dead- | o 5GIREF) + Polarity +
time .
dead-time
0
0
0 Output Disabled (not driven by the timer)
0
0 X X X
1 Off-State (output enabled with inactive state)
1 Asynchronously: OCi=CCiP, OCiN=CCiNP
] Then if the clock is present: OCi=OISi and OCiN=OISiN after a
dead-time, assuming that OISi and OISiN don’t correspond to
1 OCi and OCiN both to active state
Note: The state of the external I/O pins connected to the OCi channels depends on the OCi

204/430

channel state and the GPIO registers.

RMO0016 16-bit advanced control timer (TIM1)

17.7.14 Capture/compare enable register 2 (TIM1_CCER2)
Address offset: 0x0D

Reset value: 0x00

7 6 5 4 3 2 1 0
CC4P CC4E CC3NP CC3NE CC3P CC3E
Reserved
rw w rw rw rw w

Bits 7:6 Reserved

Bit 5 CCA4P: Capture/Compare 4 output polarity.
Refer to CC1P description

Bit 4 CCA4E: Capture/Compare 4 output enable.
Refer to CC1E description

Bit 3 CC3NP: Capture/Compare 3 Complementary output polarity.
Refer to CC1NP description

Bit 2 CC3NE: Capture/Compare 3 Complementary output Enable.
Refer to CC1NE description

Bit 1 CC3P: Capture/Compare 3 output polarity.
Refer to CC1P description

Bit 0 CC3E: Capture/Compare 3 output Enable.
Refer to CC1E description
17.7.15 Counter high (TIM1_CNTRH)
Address offset: OxOE

Reset value: 0x00

CNT[15:8]

Bits 7:0 CNT[15:8]: Counter value (MSB).

Ky_l 205/430

16-bit advanced control timer (TIM1) RMO0016
17.7.16 Counter low (TIM1_CNTRL)
Address offset: OxOF
Reset value: 0x00
7 6 5 4 3 2 1 0
CNT[7:0]
rw rw w rw rw rw rw rw
Bits 7:0 CNT[7:0]: Counter Value (LSB).
17.7.17 Prescaler high (TIM1_PSCRH)
Address offset: 0x10
Reset value: 0x00
7 6 5 4 3 2 1 0
PSC[15:8]
rw rw w rw rw rw rw rw
PSC[15:8]: Prescaler value (MSB).
The prescaler value divides the CK_PSC clock frequency.
The counter clock frequency fCK_CNT is equal to fCK_PSC / (PSCR[15:0]+1).

Bits 70 PSCR contain the value which will be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIM1_EGR register or through trigger
controller when configured in trigger reset mode). This means that an update event must be generated
in order that a new prescaler value can be taken into account.

17.7.18 Prescaler low (TIM1_PSCRL)
Address offset: Ox11
Reset value: 0x00
7 6 5 4 3 2 1 0
PSC[7:0]
w rw rw rw rw rw rw rw
Bits 7:0 PSC[7:0]: Prescaler value (LSB).
The prescaler value divides the CK_PSC clock frequency.
The counter clock frequency fck cnr is equal to fok psc / (PSCR[15:0]+1).
PSCR contain the value which will be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIM1_EGR register or through trigger
controller when configured in trigger reset mode).
This means that an update event must be generated in order that a new prescaler value can be
taken into account.
206/430 17

RMO0016 16-bit advanced control timer (TIM1)

17.7.19 Auto-reload register high (TIM1_ARRH)
Address offset: 0x12

Reset value: OxFF

ARR[15:8]

Bits 7:0 ARR[15:8]: Autoreload value (MSB).
ARR is the value to be loaded in the actual auto-reload register.

Refer to the Section 17.3: TIM1 time base unit on page 140 for more details about ARR update and
behavior.

The counter is blocked while the auto-reload value is null.

17.7.20 Auto-reload register low (TIM1_ARRL)
Address offset: 0x13

Reset value: OxFF

ARR[7:0]

Bits 7:0 ARR[7:0]: Autoreload value (LSB).

17.7.21 Repetition counter register (TIM1_RCR)
Address offset: 0x14

Reset value: OxFF

REP][7:0]

Bits 7:0 REP[7:0]: Repetition counter value.

These bits allow the user to set-up the update rate of the compare registers (i.e. periodic transfers
from preload to shadow registers) when preload registers are enabled, as well as the update
interrupt generation rate if this interrupt is enabled.

Each time the REP_CNT related down-counter reaches zero, an update event is generated and it
restarts counting from REP value. As REP_CNT is reloaded with REP value only at the repetition

update event U_RC, any write to the TIM1_RCR register will not be taken in account until the next
repetition update event.

It means in PWM mode (REP+1) corresponds to:
— the number of PWM periods in edge-aligned mode
— the number of half PWM periods in center-aligned mode.

207/430

16-bit advanced control timer (TIM1)

RMO0016

17.7.22 Capture/compare register 1 high (TIM1_CCR1H)
Address offset: 0x15
Reset value: 0x00
7 6 5 4 3 2 1 0
CCR1[15:8]

Bits 7:0 CCR1[15:8]: Capture/compare 1 value (MSB).

® If the CC1 channel is configured as output (CC1S bits in TIM1_CCMR1 register):
CCRA1 is the value to be loaded in the actual capture/compare 1 register (preload value).

It is loaded permanently if the preload feature is not selected in the TIM1_CCMR1 register (bit
OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update

event occurs.

The active capture/compare register contains the value to be compared to the counter TIM1_CNT

and signalled on OC1 output.
® If the CC1 channel is configured as input (CC1S bits in TIM1_CCMR1 register):

CCRT1 is the counter value transferred by the last input capture 1 event (IC1). It is read-only in this

case.
17.7.23 Capture/compare register 1 low (TIM1_CCR1L)
Address offset: 0x16
Reset value: 0x00
7 6 5 4 3 2 1 0
CCR1[7:0]
rw rw w rw rw w rw rw

Bits 7:0 CCR1[7:0]: Capture/Compare 1 Value (LSB).

208/430

RMO0016

16-bit advanced control timer (TIM1)

17.7.24 Capture/compare register 2 high (TIM1_CCR2H)

Address offset: 0x17

Reset value: 0x00

CCR2[15:8]

rw

Bits 7:0 CCR2[15:8]: Capture/Compare 2 Value (MSB).

® If the CC2 channel is configured as output (CC2S bits in TIM1_CCMR2 register):
CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value).

It is loaded permanently if the preload feature is not selected in the TIM1_CCMR2 register (bit
OC2PE). Else the preload value is copied in the active capture/compare 2 register when an update

event occurs.

The active capture/compare register contains the value to be compared to the counter TIM1_CNT

and signalled on OC2 output.

® If the CC2 channel is configured as input (CC2S bits in TIM1_CCMR2 register):

CCR2 is the counter value transferred by the last input capture 2 event (IC2). It is read-only in this

case.

17.7.25 Capture/compare register 2 low (TIM1_CCR2L)

Address offset: 0x18

Reset value: 0x00

CCR2[7:0]

rw

Bits 7:0 CCR2[7:0]: Capture/Compare Value (LSB).

209/430

16-bit advanced control timer (TIM1)

RMO0016

17.7.26 Capture/compare register 3 high (TIM1_CCR3H)
Address offset: 0x19
Reset value: 0x00
7 6 4 3 1 0
CCR3[15:8]

Bits 7:0 CCR3[15:8]: Capture/Compare Value (MSB).

17.7.27 Capture/compare register 3 low (TIM1_CCR3L)
Address offset: Ox1A

® If the CC3 channel is configured as output (CC3S bits in TIM1_CCMR3 register):
CCR8 is the value to be loaded in the actual capture/compare 3 register (preload value).

It is loaded permanently if the preload feature is not selected in the TIM1_CCMRS register (bit
OCSPE). Else the preload value is copied in the active capture/compare 3 register when an update

event occurs.

The active capture/compare register contains the value to be compared to the counter TIM1_CNT

and signalled on OC3 output.
® If the CC3 channel is configured as input (CC3S bits in TIM1_CCMR3 register):
CCRS is the counter value transferred by the last input capture 3 event (IC3).

Reset value: 0x00

CCR3[7:0]

rw

Bits 7.0 CCR3[7:0]: Capture/Compare Value (LSB).

210/430

RMO0016 16-bit advanced control timer (TIM1)

17.7.28 Capture/compare register 4 high (TIM1_CCR4H)
Address offset: 0x1B

Reset value: 0x00

CCR4[15:8]

rw

Bits 7:0 CCR4[15:8]: Capture/Compare Value (MSB).

® If the CC4 channel is configured as output (CC4S bits in TIM1_CCMRA4 register):
CCR4 is the value to be loaded in the actual capture/compare 3 register (preload value).

It is loaded permanently if the preload feature is not selected in the TIM1_CCMR4 register (bit
OCA4PE). Else the preload value is copied in the active capture/compare 3 register when an update

event occurs.

The active capture/compare register contains the value to be compared to the counter TIM1_CNT

and signalled on OC4 output.

® If the CC4 channel is configured as input (CC4S bits in TIM1_CCMRA4 register):
CCRA4 is the counter value transferred by the last input capture 4 event (IC4).

17.7.29 Capture/compare register 4 low (TIM1_CCRA4L)
Address offset: 0x1C

Reset value: 0x00

CCR4[7:0]

rw

Bits 7:0 CCRA4[7:0]: Capture/Compare Value (LSB).

211/430

16-bit advanced control timer (TIM1) RMO0016

17.7.30 Break register (TIM1_BKR)
Address offset: 0x1D

Reset value: 0x00

7 6 5 4 3 2 1 0
MOE AOE BKP BKE OSSR 0ossl LOCK
w w w w rw w rw rw

Bit 7 MOE: Main Output Enable.

This bit is cleared asynchronously by hardware as soon as the break input is active. It is set by
software or automatically depending on the AOE bit. It is acting only on the channels which are
configured in output.

0: OC and OCN outputs are disabled or forced to idle state.

1: OC and OCN outputs are enabled if their respective enable bits are set (CC/E in TIM1_CCERXx
registers).
See OC/OCN enable description for more details (Section 17.7.13 on page 202).

Bit 6 AOE: Automatic Output Enable.
0: MOE can be set only by software

1: MOE can be set by software or automatically at the next update event (if the break input is not be
active)

Note: This bit can no longer be modified as long as LOCK level 1 has been programmed (LOCK bits
in the TIM1_BKR register).
Bit 5 BKP: Break polarity.
0: Break input BKIN is active low
1: Break input BKIN is active high
Note: This bit can no longer be modified as long as LOCK level 1 has been programmed (LOCK bits
in the TIM1_BKR register).
Bit 4 BKE: Break enable.
0: Break input (BKIN) disabled
1: Break input (BKIN) enabled
Note: This bit can no longer be modified as long as LOCK level 1 has been programmed (LOCK bits
in the TIM1_BKR register).
Bit 3 OSSR: Off-State Selection for Run mode.

This bit is used when MOE=1 on channels with a complementary output which are configured as
outputs.

See OC/OCN enable description for more details (Section 17.7.13: Capture/compare enable
register 1 (TIM1_CCERT1) on page 202).

0 : When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0).

1 : When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCiE=1 or
CCiNE=1. Then, OC/OCN enable output signal=1

Note: This bit can no longer be modified as soon as the LOCK level 2 has been programmed (LOCK
bits in TIM1_BKR register).

212/430 Ky_’

RMO0016 16-bit advanced control timer (TIM1)

Bit 2 OSSI: Off-State Selection for Idle mode.
This bit is used when MOE=0 on channels configured as outputs.
See OC enable description for more details (Section 17.7.13 on page 202).
0: When inactive, OCi outputs are disabled (OC/ enable output signal=0).

1: When inactive, OCj outputs are forced first with their idle level as soon as CC/E=1 (OC enable
output signal=1)

Note: This bit can no longer be modified as soon as the LOCK level 2 has been programmed (LOCK
bits in the TIM1_BKR register).

Bits 1:0 LOCK]1:0]: Lock configuration.
These bits offer a write protection against software errors.
00: LOCK OFF - No bits are write protected.
01: LOCK Level 1 = OIS/ bit in TIM1_OISR register and BKE/BKP/AOE bits in TIM1_BKR register
can no longer be written.

10: LOCK Level 2 = LOCK Level 1 + CC Polarity bits (CC/P bits in TIM1_CCERXx registers, as long
as the related channel is configured in output through the CC/S bits) as well as the OSSR and OSSI
bits can no longer be written.

11: LOCK Level 3 = LOCK Level 2 + CC Control bits (OC/M and OCIPE bits in TIM1_CCMRx
registers, as long as the related channel is configured in output through the CCiS bits) can no longer
be written.

Note: The LOCK bits can be written only once after the reset. Once the TIM1_BKR register has been
written, their content is frozen until the next reset.

Note: As the bits AOE, BKF, BKE, OSSR and OSSI can be write-locked depending on the LOCK
configuration, it can be necessary to configure all of them during the first write access to the
TIM1_BKR register.

Ky_l 213/430

16-bit advanced control timer (TIM1) RMO0016

17.7.31 Dead-time register (TIM1_DTR)
Address offset: OX1E

Reset value: 0x00

DTG7:0]

Bits 7:0 DTG[7:0]: Dead-Time Generator set-up.

This bit-field defines the duration of the dead-time inserted between the complementary outputs. DT
corresponds to this duration. tck pgc is the TIM1 clock pulse.

DTG[7:5]=0xx => DT=DTG[7:0]x tyg With tyg=tck_psc- (f1)
DTG[7:5]=10x => DT=(64+DTG[5:0])x tyig With tg=2xtck_psc. (f2)
DTG[7:5]=110 => DT=(32+DTG[4:0])x tgg With t41q=8Xtck_psc- (f3)
DTG[7:5]=111 => DT=(32+DTG[4:0])X tgg With tyq=16xtck_psc- (f4)

Example:

If tck_psc=125 ns (8 MHz), dead-time possible values are:

DTG[7:0] = 0 to 7Fh from 0 to 15875 ns in 125 ns steps (refer to 1),
DTG[7:0] = 80h to BFh from 16 ps to 31750 ns in 250 ns steps (refer to f2),
DTG[7:0] = COh to DFh from 32 ps to 63 ps in 1ps steps (refer to 3),
DTG[7:0] = EOh to FFh from 64 ps to 126 ps in 2 ps steps (refer to f4),

Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK
bits in the TIM1_BKR register).

214/430 Ky_’

RMO0016 16-bit advanced control timer (TIM1)
17.7.32 Output idle state register (TIM1_OISR)
Address offset: Ox1F
Reset value: 0x00
7 6 5 4 3 2 1 0
ols4 OIS3N 0IS3 OIS2N ols2 OIS1N oIs1
Reserved
rw rw rw rw w rw rw
Bit 6 OIS4: Output Idle state 4 (OC4 output).
Refer to OIS1 bit
Bit 5 OIS3N: Output Idle state 3 (OC3N output).
Refer to OIS1N bit
Bit 4 OIS3: Output Idle state 3 (OC3 output).
Refer to OIS1 bit
Bit 3 OIS2N: Output Idle state 2 (OC2N output).
Refer to OIS1N bit
Bit 2 OIS2: Output Idle state 2 (OC2 output).
Refer to OIS1 bit
Bit 1 OIS1N: Output Idle state 1 (OC1N output).
0: OC1N=0 after a dead-time when MOE=0
1: OC1N=1 after a dead-time when MOE=0
Note: This bit can no longer be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in the TIM1_BKR register).
Bit 0 OIS1: Output Idle state 1 (OC1 output).
0: OC1=0 (after a dead-time if OC1N is implemented) when MOE=0
1: OC1=1 (after a dead-time if OC1N is implemented) when MOE=0
Note: This bit can no longer be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in the TIM1_BKR register).
17.7.33 TIM1 register map and reset values
Table 35. TIM1 register map
Address Register Name 7 6 5 4 3 2 1 0
offset
0x00 TIM1_CR1 ARPE CMS1 CMS0 DIR OPM URS uDIS CEN
Reset Value 0 0 0 0 0 0 0 0
0x01 TIM1_CR2 THS MMS2 MMS1 MMSO0 - coms - CCPC
Reset Value 0 0 0 0 0 0 0 0
0X02 TIM1_SMCR MSM TS2 TSt TS0 - SMS2 SMST SMS0
Reset Value 0 0 0 0 0 0 0 0
17 215/430

16-bit advanced control timer (TIM1) RMO0016

Table 35. TIM1 register map (continued)

Address .
offset Register Name 7 6 5 4 3 2 1 0
0x03 TIM1_ETR ETP ECE ETPST ETPSO EFT3 EFT2 EFT1 EFTO
Reset Value 0 0 0 0 0 0 0 0
0x04 TIM1_IER BIE TIE COMIE CC4IE CC3IE CC2IE CC1IE UIE
Reset Value 0 0 0 0 0 0 0 0
OX05 TIM1_SR1 BIF TIF COMIF CC4IF CC3IF CC2IF CC1IF UIF
Reset Value 0 0 0 0 0 0 0 0
0X06 TIM1_SR2 . - - CCA4OF CC30F CC20F CC1OF .
Reset Value 0 0 0 0 0 0 0 0
0X07 TIM1_EGR BG TG COMG CcC4G CC3G cc2G cciG uG
Reset Value 0 0 0 0 0 0 0 0
TIM1_CCMR1 | ocice | ocim2 | ocimi | ocimo | ociPe | ociFe | ccist | cciso
(output mode)
Reset Value 0 0 0 0 0 0 0 0
0x08
TIM1_CCMRT | cips | ic1F2 | ICIF1 ICIFO | IC1PSC1 | IC1PSCO | CC1S1 | CC1S0
(input mode)
Reset value 0 0 0 0 0 0 0 0
TIMi CCMR2 | OC2cE oC2M2 OC2M1 0C2Mo OC2PE OC2FE cCc2st CC2S0
X0 (output mode) 0 0 0 0 0 0 0 0
X
TIM1 CCMR2 IC2F3 IC2F2 IC2F1 IC2F0 IC2PSC1 | IC2PSCO | CC2s1 CC250
(input mode) 0 0 0 0 0 0 0 0
TIM1 CCMR3 | OC3CE OC3M2 OC3M1 OC3Mo OC3PE OC3FE cC3st CC380
Ox0A (output mode) 0 0 0 0 0 0 0 0
X
TIM1 CCMR3 IC3F3 IC3F2 IC3F1 IC3FO0 IC3PSC1 | IC3PSCO | CC3si CC3S0
(input mode) 0 0 0 0 0 0 0 0
TIM1 CCMR4 | ocace OC4M2 OC4M1 OC4MO OC4PE OC4FE CC481 CC4S0
ox0Bh (output mode) 0 0 0 0 0 0 0 0
X
TIM1 CCMR4 IC4F3 IC4F2 IC4F1 IC4F0 IC4PSC1 | IC4PSCO | CC481 CC4S0
(input mode) 0 0 0 0 0 0 0 0
CC2NP CC2NE ccap CC2E CCINP CCINE ccip CC1E
0x0Ch | TIM1_CCERf 2 2 0 > ! : . .
- - CC4P CC4E CC3NP CC3NE cCc3p CC3E
0x0Dh | TIM1_CCER?2 5 5 . . : s 0 .
CNT15 CNT14 CNT13 CNT12 CNT11 CNT10 CNT9 CNT8
OXOEh | TIM1_CNTRH v X X . v X 0 0
CNT7 CNT6 CNT5 CNT4 CNT3 CNT2 CNTT CNTO
O0xOFh | TIM1_CNTRL . . . 0
PSC15 PSC14 PSC13 PSC12 PSC11 PSC10 PSC9 PSC8
0x10h | TIM1_PSCRH c c S S c S A A
PSC7 PSC6 PSC5 PSC4 PSC3 PSC2 PSCH PSCO
ox1th | TIM1_PSCRL A A A A A A A A
ARR15 ARR14 ARR13 ARR12 ARR11 ARR10 ARR9 ARRS
ox12h | TIM1_ARRH f 1 1 f f 1 ! !

216/430 Ky_’

RMO0016

16-bit advanced control timer (TIM1)

Table 35. TIM1 register map (continued)

A:ﬁ:fs Register Name 7 6 5 4 3 2 1 0
ox13h TIM1_ARRL AR1R7 AR1R6 AF{1F{5 AF§R4 AR1R3 AR1R2 AF:FH AR1R0
ox14h TIM1_RCR REOP7 REOP6 REOPs REOP4 REOPS REOPZ REOP1 REOPO
ox45h TIM1_CCR1H CC|3115 cc%m ccgﬁs cc%mz ccgm cc%no ccgng ccgns
ox16h TIM1_CCRiL ccgm ccgns ccgn5 ccgm ccgns ccgnz ccgm ccgno
ox17h TIM1_CCR2H 002215 00%214 003213 cc%m 002211 00%210 cchzg cchzs
0x18h TIM1_CCRaL 00527 cc(n)aze ccgms 00524 ccgzs ccg{zz ccgm ccgmo
0x19h TIM1_CCR3H 002315 00%314 003313 00%312 ccn;sn cc%sm ccgag ccgss
Ox1Ah TIM1_CCR3L ccgm ccgzse ccg{ss 00534 ccgzss cchsz ccg{s1 ccg{so
ox1Bh TIM1_CCR4H 003415 cc%414 ccgm 003412 00341 1 cc%mo ccgmg ccgms
0x1Ch TIM1_CCRAL ccgw ccgms ccg445 ccgt44 ccgms ccgmz ccgm ccgmo
ox1Dh TIM1_BKR MOOE A(gE ng BIgE OSOSR oga LOOCK LOOCK
ox1Eh TIM1_DTR DT0G7 DTOGG DT0G5 DTOG4 DTOGe. DToez DTOG1 DTOGo
ox1Fh TIM1_OISR ; 0|034 OI%SN ogss OI%ZN 0|Osz 0|%1 N 051

217/430

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

18

18.1

18.2

218/430

16-bit general purpose timers (TIM2, TIM3, TIM5)

Introduction

This chapter describes TIM2 and TIM3 which are identical timers, with the exception that
TIM2 has three channels and TIM3 has two channels. TIM5 is identical to TIM2 except that
it has two addtional registers to support timer synchronization and chaining.

Each timer consists of a 16-bit up-counting auto-reload counter driven by a programmable
prescaler.

It may be used for a variety of purposes, including:

® Time base generation

Measuring the pulse lengths of input signals (input capture)

Generating output waveforms (output compare, PWM and One Pulse Mode)

Interrupt capability on various events (capture, compare, overflow)

Synchronization with other timers or external signals (external clock, reset, trigger and
enable) (in devices with TIM5)

The timer clock can be sourced from internal clocks.

Only the main features of the general purpose timers are given in this chapter.
Refer to the corresponding paragraphs of Section 17: 16-bit advanced control timer (TIM1)
on page 137 for more details on each feature.

TIM2/TIM3 main features

TIM2/TIM3 features include:
® 16-bit up counting auto-reload counter.

® 4-bit programmable prescaler allowing the counter clock frequency to be divided “on
the fly” by any power of 2 from 1 to 32768.

® 3independent channels for:
— Input capture
— Output compare
— PWM generation (edge-aligned Mode)
— One Pulse Mode output
® Interrupt request generation on the following events:
— Update: counter overflow, counter initialization (by software)
— Input capture
— Output compare

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)
18.3 TIM5 main features
TIM5 features include:
® 16-bit up counting auto-reload counter.
® 4-bit programmable prescaler allowing the counter clock frequency to be divided “on
the fly” by any power of 2 from 1 to 32768.
® 3independent channels for:
— Input capture
— Output compare
— PWM generation (edge-aligned Mode)
— One Pulse Mode output
® Synchronization circuit to control the timer with external signals and to interconnect
several timers
@ Interrupt generation on the following events:
— Update: counter overflow, counter initialization (by software)
— Input capture
— Output compare
18.4 TIM2/TIM3/TIM5 functional description

Figure 79. TIM2/TIM3 block diagram

fmasTeER

CK_PS CK_CNT
= ﬁ Prescaler I—’I UP-DOWN COUNTER

TIME BASE UNIT

}4—' AutoReload Register i

A

CAPTURE COMPARE ARRAY

/;C1|
UEV~A
™ Ic1 IC1PS OC1REF
TIMx_CH1[}———Pp| 4’@'“’—’1 Capture/Compare 1 Register .—’ ——— 1 TIMx_CH1
oc1 -
cca2l
INPUT 1c2 mz/;':_’ VBV OUTPUT
TI2 OC2RE!
TIMx_CH2[——— STAGE 4’@,“‘—’1 Capture/Compare 2 Register '—i STAGE &’[] TIMx_CH2
ccsi
T3 Ic3 ic3ps VEV OC3RE ocs3
T crotr— IS\ ooy LR e ey B4 | 0es o
Legend:
Preload registers transferred
to shadow registers on update
event (UEV) according to
control bit
~B event
o intemupt

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

18.4.1

220/430

Figure 80. TIM5 block diagram

fuasTER »
TRGO to TIM1/TIM6 timers

CLOCK/TRIGGER CONTROLLER

TRGO from other TIM timersL’.

TRC
Clock/reset/enable

TIME BASE UNIT

CK_PSC CK_CNT,
— #l Prescaler I—’l UP-DOWN COUNTER ’4—' AutoReload Register i

A 4
CAPTURE COMPARE ARRAY
/\;Cﬂ
™" o1 UEV<A
TIMx_CH1 []—’ 4} IC1PS Capture/Compare 1 Register OCTREL —N] TIMx_CH1
oc1 -
e ouTPUT
INPUT UE
Ic2 ic2ps VBN
TI2
TiMx_cH2[———p STAGE 4} Capture/Compare 2 Register i—iOCZRE STAGE &’[] TIMx_CH2
ccsl
Ic3 ic3ps VEVA
TI3 oc:
e crat— Ty O e [N oo s P

Legend:

m Preload registers transferred
to shadow registers on update
event (UEV) according to
control bit

~A event
N intermupt

Time base unit

The timer has a Time base unit that includes:
® 16-bit up counter

® 16-bit auto-reload register

® 4-bit programmable prescaler

There is no repetition counter.

The clock source for is the internal clock (fyyasTeR)- It is connected directly to the CK_PSC
clock that feeds the prescaler driving the counter clock CK_CNT.

Figure 81. Time base unit

TIMx_ARRH, ARRL

UEV-a| Auto-Reload Register

~ UIF
CKPSC) Prescaler | K-ONT 16-bit Counter UEV—p Legend:
Preload registers transferred
to shadow registers on update

TIMx_PSCR TIMx_CNTRH, CNTRL event (UEV) according to

control bit
~B event
et

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)
For more details refer to Section 17.3: TIM1 time base unit on page 140.
Prescaler
The prescaler implementation is as follows:
® The prescaler is based on a 16-bit counter controlled through a 4-bit register (in
TIMx_PSCR register). It can be changed on the fly as this control register is buffered. It
can divide the counter clock frequency by any power of 2 from 1 to 32768.
The counter clock frequency is calculated as follows:
fok_onT = fok_psc/2PSCRIZAD
The prescaler value is loaded through a preload register. The shadow register, which
contains the current value to be used is loaded as soon as the LS Byte has been written.
The new prescaler value is taken into account in the following period (after the next counter
update event).
Read operations to the TIMx_PSCR registers access the preload registers, so no special
care needs to be taken to read them.
Counter operation
Refer to Section 17.3.4: Up-counting mode on page 142.
18.4.2 Clock/trigger controller

A clock/trigger controller and the associated TIMx_CR2 and TIMx_SMCR registers are not
implemented in TIM2/TIM3, only in TIM5. Refer to Section 17.4: TIM1 clock/trigger controller
on page 150

221/430

16-bit general purpose timers (TIM2, TIM3, TIM5)

RMO0016

18.4.3

222/430

Capture/compare channels

Input stage

Refer to Section 17.5: TIM1 capture/compare channels on page 163.

There are two input channels, as shown in Figure 82: Input stage block diagram.

Figure 82. Input stage block diagram
THHF_ED TRC
Ll
to clock/trigger controller
TIHFP1
xor PN ™ [inputFiter& Firepp A
Edge Detector - |
TIMx_CH1 [— TRC
|
: TI2FP1 71— IC2
TI2 Input Filter &
TIMx_CH2 »
X_f [, > Edge Detector TI2FP2 > | to capture/compare channels
TRC— |
. ica |
TIMx_CH3 [] TI3) Input Filter &)
Edge Detector |
Figure 83. Input stage of TIM 2 channel 1
THF_ED
to the clock/trigger controller
T THF_rising 0
O————— filter THF | Edge) TIHFP 0l
fuasTER |down-counter Detector| TI1F_falling
¥ TP ol1C1 | divider | 'CPS

|

TIM2_CCMR1

TIM2_CCER

TI2F_rising
(from channel 2)
TI2F_falling ;

(from channel 2)

TRC

(from clock/trigge
controller

n,12,/14,/8

11

=

)|CC1S[1:0]| ICPS[1:0] | [CC1E]

TIM2_CCMR1 TIM2_CCERT1

RMO0016

16-bit general purpose timers (TIM2, TIM3, TIM5)

18.5

Output stage

Refer to Section 17.5.4: Output stage on page 168, Section 17.5.5: Forced output mode on
page 169, Section 17.5.7: PWM mode on page 171.

As shown in Figure 84. TIMx outputs have no deadtime or complementary outputs.

Figure 84. Output stage

|
| _OC1REF p| output ST TIMx_CH1
| control| OC1
|
from capture/compare OC2REF
| OC2REF yJoutputf p mimy_che
channels | control| OQC2
|
| _OC3REF | output > TiMx_CH3
| control| OC3
|
|

The output stage generates an intermediate waveform which is then used for reference:
OCxREF (active high). Polarity acts at the end of the chain (see Figure 85).

Figure 85. Output stage of channel 1

Output OC1
Counter > CCR1 Er';la%llje ——d
| Output Mode| OC1REF O Circuit
Counter = CCR1| Controller
CC1P
TIMx_CCER1
OC1M[2:0]
TIMx_CCMR1 CC1E| TIMx_CCER1

TIM2/TIM3/TIM5 interrupts

The timers have 4 interrupt request sources:

Capture/Compare 3 Interrupt
Capture/Compare 2 Interrupt
Capture/Compare 1 Interrupt
Update Interrupt

Trigger interrupt (TIM5 only)

To use the interrupt features, for each interrupt channel used, set the desired CC3IE and/or
CC2IE and/or CC1IE bits in the TIMx_IER register to enable interrupt requests.

The different interrupt sources can be also generated by software using the corresponding
bits in the TIMx_EGR register.

223/430

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

18.6 TIM2/TIM3/TIM5 registers
18.6.1 Control register 1 (TIMx_CR1)
Address offset: 0x00
Reset value: 0x00
7 6 5 4 3 2 1 0
ARPE OPM URS uDIS CEN
Reserved
rw rw w rw rw
Bit 7 ARPE: Auto-Reload Preload Enable
0: TIMx_ARR register is not buffered through a preload register. It can be written directly.
1: TIMx_ARR register is buffered through a preload register.
Bits 6:4 Reserved
Bit 3 OPM: One Pulse Mode
0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the CEN bit)
Bit 2 URS: Update Request Source
0: When enabled, an update interrupt request is sent as soon as registers are updated (counter
overflow)
1: When enabled, an update interrupt request is sent only when the counter reaches the overflow.
Bit 1 UDIS: Update Disable
0: An Update event is generated as soon as a counter overflow occurs or a software update is
generated or an hardware reset is generated by the clock/trigger mode controller. Buffered registers
are then loaded with their preload values
1: An Update event is not generated, shadow registers keep their value (ARR, PSC, CCRx). The
counter and the prescaler are re-initialized if the UG bit is set .
Bit 0 CEN: Counter Enable.
0: Counter disabled
1: Counter enabled
224/430 17

RMO0016

16-bit general purpose timers (TIM2, TIM3, TIM5)

18.6.2 Control register 2 (TIM5_CR2)
Address offset: 0x01
Reset value: 0x00

7 6 5 4 3 2 1 0
MMS[2:0]
Reserved Reserved
rw w w
Note: This register is only available in TIM5, see Table 38 on page 243.

Bit 7 Reserved, must be kept cleared.

Bits 6:4 MMS[2:0]: Master mode selection.

Bits 3:0 Reserved, must be kept cleared.

These bits select the information to be sent in master mode to TIM1 and TIM2for synchronization

(TRGO). The combination is as follows:

000: Reset - the UG bit from the TIM3_EGR register is used as trigger output (TRGO). If the reset is
generated by the trigger input (clock/trigger mode controller configured in trigger reset mode) then
the signal on TRGO is delayed compared to the actual reset.

001: Enable - the Counter Enable signal is used as trigger output (TRGO). It is used to start several
timers at the same time or to control a window in which a slave timer is enabled. The Counter Enable
signal is generated by a logic OR between CEN control bit and the trigger input when configured in
gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on
TRGO, except if the master/slave mode is selected (see the MSM bit description in TIM3_SMCR

register).

010: Update - The update event is selected as trigger output (TRGO).

011: Reserved
100: Reserved
101: Reserved
111: Reserved

225/430

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

18.6.3 Slave mode control register (TIM5_SMCR)
Address offset: 0x02

Reset value: 0x00

7 6 5 4 3 2 1 0
MSM TS[2:0] SMS[2:0]
Reserved
rw rw w rw w rw rw
Note: This register is only available in TIM5, see Table 38 on page 243.

Bit 7 MSM Master/slave mode.
0: No action

1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization
between timers (through TRGO).

Bits 6:4 TS[2:0] Trigger Selection.
This bit-field selects the trigger input to be used to synchronize the counter.
000: internal trigger ITRO connected to TIM6 TRGO
001: reserved
010: reserved
011: internal trigger ITR3 connected to TIM1 TRGO
100: reserved
101: reserved
110: reserved
111: reserved

Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid
wrong edge detections at the transition.

Bit 3 Reserved, always read as 0.

Bits 2:0 SMSJ[2:0] Clock/trigger/slave mode selection.
When external signals are selected, the active edge of the trigger signal (TRGI) is linked to the polarity
selected on the external input (see Input Control register and Control Register description).
000: Clock/trigger controler disabled - if CEN = ‘1’ then the prescaler is clocked directly by the
internal clock.
001: Reserved.
010: Reserved.
011: Reserved.
100: Trigger reset mode - Rising edge of the selected trigger signal (TRGI) reinitializes the counter
and generates an update of the registers.

101: Gated Mode - The counter clock is enabled when the trigger signal (TRGI) is high. The counter
stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are
controlled.

110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only
the start of the counter is controlled.

111: External clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

226/430 Ky_’

RMO0016

16-bit general purpose timers (TIM2, TIM3, TIM5)

18.6.4

Interrupt enable register (TIMx_IER)
Address offset: 0x01 (TIM2/3), 0x03 (TIM5)

Reset value: 0x00
6 5 4 3 2

Reserved

TIE CC2IE CC2IE
Reserved

CC1IE

UIE

rw

Bits 7
Bit 6

Bits 5:4
Bit 3

Bit 2

Bit 1

Bit 0

18.6.5

Reserved

TIE: Trigger Interrupt Enable.

0: Trigger Interrupt disabled.

1: Trigger Interrupt enabled.
Note: In TIM2/TIM3 this bit is reserved.
Reserved, must be kept cleared.

CC3IE: Capture/Compare 3 Interrupt Enable
0: CC3 Interrupt disabled
1: CC3 Interrupt enabled

CC2IE: Capture/Compare 2 Interrupt Enable
0: CC2 Interrupt disabled
1: CC2 Interrupt enabled

CC1IE: Capture/Compare 1 Interrupt Enable
0: CC1 Interrupt disabled
1: CC1 Interrupt enabled

UIE: Update Interrupt Enable.
0: Update Interrupt disabled
1: Update Interrupt enabled

Status register 1 (TIMx_SR1)
Address offset: 0x02 (TIM2/3), 0x04 (TIM5)

Reset value: 0x00
6 5 4 3 2

Reserved

TIF CC3IF CC2IF

CC1IF

UIF

Reserved
rc_w0 rc_w0 rc_w0

rc_w0

rc_w0

Bit 7
Bit 6

Reserved

TIF: Trigger Interrupt Flag.

This flag is set by hardware on trigger event (active edge detected on TRGI signal, both edges in

case gated mode is selected). It is cleared by software.
0: No trigger event occurred.
1: Trigger interrupt pending.

Note: In TIM2/TIMS3 this bit is reserved.

227/430

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

Bits 5:4 Reserved, must be kept cleared.

Bit 2 CC2IF: Capture/Compare 2 Interrupt Flag

Refer to CC1IF description

Bit 1 CC1IF: Capture/Compare 1 Interrupt Flag
If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value. It is cleared by software.
0: No match.
1: The content of the counter TIMx_CNT has matched the content of the TIMx_CCR1 register.
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1L
register.
0: No input capture occurred.
1: The counter value has been captured in TIMx_CCR1 register (An edge has been detected on IC1
which matches the selected polarity).
Bit 0 UIF: Update Interrupt Flag
This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:
—At overflow if UDIS=0 in the TIMx_CR1 register.
—When CNT is re-initialized by software using the UG bit in TIMx_EGR register, if URS=0 and
UDIS=0 in the TIMx_CRH1 register.
18.6.6 Status register 2 (TIMx_SR2)
Address offset: 0x03 (TIM2/3), 0x05 (TIM5)
Reset value: 0x00
7 6 5 4 3 2 1 0
CC30F CC20F CC10F
Reserved Reserved
rc_w0 rc_w0 rc_w0
Bits 7:4 Reserved
Bit 3 CC3OF: Capture/Compare 3 Overcapture Flag
Refer to CC10F description
Bit 2 CC20F: Capture/Compare 2 Overcapture Flag
Refer to CC10F description
Bit 1 CC10F: Capture/Compare 1 Overcapture Flag
This flag is set by hardware only when the corresponding channel is configured in input capture
mode. It is cleared by software by writing it to ‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set
Bit 0 Reserved, forced by hardware to 0.
228/430 17

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)
18.6.7 Event generation register (TIMx_EGR)
Address offset: 0x04 (TIM2/3), 0x06 (TIM5)
Reset value: 0x00
7 6 5 4 3 2 1 0
TG CC3G CC2G CC1G UG
Reserved Reserved
w w w w w
Bit 7 Reserved.
Bit 6 TG: Trigger Generation.
This bit is set by software in order to generate an event, it is automatically cleared by hardware.
0: No action.
1: The TIF flag is set in TIM1_SR1 register. An interrupt is generated if enabled by the TIE bit.
Note: In TIM2/TIM3 this bit is reserved.
Bits 5:4 Reserved.
Bit 3 CC3G: Capture/Compare 3 Generation
Refer to CC1G description
Bit2 CC2G: Capture/Compare 2 Generation.
Refer to CC1G description
Bit 1 CC1G: Capture/Compare 1 Generation.
This bit is set by software in order to generate an event, it is automatically cleared by hardware.
0: No action
1: A capture/compare event is generated on channel 1:
—If the CC1 channel is configured in output mode:
CC1IF flag is set, and the corresponding interrupt request is sent if enabled.
—If the CC1 channel configured in input mode:
The current value of the counter is captured in the TIMx_CCR1 register. The CC1IF flag is set, and
the corresponding interrupt request is sent if enabled. The CC10F flag is set if the CC1IF flag was
already high.
Bit 0 UG: Update Generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action

1: Re-initializes the counter and generates an update of the registers. Note that the prescaler
counter is cleared too.

229/430

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

18.6.8

Capture/compare mode register 1 (TIMx_CCMR1)

The channel can be used in input (capture mode) or in output (compare mode). The
direction of the channel is defined by configuring the CC1S bits. All the other bits of this
register have a different function in input and in output mode. For a given bit, OCxx
describes its function when the channel is configured in output, ICxx describes its function
when the channel is configured in input. So be aware that the same bit can have a different
meaning for the input stage and for the output stage.

Address offset: 0x05 (TIM2/3), 0x07 (TIM5)

Reset value: 0x00
e Channel configured in output

7 6 5 4 3 2 1 0
OC1M[2:0] OC1PE CC18[1:0]
Reserved Reserved
w w w rw rw w

Bit 7 Reserved
Bits 6:4 OC1M[2:0]: Output Compare 1 Mode

These bits defines the behavior of the output reference signal OC1REF from which OC1 is derived.
OC1REF is active high whereas OC1 active level depends on the CC1P bit.

000 : Frozen - The comparison between the output compare register TIMx_CCR1 and the counter
TIMx_CNT has no effect on the outputs.

001 : Set channel 1 to active level on match. OC1REF signal is forced high when the counter
TIMx_CNT matchs the capture/compare register 1 (TIMx_CCR1).

010 : Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter
TIMx_CNT matchs the capture/compare register 1 (TIMx_CCR1).

011 : Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.

100 : Force inactive level - OC1REF is forced low.

101 : Force active level - OC1REF is forced high.

110 : PWM mode 1 - In up-counting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1 else

inactive. In down-counting, channel 1 is inactive (OC1REF=0’) as long as TIMx_CNT>TIMx_CCR1
else active (OC1REF='1’).
111 : PWM mode 2 - In up-counting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1 else
active.

Note: In PWM mode 1 or 2, the OCIREF level changes only when the result of the comparison

changes or when the output compare mode switches from “frozen” mode to “PWM” mode.
Refer to Section 17.5.7 on page 171 for more details.

Bit 3 OC1PE: Output Compare 1 Preload Enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value
is taken in account immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register.
TIMx_CCR1 preload value is loaded in the shadow register at each update event.
Note: For correct operation, preload registers must be enabled when the timer is in PWM mode. This
is not mandatory in one pulse mode (OPM bit set in TIMx_CR1 register).

Bit 2 Reserved.

230/430

RMO0016

16-bit general purpose timers (TIM2, TIM3, TIM5)

Bits 1:0 CC1S[1:0]: Capture/Compare 1 Selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC1 channel is configured as output.
01: CC1 channel is configured as input, IC1 is mapped on TI1FP1.
10: CC1 channel is configured as input, IC1 is mapped on TI2FP1.

11: Reserved

Note: CC1S bits are writable only when the channel is OFF (CC1E= "0’ in TIMx_CCER1 and
updated).

® Channel configured in input
7 6

5 4

IC1F[3:0]

IC1PSC[1:0]

CC18[1:0]

rw

Bits 7:4 1C1F[3:0]: Input Capture 1 Filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied
to TI1. The digital filter is made of an event counter in which N events are needed to validate a
transition on the output:

0000:

0001:
0010:
0011:
0100:
0101:
0110
0111:
1000:
1001:
1010:
1011:
1100:
1101:
1110:
1111:

No filter, sampling is done at f\asTER-

fsampLING= fmasTER, N=2.
fsampLING= fmasTER, N=4.
fsampLING= fmasTER, N=8.
fsampLING= fmasTER/2, N=6.
fsampLinG= fuasTER/2, N=8.

: fsampLing= fmasTER/4, N=6.

fsampLinG= fuasTER/4, N=8.
fsampLING= fmasTER/8, N=6.
fsampLinG= fuasTER/8, N=8.

fsampLinGg= fmasTER/16, N=5.
fsampLING= fmasTER/16, N=6.
fsampLiNG= fmasTER/16, N=8.
fsampLING= fmasTER/32, N=5.

fsampLinG= fmasTER/32, N=6.
fsampLiNG= fmasTER/32, N=8.

231/430

16-bit general purpose timers (TIM2, TIM3, TIM5)

RMO0016

Bits 3:2

IC1PSC[1:0]: Input Capture 1 Prescaler
This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).
The prescaler is reset as soon as CC1E="0" (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input.
01: Capture is done once every 2 events.
10: Capture is done once every 4 events.
11: Capture is done once every 8 events.

Note: The internal event counter is not reset when IC1PSC is changed on the fly. In this case the old
value is used until the next capture occurs. To force a new value to be taken in account
immediately, you can clear the CC1E bit and set it again.

Bits 1:0 CC1S[1:0]: Capture/Compare 1 Selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.
01: CC1 channel is configured as input, IC1 is mapped on TI1FP1.
10: CC1 channel is configured as input, IC1 is mapped on TI2FP1.
11: Reserved
Note: CC18S bits are writable only when the channel is OFF (CC1E= "0’ in TIMx_CCER1 and
updated).
18.6.9 Capture/compare mode register 2 (TIMx_CCMR2)
Note: Refer to Capture/compare mode register 1 (TIM1_CCMR1) on page 195 for details on using
these bits.
Address offset: 0x06 (TIM2/3), 0x08 (TIM5)
Reset value: 0x00
e Channel configured in output
7 6 5 4 3 2 1 0
0C2M[2:0] OC2PE CC25[1:0]
Reserved Reserved
rw w rw rw rw
Bit 7 Reserved
Bits 6:4 OC2M[2:0]: Output Compare 2 Mode
Bit 3 OC2PE: Output Compare 2 Preload Enable
Bit2 Reserved.
Bits 1:0 CC2S[1:0]: Capture/Compare 2 Selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output.
01: CC2 channel is configured as input, IC2 is mapped on TI2FP2.
10: CC2 channel is configured as input, IC2 is mapped on TI1FP2.
11: Reserved
Note: CC2S bits are writable only when the channel is OFF (CC2E =0’ in TIMx_CCER1).
232/430 17

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

e Channel configured in input
7 6 5 4 3 2 1 0

IC2F[3:0] IC2PSCI[1:0] CC2S[1:0]

Bits 7:4 1C2F[3:0]: Input Capture 2 Filter
Bits 3:2 IC2PCS[1:0]: Input Capture 2 Prescaler

Bits 1:0 CC2S[1:0]: Capture/Compare 2 Selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output.
01: CC2 channel is configured as input, IC2 is mapped on TI2FP2.
10: CC2 channel is configured as input, IC2 is mapped on TI1FP2.
11: Reserved
Note: CC2S bits are writable only when the channel is OFF (CC2E =0’ in TIMx_CCER1).

Ky_l 233/430

16-bit general purpose timers (TIM2, TIM3, TIM5)

RMO0016

18.6.10

Capture/compare mode register 3 (TIMx_CCMR3)

Refer to Capture/compare mode register 1 (TIM1_CCMR1) on page 195 for details on using
these bits.

Address offset: 0x07 (TIM2), 0x09 (TIM5)

Reset value: 0x00
e Channel configured in output
6 5 4 3 2 1 0

Reserved

OC3M[2:0] OC3PE CC38[1:0]
Reserved

w w w w w rw

Note:

Bit 7
Bits 6:4
Bit 3
Bit 2
Bits 1:0

This register is not available in TIM3.

Reserved
OC3M[2:0]: Output Compare 3 Mode
OC3PE: Output Compare 3 Preload Enable
Reserved
CC3S[1:0]: Capture/Compare 3 Selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3FP3
10: Reserved

11: Reserved
Note: CC3S bits are writable only when the channel is OFF (CC3E =0’ in TIMx_CCER2).

® Channel configured in input

6

5

4

IC3F[3:0]

IC3PSCI[1:0]

CC3S[1:0]

rw

Note:

Bits 7:4
Bits 3:2
Bits 1:0

234/430

This register is not available in TIM3.

IC3F[3:0] Input Capture 3 Filter
IC3PSC(1:0]: Input Capture 3 Prescaler

CC3S[1:0]: Capture/Compare 3 Selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TISFP3
10: Reserved

11: Reserved
Note: CC3S bits are writable only when the channel is OFF (CC3E =0’ in TIMx_CCER2).

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

18.6.11 Capture/compare enable register 1 (TIMx_CCER1)
Address offset: 0x08 (TIM2), 0x07 (TIM3), Ox0A (TIMS5)

Reset value: 0x00

7 6 5 4 3 2 1 0
CC2P CC2E CC1P CC1E
Reserved Reserved
rw w rw w

Bits 6:7 Reserved

Bit 5 CC2P: Capture/Compare 2 output Polarity
refer to CC1P description

Bit 4 CC2E: Capture/Compare 2 output Enable
refer to CC1E description

Bits 2:3 Reserved

Bit 1 CC1P: Capture/Compare 1 output Polarity
CC1 channel configured as output:
0 : OC1 active high
1: OC1 active low
CC1 channel configured as input for capture function (see Figure 61):
0 : Capture is done on a rising edge of TI1F or TI2F
1 : Capture is done on a falling edge of TI1F or TI2F

Bit 0 CC1E: Capture/Compare 1 output Enable.
CC1 channel configured as output:
0 : Off - OC1 is not active.
1:0On - OC1 signal is output on the corresponding output pin.
CC1 channel configured as input:

In this case this bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.

0 : Capture disabled.
1 : Capture enabled.

Ky_l 235/430

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016
18.6.12 Capture/compare enable register 2 (TIMx_CCER2)
Address offset: 0x09 (TIM2), 0x0B (TIM5)
Reset value: 0x00
7 6 5 4 3 2 1 0
ccap CC3E
Reserved
rw rw
Note: This register is not available in TIM3.

Bits 7:2 Reserved

Bit 1 CC3P: Capture/Compare 3 output Polarity
Refer to CC1P description

Bit 0 CC3E: Capture/Compare 3 output Enable
Refer to CC1E description
18.6.13 Counter high (TIMx_CNTRH)
Address offset: 0x0A (TIM2), 0x08 (TIM3), 0x0C (TIM5)

Reset value: 0x00
7 6 5 4 3 2

CNT[15:8]

rw

Bits 7:0 CNT[15:8]: Counter value (MSB)

18.6.14 Counter low (TIMx_CNTRL)
Address offset: 0x0B (TIM2), 0x09 (TIM3), 0x0D (TIM5)

Reset value: 0x00

CNT[7:0]

rw

Bits 7:0 CNT[7:0]: Counter value (LSB)

236/430

RMO0016

16-bit general purpose timers (TIM2, TIM3, TIM5)

18.6.15

Prescaler register (TIMx_PSCR)
Address offset: 0x0C (TIM2), 0x0A (TIM3), OxOE (TIM5)

Reset value: 0x00
6 5 4 3 2 1 0

PSC[3:0]

Reserved
w

Bits 7:3
Bits 2:0

18.6.16

Reserved

PSC[3:0]: Prescaler value
The prescaler value divides the CK_PSC clock frequency.
The counter clock frequency foi_cnr is equal to fok psc / 2(PSC130). PSC(7:4] are forced to 0 by
hardware.
PSCR contains the value which will be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register).
This means that an update event must be generated in order that a new prescaler value can be
taken into account.

Auto-reload register high (TIMx_ARRH)
Address offset: 0x0D (TIM2), 0x0B (TIM3), OxOF (TIM5)

Reset value: OxFF
6 5 4 3 2 1 0

ARR[15:8]

rw

Bits 7:0

18.6.17

ARR[15:8]: Autoreload value (MSB)
ARR is the value to be loaded in the actual auto-reload register.
Refer to the Section 17.3: TIM1 time base unit on page 140 for more details about ARR update and
behavior.
The counter is blocked while the auto-reload value is O.

Auto-reload register low (TIMx_ARRL)
Address offset: 0XOE (TIM2), 0x0C (TIM3), 0x10 (TIM5)

Reset value: OxFF
6 5 4 3 2 1 0

ARR[7:0]

rw

Bits 7:0

ARR([7:0]: Autoreload value (LSB)

237/430

16-bit general purpose timers (TIM2, TIM3, TIM5)

RMO0016

18.6.18 Capture/compare register 1 high (TIMx_CCR1H)
Address offset: OxOF (TIM2), 0x0D (TIM3), 0x11 (TIM5)
Reset value: 0x00
7 6 5 4 3 2 1 0
CCR1[15:8]
w w w w rw w rw w

Bits 7:0 CCR1[15:8]: Capture/compare 1 value (MSB).

If the CC1 channel is configured as output (CC1S bits in TIMx_CCMR1 register):
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).

It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit
OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update

event occurs.

The active capture/compare register contains the value to be compared to the counter TIMx_CNT

and signalled on OC1 output.
If the CC1 channel is configured as input (CC1S bits in TIMx_CCMR1 register):

CCRT1 is the counter value transferred by the last input capture 1 event (IC1). It is read-only in this

case.
18.6.19 Capture/compare register 1 low (TIMx_CCR1L)
Address offset: 0x10 (TIM2), OxOE (TIM3), 0x12 (TIM5)
Reset value: 0x00
7 6 5 4 3 2 1 0
CCR1[7:0]
w w w w rw w w w

Bits 7:0 CCR1[7:0]: Capture/compare 1 value (LSB)

238/430

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

18.6.20 Capture/compare register 2 high (TIMx_CCR2H)
Address offset: 0x11 (TIM2), OxOF (TIM3), 0x13 (TIM5)

Reset value: 0x00
7 6 5 4 3 2 1

CCR2[15:8]

rw

Bits 7:0 CCR2[15:8]: Capture/compare 2 value (MSB)

If the CC2 channel is configured as output (CC2S bits in TIMx_CCMR2 register):
CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value).

It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit
OC2PE). Else the preload value is copied in the active capture/compare 2 register when an update

event occurs.

The active capture/compare register contains the value to be compared to the counter TIMx_CNT

and signalled on OC2 output.

If the CC2 channel is configured as input (CC2S bits in TIMx_CCMR2 register):

CCR2 is the counter value transferred by the last input capture 2 event (IC2).

18.6.21 Capture/compare register 2 low (TIMx_CCR2L)
Address offset: 0x12 (TIM2), 0x10 (TIM3), 0x14 (TIM5)

Reset value: 0x00
7 6 5 4 3 2 1

CCR2[7:0]

rw

Bits 7:0 CCR2[7:0]: Capture/compare value (LSB)

239/430

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016
18.6.22 Capture/compare register 3 high (TIMx_CCR3H)
Address offset: 0x13 (TIM2), 0x15 (TIM5)
Reset value: 0x00
7 6 5 4 3 2 1 0
CCR3[15:8]
rw rw w rw rw rw rw rw
Note: This register is not available in TIM3.
Bits 7:0 CCR3[15:8]: Capture/Compare value (MSB)
If the CC3 channel is configured as output (CC3S bits in TIMx_CCMRS3 register):
CCR8 is the value to be loaded in the actual capture/compare 3 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register (bit
OCSPE). Else the preload value is copied in the active capture/compare 3 register when an update
event occurs.
The active capture/compare register contains the value to be compared to the counter TIMx_CNT
and signalled on OCS3 output.
If the CC3 channel is configured as input (CC3S bits in TIMx_CCMRS3 register):
CCR8 is the counter value transferred by the last input capture 3 event (IC3).
18.6.23 Capture/compare register 3 low (TIMx_CCR3L)
Address offset: 0x14 (TIM2), 0x16 (TIM5)
Reset value: 0x00
7 6 5 4 3 2 1 0
CCR3[7:0]
rw w w rw rw w w rw
Note: This register is not available in TIM3.
Bits 7:0 CCR3[7:0]: Capture/compare value (LSB)
240/430 17

RMO0016

16-bit general purpose timers (TIM2, TIM3, TIM5)

18.6.24 TIM2/TIM3/TIM5 register map and reset values

Table 36. TIM2 register map
Address .
Register name 7 6 5 4 3 2 1 0
offset
0x00 TIM2_CR1 ARPE - - - OPM URS uDIS CEN
Reset Value 0 0 0 0 0 0 0 0
0x01 TIM2_IER - - - - CC3IE CC2IE CC1IE UIE
Reset Value 0 0 0 0 0 0 0 0
0X02 TIM2_SR1 - - - - CC3IF CC2IF CCiIF UIF
Reset Value 0 0 0 0 0 0 0 0
0x03 TIM2_SR2 - - - - CC30F CC20F CC10F -
Reset Value 0 Y 0 Y 0 Y 0 0
0x04 TIM2_EGR - - - - CC3G CcC2G CC1G UG
Reset Value 0 0 0 0 0 0 0 Y
TiIM2_CCMR1 ociM2 | ocimi | ociMo | OciPE ccist | cciso
(output mode)
Reset Value 0 0 0 0 0 0 0 0
0x05
TIM2_CCMR1 IC1F3 IC1F2 IC1F1 ICiFo | IC1PSC1 | IC1PSCO | CCiS1 | cCiso
(input mode)
Reset value 0 0 0 0 0 0 0 0
TIM2_ CCMR2 ocaM2 | ocem1 | ocemo | ocezpE ccest | ccaso
(output mode)
Reset Value 0 0 0 0 0 0 0 0
0x06
TIM2_CCMR2 IC2F3 IC2F2 IC2F1 IC2F0 | IC2PSC1 | Ic2Psco | cca2s1 | ccaso
(input mode)
Reset Value 0 0 0 0 0 0 0 0
TIM2_CCMR3 ocam2 | ocawi | ocaMo | OC3PE ccast | ccaso
(output mode)
Reset Value 0 0 0 0 0 0 0 0
0x07
TIM2_CCMR3 IC3F3 IC3F2 IC3F1 IC3FO | IC3PSC1 | IC3PSCo | cc3s1 | ccaso
(input mode)
Reset Value 0 0 0 0 0 0 0 0
0x08 TIM2_CCER1 - - CC2P CC2E - - CC1P CC1E
Reset Value 0 0 0 0 0 0 0 0
0X09 TIM2_CCER2 - - - - - - CcC3pP CC3E
Reset Value 0 0 0 0 0 0 0 0
OXOA TIM2_CNTRH CNT15 CNT14 CNT13 CNT12 CNT11 CNT10 CNT9 CNT8
Reset Value 0 Y 0 0 0 0 0 0
0xOB TIM2_CNTRL CNT7 CNT6 CNT5 CNT4 CNT3 CNT2 CNT1 CNTO
Reset Value 0 0 0 0 0 0 0 0
0xX0C TIM2_PSCR - - - - PSC3 PSC2 PSCH1 PSCO
Reset Value 0 0 0 0 0 0 0 0
0x0D TIM2_ARRH ARR15 ARR14 ARR13 ARR12 ARR11 ARR10 ARR9 ARRS
Reset Value 1 1 1 1 1 1 1 1
IYI 241/430

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016
Table 36. TIM2 register map (continued)
Address .
Register name 7 6 5 4 3 2 1 0
offset
OXOE TIM2_ARRL ARR7 ARR6 ARR5 ARR4 ARR3 ARR2 ARR1 ARRO
Reset Value 1 1 1 1 1 1 1 1
OXOF TIM2_CCR1H CCR115 | CCR114 | CCR113 | CCR112 | CCR111 | CCR110 | CCR19 CCR18
Reset Value 0 0 0 0 0 0 0 0
0x10 TIM2_CCR1L CCR17 | CCR16 | CCR15 | CCR14 | CCR13 | CCR12 | CCRIf CCR10
Reset Value 0 0 0 0 0 0 0 0
oxd 1 TIM2_CCR2H CCR215 | CCR214 | CCR213 | CCR212 | CCR211 | CCR210 | CCR29 CCR28
Reset Value 0 0 0 0 0 0 0 0
Ox12 TIM2_CCR2L CCR27 CCR26 CCR25 CCR24 CCR23 CCR22 CCR21 CCR20
Reset Value 0 0 0 0 0 0 0 0
ox13 TIM2_CCR3H CCR315 | CCR314 | CCR313 | CCR312 | CCR311 | CCR310 | CCR39 | CCR38
Reset Value 0 0 0 0 0 0 0 0
Ox14 TIM2_CCR3L CCR37 CCR36 CCR35 CCR34 CCR33 CCR32 CCR31 CCR30
Reset Value 0 0 0 0 0 0 0 0
Table 37. TIM3 register map
Address .
Register name 7 6 5 4 3 2 1 0
offset
0x00 TIM3_CR1 ARPE - - - OPM URS uDIS CEN
Reset Value 0 0 0 0 0 0 0 0
0x01 TIM3_IER - - - - CC2IE CC1IE UIE
Reset Value 0 0 0 0 0 0 0 0
TIM3_SR1 - - - - CcC2IF CClIF UIF
0x02 Reset Value 0 0 0 0 0 0 0 0
TIM3_SR2 . . - - - CC20F | CC10F -
0x03 Reset Value 0 0 0 0 0 0 0 0
TIM3_EGR - - - - CC2G CC1G UG
0x04 Reset Value 0 0 0 0 0 0 0 0
TIM3_CCMR1 ociM2 | ocimi | ociMo | ociPE ccist | cciso
(output mode)
Reset Value 0 0 0 0 0 0 0 0
0x05
TIM3_CCMR1 IC1F3 IC1F2 IC1F1 ICiFo | IC1PSC1 | IC1PSCO | CCiS1 | cCiso
(input mode)
Reset value 0 0 0 0 0 0 0 0
TIM3_ CCMR2 ocaM2 | ocam1 | oceMo | oczpE ccest | ccaso
(output mode)
Reset Value 0 0 0 0 0 0 0 0
0x06
TIM3_CCMR2 IC2F3 IC2F2 IC2F1 IC2F0 | IC2PSC1 | Ic2Psco | cca2s1 | ccaso
(input mode)
Reset Value 0 0 0 0 0 0 0 0
0X07 TIM3_CCERH1 - - cC2pP CC2E - - cC1pP CC1E
Reset Value 0 0 0 0 0 0 0 0
242/430 KYI

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)
Table 37. TIM3 register map (continued)
Address .
Register name 7 6 5 4 3 2 1 0
offset
0x08 TIM3_CNTRH CNT15 CNT14 CNT13 CNT12 CNT11 CNT10 CNT9 CNT8
Reset Value 0 0 0 0 0 0 0 0
0x09 TIM3_CNTRL CNT7 CNT6 CNT5 CNT4 CNT3 CNT2 CNT1 CNTO
Reset Value 0 0 0 0 0 0 0 0
OX0A TIM3_PSCR - - - - PSC3 PSC2 PSCH1 PSCO
Reset Value 0 Y 0 Y 0 0 Y Y
OXOB TIM3_ARRH ARR15 ARR14 ARR13 ARR12 ARR11 ARR10 ARR9 ARRS
Reset Value 1 1 1 1 1 1 1 1
0X0C TIM3_ARRL ARR7 ARR6 ARRS5 ARR4 ARR3 ARR2 ARR1 ARRO
Reset Value 1 1 1 1 1 1 1 1
0x0D TIM3_CCR1H CCR115 | CCR114 | CCR113 | CCR112 | CCR111 | CCR110 | CCR19 CCR18
Reset Value 0 0 0 0 0 0 0 0
OXOE TIM3_CCR1L CCR17 CCR16 CCR15 CCR14 CCR13 CCR12 CCR11 CCR10
Reset Value 0 0 Y 0 0 0 0 0
OXOF TIM3_CCR2H CCR215 | CCR214 | CCR213 | CCR212 | CCR211 | CCR210 | CCR29 CCR28
Reset Value 0 0 0 0 0 0 0 0
0x10h TIM3_CCR2L CCR27 | CCR26 | CCR25 | CCR24 | CCR23 | CCR22 | CCR2t CCR20
Reset Value 0 0 0 0 0 0 0 0
Table 38. TIM5 register map
Address Register name 7 6 5 4 3 2 1 0
0x00 TIM5_CR1 ARPE - - - OPM URS uDIS CEN
Reset Value 0 0 0 0 0 0 0 0
0x01 TIM5_CR2 TS MMS2 MMS1 MMS0 - COMS - ccPC
Reset Value 0 0 0 0 0 0 0 0
0X02 TIM5_SMCR MSM TS2 TSt TSO - SMs2 SMS1 SMS0
Reset Value 0 0 0 0 0 0 0 0
0x03 TIM5_IER - TIE - - CC3IE CC2IE CC1IE UIE
Reset Value 0 0 0 0 0 0 0 0
0x04 TIM5_SR1 - TIF - - CC3IF CC2IF CC1IF UIF
Reset Value 0 0 0 0 0 0 0 0
0x05 TIM5_SR2 - - - - CC30F CC20F CC10OF -
Reset Value 0 0 0 0 0 0 0 0
0X06 TIM5_EGR . TG - - CC3G CC2G cC1G uG
Reset Value 0 0 0 0 0 0 0 0
TIM5_CCMR1 ociM2 | ocimi | ocimo | OC1PE ccist | cciso
(output mode)
Reset Value 0 0 0 0 0 0 0 0
0x07
TIM5_CCMRT ICtFa | IC1tF2 | IC1F1 | IC1Fo | ICiPSC1 | Ic1PSco | coist | ©ciso
(input mode)
Reset value 0 0 0 0 0 0 0 0
IYI 243/430

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016
Table 38. TIMS5 register map (continued)
Address Register name 7 6 5 4 3 2 1 0
TIM5_ CCMR2 ocaMm2 | ocam1 0C2M0 | OC2PE CC2s1 CC2S0
(output mode)
Reset Value 0 0 0 0 0 0 0 0
0x08
TIM5_CCMR2 IC2F3 IC2F2 IC2F1 IC2F0 | IC2PSC1 | IC2PSCO | CC281 | CC250
(input mode)
Reset Value 0 0 0 0 0 0 0 0
TIM5_CCMR3 ocaM2 | 0oc3m1 OC3M0 | OC3PE CC3S1 CC3S0
(output mode)
Reset Value 0 0 0 0 0 0 0 0
0x09
TIM5_CCMR3 IC3F3 IC3F2 IC3F1 IC3F0 | IC3PSC1 | IC3PSCO | CC3S1 | CC3s0
(input mode)
Reset Value 0 0 0 0 0 0 0 0
OX0A TIM5_CCER1 - - cceP | CC2E - - CC1P | CCiE
Reset Value 0 Y 0 0 0 0 0 0
Ox0B TIM5_CCER? i i ;]]] cosp | cose
Reset Value 0 0 0 0 0 0 0 0
0X0C TIM5_CNTRH CNT15 CNT14 CNT13 CNT12 CNT11 CNT10 CNT9 CNT8
Reset Value 0 0 0 0 0 0 0 0
0x0D TIM5_CNTRL CNT7 CNT6 CNT5 CNT4 CNT3 CNT2 CNT1 CNTO
Reset Value 0 0 0 0 0 0 0 0
OXOE TIM5_PSCR - - - - PSC3 Psc2 PSCH1 PSCO
Reset Value 0 0 0 0 0 0 0 0
OXOF TIM5_ARRH ARR15 ARR14 ARR13 ARR12 ARR11 ARR10 ARR9 ARRS8
Reset Value 1 1 1 1 1 1 1 1
0x10 TIM5_ARRL ARR7 ARRG ARR5 ARR4 ARR3 ARR2 ARR1 ARRO
Reset Value 1 1 1 1 1 1 1 1
oxi1 TIM5_CCR1H CCR115 | CCR114 | CCR113 | CCR112 | CCR111 | CCR110 | CCR19 CCR18
Reset Value 0 0 0 0 0 0 0 0
0x12 TIM5_CCR1L CCR17 CCR16 CCR15 CCR14 CCR13 CCR12 CCR11 CCR10
Reset Value 0 0 0 0 0 0 0 0
0x13 TIM5_CCR2H CCR215 | CCR214 | CCR213 | CCR212 | CCR211 | CCR210 | CCR29 CCR28
Reset Value 0 0 0 0 0 0 0 0
0x14 TIM5_CCR2L CCR27 | CCR26 | CCR25 | CCR24 | CCR23 | CCR22 | CCR2t CCR20
Reset Value 0 0 0 0 0 0 0 0
ox15 TIM5_CCR3H CCR315 | CCR314 | CCR313 | CCR312 | CCR311 | CCR310 | CCR39 CCR38
Reset Value 0 0 0 0 0 0 0 0
0x16 TIM5_CCR3L CCR37 CCR36 CCR35 CCR34 CCR33 CCR32 CCR31 CCR30
Reset Value 0 0 0 0 0 0 0 0

244/430

RMO0016

8-bit basic timer (TIM4, TIM6)

19

19.1

8-bit basic timer (TIM4, TIM6)

Introduction

The timer consists of an 8-bit auto-reload up-counter driven by a programmable prescaler. It
can be used for time base generation, with interrupt generation on timer overflow.

TIM6 is implemented with the clock/trigger controller for timer synchronization and chaining.

Refer to Section 17.3 on page 140 for the general description of the timer features.

Figure 86. TIM4 block diagram

TmasTeR

TIME BASE UNIT

UEV\!‘I AutoReload Register i /\(UIF

Stop or Clear

UP-COUNTER

Legend:

'Y CK_PSC Ll Prescaler CK CNT
L 1

U—|:

Preload registers transferred
to shadow registers on update
event (UEV) according to
control bit

~B event
A interupt

Figure 87. TIM6 block diagram

fy »
MASTER 4

TGI

TIM4_TRGO

CLOCK/TRIGGER CONTROLLER

TRGO from TIM1 (ITR1) ~
TRGO from TIM2 (ITR2) ITR = TRe=TRGI
TRGO from TIM1 (ITR3)

Legend:

m Preload registers transferred
to shadow registers on update

event (UEV) according to

TIME BASE UNIT

UEV \l‘l AutoReload Register i UIF
w4
lﬁ UEV~h

UP-COUNTER

control bit

~A event

CK_PSC =I Prescaler JLCK-CNT

N intemupt

to TIM1/TIMS timers

245/430

8-bit basic timer (TIM4, TIM6) RMO0016

19.2

19.3

19.4

19.5

246/430

TIM4 main features

The main features include:
® 8-bit up counter auto-reload counter

® 3-bit programmable prescaler allowing dividing (also “on the fly”) the counter clock
frequency by 1, 2, 4, 8, 16, 32, 64 and 128.

@ Interrupt generation
— On counter update: counter overflow

TIM6 main features

The main features include:
® 8-bit up counter auto-reload counter

® 3-bit programmable prescaler allowing dividing (also “on the fly”) the counter clock
frequency by 1, 2, 4, 8, 16, 32, 64 and 128.

® Synchronization circuit to control the timer with external signals and to interconnect
several timers

@ Interrupt generation
— On counter update: counter overflow
— Ontrigger input

TIM4/TIM6 interrupts

The timer has 2 interrupt request sources:
® Update Interrupt (overflow, counter initialization)
e Trigger input (TIM5 only)

TIM4/TIM6 clock selection

The clock source for the timer is the internal clock (fy asTER)- It is connected directly to the
CK_PSC clock that feeds the prescaler driving the counter clock CK_CNT.

Prescaler

The prescaler implementation is as follows:

® The prescaler is based on a 7-bit counter controlled through a 3-bit register (in the
TIMx_PSCR register). It can be changed on the fly as this control register is buffered. It
can divide the counter clock frequency by any power of 2 from 1 to 128.

The counter clock frequency is calculated as follows:

fok_ont = fCK_PsC/Z(PSCR[210])

The prescaler value is loaded through a preload register. The shadow register, which
contains the current value to be used is loaded as soon as the LS Byte has been written.

Read operations to the TIMx_PSCR registers access the preload registers, so no special
care needs to be taken to read them.

574

RMO0016 8-bit basic timer (TIM4, TIM6)

19.6 TIM4/TIM6 registers

19.6.1 Control register 1 (TIMx_CR1)
Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0
ARPE OPM URS uDIS CEN
Reserved
w rw rw rw w

Bit 7 ARPE: Auto-Reload Preload Enable.
0: TIM4_ARR register is not buffered through a preload register. It can be written directly.
1: TIM4_ARR register is buffered through a preload register.

Bits 6:4 Reserved, must be kept cleared.

Bit 3 OPM: One Pulse Mode.
0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the CEN bit).

Bit 2 URS: Update Request Source.

0: When enabled, an update interrupt request is sent as soon as registers are updated (counter
overflow)

1: When enabled, an update interrupt request is sent only when the counter reaches the
overflow/underflow.
Bit 1 UDIS: Update disable.

0: An Update event is generated as soon as a counter overflow occurs or a software update is
generated. Buffered registers are then loaded with their preload values

1: An Update event is not generated, shadow registers keep their value (ARR, PSC). The counter
and the prescaler are re-initialized if the UG bit is set .

Bit 0 CEN: Counter enable.
0: Counter disable.
1: Counter enable.

Ky_l 247/430

8-bit basic timer (TIM4, TIM6) RMO0016

19.6.2 Control register 2 (TIM6_CR2)
Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0
MMS[2:0]
Reserved Reserved
rw w rw
Note: This register is not available in TIM4.

Bit 7 Reserved, must be kept cleared.

Bits 6:4 MMS[2:0]: Master mode selection.

These bits select the information to be sent in master mode to for synchronization (TRGO). The
combination is as follows:
000: Reset - the UG bit from the TIM6_EGR register is used as trigger output (TRGO). If the reset is
generated by the trigger input (clock/trigger mode controller configured in trigger reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter Enable signal is used as trigger output (TRGO). It is used to start several
timers at the same time or to control a window in which a slave timer is enabled. The Counter Enable
signal is generated by a logic OR between CEN control bit and the trigger input when configured in
gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on
TRGO, except if the master/slave mode is selected (see the MSM bit description in the TIM4_SMCR
register).
010: Update - The update event is selected as trigger output (TRGO).
011: Reserved
100: Reserved
101: Reserved
111: Reserved

Bits 3:0 Reserved, must be kept cleared.

248/430 Ky_’

RMO0016

8-bit basic timer (TIM4, TIM6)

19.6.3 Slave mode control register (TIM6_SMCR)
Address offset: 0x02
Reset value: 0x00
7 6 5 4 3 2 1 0
MSM TS[2:0] SMS[2:0]
Reserved
rw rw w rw w rw rw
Note: This register is not available in TIM4.
Bit 7 MSM: Master/slave mode.
0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization
between timers (through TRGO).
Bits 6:4 TS[2:0]: Trigger selection.
This bit-field selects the trigger input to be used to synchronize the counter.
000: reserved
001: reserved
010: internal trigger ITR2 connected to TIM5 TRGO
011: internal trigger ITR3 connected to TIM1 TRGO
100: reserved
101: reserved
110: reserved
111: reserved
Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid
wrong edge detections at the transition.
Bit 3 Reserved, always read as 0.
Bits 2:0 SMSJ[2:0]:Clock/trigger/slave mode selection.

When external signals are selected, the active edge of the trigger signal (TRGI) is linked to the polarity
selected on the external input (see Input Control register and Control Register description).

000: Clock/trigger controller disabled - if CEN = ‘1’ then the prescaler is clocked directly by the
internal clock.

001: Reserved.

010: Reserved.

011: Reserved.

100: Trigger reset mode - Rising edge of the selected trigger signal (TRGI) reinitializes the counter
and generates an update of the registers.

101: Gated Mode - The counter clock is enabled when the trigger signal (TRGI) is high. The counter
stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are
controlled.

110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only
the start of the counter is controlled.

111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

249/430

8-bit basic timer (TIM4, TIM6) RMO0016

19.6.4 Interrupt enable register (TIMx_IER)
Address offset: 0x01(TIM4), 0x03 (TIM6)

Reset value: 0x00

7 6 5 4 3 2 1 0
TIE UIE
Reserved Reserved
w w

Bit 7 Reserved, must be kept cleared.

Bit 6 TIE: Trigger Interrupt Enable.
0: Trigger Interrupt disabled.
1: Trigger Interrupt enabled.
Note: In TIM4 this bit is reserved.

Bits 5:1 Reserved, must be kept cleared.
Bit 0 UIE: Update Interrupt Enable.
0: Update Interrupt disabled.
1: Update Interrupt enabled.

19.6.5 Status register 1 (TIMx_SR1)
0x02(TIM4), 0x04 (TIM6)

Reset value: 0x00

6 5 4 3 2 1 0

UIF

Reserved
rc_w0

Bit 7
Bit 6

Bits 5:1
Bit 0

250/430

Reserved, must be kept cleared.

TIF: Trigger Interrupt Flag.

This flag is set by hardware on trigger event (active edge detected on TRGI signal, both edges in
case gated mode is selected). It is cleared by software.

0: No trigger event occurred.

1: Trigger interrupt pending.
Note: In TIM4 this bit is reserved.
Reserved, must be kept cleared.

UIF: Update Interrupt Flag.

This bit is set by hardware on an update event. It is cleared by software.

0: No update occurred.

1: Update interrupt pending. This bit is set by hardware when the registers are updated:
— at overflow if UDIS=0 in the TIM4_CR1 register.

— when CNT is re-initialized by software using the UG bit in the TIM4_EGR register, if URS=0 and
UDIS=0 in the TIM4_CR1 register.

RMO0016

8-bit basic timer (TIM4, TIM6)

19.6.6

Event generation register (TIMx_EGR)
Address offset: 0x03(TIM4), 0x05 (TIM6)

Reset value: 0x00
6 5 4 3

Reserved

TG

w

Reserved

UG

Bit 7
Bit 6

Bits 5:1
Bit 0

19.6.7

Reserved, must be kept cleared.

TG: Trigger Generation.

This bit is set by software in order to generate an event, it is automatically cleared by hardware.

0: No action.

1: The TIF flag is set in TIM4_SR1 register. An interrupt is generated if enabled by the TIE bit.

Note: In TIM4 this bit is reserved.
Reserved, must be kept cleared.

UG: Update Generation.

This bit can be set by software, it is automatically cleared by hardware.

0: No action.

1: Re-initializes the counter and generates an update of the registers. Note that the prescaler

counter is cleared too.

Counter (TIMx_CNTR)
Address offset: 0x04(TIM4), 0x06 (TIM6)

Reset value: 0x00
6 5 4 3

CNT[7:0]

rw

19.6.8

Bits 7:0 CNT[7:0]: Counter Value

Prescaler register (TIMx_PSCR)
Address offset: 0x05(TIM4), 0x07 (TIM6)

Reset value: 0x00
6 5 4 3

1

Reserved

PSC[2:0]

w

rw

Bits 7:3 Reserved, must be kept cleared

251/430

8-bit basic timer (TIM4, TIM6) RMO0016

Bits 2:0 PSC[2:0]: Prescaler Value.

The prescaler value divides the CK_PSC clock frequency.

The counter clock frequency foi cnr is equal to fok pgc / 2(PSCI2:0D,

PSC contains the value which will be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIM4_EGR register).

This means that an update event must be generated in order that a new prescaler value can be taken
into account.

19.6.9 Auto-reload register (TIMx_ARR)
Address offset: 0x06 (TIM4), 0x08 (TIM®6)
Reset value: OxFF
7 6 5 4 3 2 1 0
ARR[7:0]
w w w w w w w w

Bits 7:0 ARR[7:0]: Autoreload Value

252/430

RMO0016

8-bit basic timer (TIM4, TIM6)

19.6.10 TIM4/TIM6 register map and reset values

Table 39. TIM4 register map
Address | Register name 7 6 5 4 3 2 1 0
0X00 TIM4_CR1 ARPE - - - OPM URS uDIS CEN
Reset Value 0 0 0 0 0 0 0 0
TIM4_IER UIE
0x01 Reset Value 0 0 0 0 0 0 0 0
TIM4_SR1) .)]]]) UIF
0x02 Reset Value 0 0 0 0 0 0 0 0
TIM4_EGR) .]) }]] UG
0x03 Reset Value 0 0 0 0 0 0 0 0
0x04 TIM4_CNTR CNT7 CNT6 CNT5 CNT4 CNT3 CNT2 CNT1 CNTO
Reset Value 0 0 0 0 0 0 0 0
0x05 TIM4_PSCR - - - - - PSC2 PSC1 PSCO
Reset Value 0 0 0 0 0 0 0 0
0X06 TIM4_ARR ARR7 ARR6 ARR5 ARR4 ARR3 ARR2 ARR1 ARRO
Reset Value 1 1 1 1 1 1 1 1
Table 40. TIM6 register map
Agfc::::,s Register name 7 6 5 4 3 2 1 0
0x00 TIM6_CR1 ARPE - - - OPM URS uDIS CEN
Reset Value 0 0 0 0 0 0 0 0
0x01 TIM6_CR2 - MMS2 MMSH MMSO0 - - - -
Reset Value 0 0 0 0 0 0 0 0
0X02 TIM6_SMCR MSM TS2 TS1 TSO - SMs2 SMST SMS0
Reset Value 0 0 0 0 0 0 0 0
TIM6_IER - TIE . - - . - UIE
0x03 Reset Value 0 0 0 0 0 0 0 0
TIM6_SR1 - TIF N N . _ B} UIF
0x04 Reset Value 0 0 0 0 0 0 0 0
TIM6_EGR) TG } }] ;] UG
0x05 Reset Value 0 0 0 0 0 0 0 0
CNT7 CNT6 CNT5 CNT4 CNT3 CNT2 CNT1 CNTO
0x06 TIM6_CNTR v v . 0 v . 0 v
. B] - ; PSC2 PSCT PSCO
0x07 TIM6_PSCR . . ; ; . 0 . -
ARR7 ARR6 ARR5 ARR4 ARR3 ARR2 ARR1 ARRO
0x08 TIM6_ARR ! ! ! ! ! ! ! !
IYI 253/430

Serial peripheral interface (SPI) RM0016

20

20.1

20.2

254/430

Serial peripheral interface (SPI)

Introduction

The Serial Peripheral Interface (SPI) allows half/ full duplex, synchronous, serial
communication with external devices. The interface can be configured as the master and in
this case it provides the communication clock (SCK) to the external slave device. The
interface is also capable of operating in multi-master configuration.

It may be used for a variety of purposes, including simplex synchronous transfers on 2 lines
with a possible bi-directional data line or reliable communication using CRC checking.

SPI main features

Full duplex synchronous transfers (on 3 lines)

Simplex synchronous transfers on 2 lines with or without a bi-directional data line
Master or slave operation

8 Master mode frequencies (fyasTer/2 max.)

Slave mode frequency (fyasTeR/2 Mmax.)

Faster communication - Maximum SPI speed: 10 MHz

NSS management by hardware or software for both master and slave
Programmable clock polarity and phase

Programmable data order with MSB-first or LSB-first shifting
Dedicated transmission and reception flags with interrupt capability
SPI bus busy status flag

Master mode fault and overrun flags with interrupt capability
Hardware CRC feature for reliable communication:

— CRC value can be transmitted as last byte in Tx mode

— CRGC error checking for last received byte

Wake-up capability:
The MCU wakes up from low power mode in full or half duplex transmit-only modes

RMO0016 Serial peripheral interface (SPI)

20.3 SPI functional description

20.3.1 General description

The block diagram of the SPI is shown in Figure 88.

Figure 88. SPI block diagram

) ADDRESS AND DATA BUS
¢)
READ
RX BUFFER
MOSIL} |4 y TT
J xiE |rxiE | ERR wkiE
[| |SHIFTREGISTER IE 0joj o} 0
MISOL} > ——
TT LSBFirst
BSY| OVR|MOD|CRC | WK TXE |RXNE
L TX BUFFER S F |err| YP 0
WRITE
COMMUNICATION 0
{ CONTROL < .
MASTER
SCKL BAUD RATE GENERATOR [¢—— | BR[2:0] 4 X
l
r + 3
LSB
Fingq SPE|BR2| BR1| BRO MSTRCPOLCPHA
]] —
L| MASTER CONTROL LOGIC BIDI | BIDI|CRC |CRC| o | RX
MODE OE | EN |Next ONLY SSM| Ssi
t v v v
NSSEf

The SPI is connected to external devices through 4 pins:

® MISO: Master In / Slave Out data (port C7). This pin can be used to transmit data in
slave mode and receive data in master mode.

® MOSI: Master Out / Slave In data (port C6). This pin can be used to transmit data in
master mode and receive data in slave mode.

® SCK: Serial Clock output (port C5) for SPI masters and Serial Clock input for SPI
slaves.

® NSS: Slave select (port E5). This is a optional pin to select master/ slave mode. This
pin acts as a ‘chip select’ to let the SPI master communicate with slaves individually
and to avoid contention on the data lines. Slave NSS inputs can be driven by standard
I/O ports on the master Device.

255/430

Serial peripheral interface (SPI) RM0016

Note:

Note:

256/430

A basic example of interconnections between a single master and a single slave is
illustrated in Figure 89.

When using the SPI in high speed mode, the I/Os where SPI outputs are connected should
be programmed as fast slope outputs in order to be able to reach the expected bus speed.

Figure 89. Single master/ single slave application

MASTER SLAVE
MSBit ¢ LSBit MSBit «— LSBit
8-BIT SHIFT REGISTER |4——{ 1o MISO | 8-BIT SHIFT REGISTER

’f A A

DMOSI MOSI &
SPI
CLOCK [SCK SCK,

GENERATOR NSS v NSS
)
V\d Not used if NSS is managed

KT_/ by software

The MOSI pins are connected together and the MISO pins are connected together. In this
way data is transferred serially between master and slave (most significant bit first).

The communication is always initiated by the master. When the master device transmits
data to a slave device via MOSI pin, the slave device responds the MISO pin. This implies
full duplex communication with both data out and data in synchronized with the same clock
signal (which is provided by the master device via the SCK pin).

Slave select (NSS) pin management

As an alternative to using the NSS pin to control the Slave Select signal (NSS pin, port E5),
the application can choose to manage the Slave Select signal by software. This is
configured by the SSM bit in the SPI_CSR register (see Figure 90). In software
management, the external NSS pin is free for other application uses and the internal NSS
signal level is driven by writing to the SSI bit in the SPI_CSR register.

Figure 90. Hardware/software slave select management

SSM bit

SSI bit

B NSS Internal

»

N

NSS external pin 0
L

Clock phase and clock polarity

Four possible timing relationships may be chosen by software, using the CPOL and CPHA
bits. The CPOL (clock polarity) bit controls the steady state value of the clock when no data
is being transferred. This bit affects both master and slave modes. If CPOL is reset, SCK pin
has a low level idle state. If CPOL is set, SCK pin has a high level idle state.

Make sure the SPI pin is configured at the idle state level of the SPI in order to avoid
generating an edge on the SPI clock pin when enabling or disabling the SPI cell.

574

RMO0016

Serial peripheral interface (SPI)

Note:

If CPHA (clock phase) bit is set, the second edge on the SCK pin (falling edge if the CPOL
bit is reset, rising edge if the CPOL bit is set) is the MSBit capture strobe. Data is latched on
the occurrence of the first clock transition. If CPHA bit is reset, the first edge on the SCK pin
(falling edge if CPOL bit is set, rising edge if CPOL bit is reset) is the MSBit capture strobe.
Data is latched on the occurrence of the second clock transition.

The combination of the CPOL clock polarity and CPHA (clock phase) bits selects the data
capture clock edge.

Figure 91, shows an SPI transfer with the four combinations of the CPHA and CPOL bits.
The diagram may be interpreted as a master or slave timing diagram where the SCK pin, the
MISO pin, the MOSI pin are directly connected between the master and the slave device.

Prior to changing the CPOL/CPHA bits the SPI must be disabled by resetting the SPE bit.
Master and slave must be programmed with the same timing mode.

The idle state of SCK must correspond to the polarity selected in the SPI_CRT1 register (by
pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0).

257/430

Serial peripheral interface (SPI)

20.3.2

258/430

Figure 91. Data clock timing diagram

RMO0016

CPHA =1

CPOL =1 §

MISO WX M$Bit>< Bit 6 >< Bp15>< Bit4>< Bit3 >< Bit 2 >< Bit1 | LSBit><
(from master) ! ‘ ! : ! ! : 1

MOSF<><><><><><>O< MSBit>< Bit 6 >< B‘Eit5>< Biit4>< Bit3 >< Bit 2 >< B’:it1>< LiSBit f

(from slave)

) ————

(to slave)

CAPTURE STROBE ‘ ‘ ' ‘ ‘ ‘ ‘ ‘

CPHA =0

CPOL=0 ;

MISO W M$Bit>< Bit 6 >< Bit 5 x Bit4>< Bit3 >< Bit 2 >< Bit 1 ><L$Bit><

(from master)

MOSI % MSBit >< Bit 6 >< B‘itsx Bit4>< Bit3 >< Bit 2 X Bit 1 XLéBn XXX>’

(from slave)

NSS N | | | | [

(to slave) ! | | ! : ‘ ‘

CAPTURE STROBE ‘ ’ l ‘ ‘ ' ‘ ‘

Note: These timings are shown with the LSBFIRST bit reset in the SPI_CR1 register.

Frame format

Data can be shifted out either MSB-first or LSB-first depending on the value of the
LSBFIRST bit in the SPI_CR1 Register.

SPI slave mode

In slave configuration, the serial clock is received on the SCK pin from the master device.

The value set in the BR[2:0] bits in the SPI_CR1 register, does not affect the data transfer

rate.

RMO0016

Serial peripheral interface (SPI)

20.3.3

Procedure

1. Select the CPOL and CPHA bits to define one of the four relationships between the
data transfer and the serial clock (see Figure 91). For correct data transfer, the CPOL
and CPHA bits must be configured the same way in the slave device and the master
device.

2. The frame format (MSB-first or LSB-first depending on the value of the LSBFIRST bit in
the SPI_CR1 register) must be same as the master device.

3. In Hardware mode (refer to Slave select (NSS) pin management on page 256), the
NSS pin must be connected to a low level signal during the complete byte transmit
sequence. In Software mode, set the SSM bit and clear the SSI bit in the SPI_CR2
register.

4. Clear the MSTR bit and set the SPE bit to assign the pins to alternate function.
In this configuration the MOSI pin is a data input and the MISO pin is a data output.

Transmit sequence
The data byte is parallel loaded into the Tx buffer during a write cycle.

The transmit sequence begins when the slave device receives the clock signal and the most
significant bit of the data on its MOSI pin. The remaining 7-bits are loaded into the shift-
register.The TXE flag will be set on the transfer of data from the Tx Buffer to the shift register
and an interrupt will be generated if TXIE bit in the SPI_ICR register is set.

When data transfer is complete:

® The Data in shift register is transferred to Rx Buffer and RXNE flag is set

® An Interrupt is generated if the RXIE bit is set.

After the last sampling clock edge the RXNE bit is set, a copy of the data byte received in

the shift register is moved to the Rx buffer. When the SPI_DR register is read, the SPI
peripheral returns this buffered value.

Clearing of the RXNE bit is performed by reading the SPI_DR register.

SPI master mode

In a master configuration, the serial clock is generated on the SCK pin.

Procedure

1. Select the BR[2:0] bits to define the serial clock baud rate (see SPI_CR1 register).

2. Select the CPOL and CPHA bits to define one of the four relationships between the
data transfer and the serial clock (see Figure 91).

3. Configure the LSBFIRST bit in the SPI_CR1 register to define the Frame Format

4. In Hardware mode, connect the NSS pin to a high level signal during the complete byte
transmit sequence. In software mode, set the SSM and SSI bits in the SPI_CR2
register.

5. The MSTR and SPE bits must be set (they remain set only if the NSS pin is connected
to a high level signal).

In this configuration the MOSI pin is a data output and to the MISO pin is a data input.

259/430

Serial peripheral interface (SPI) RM0016

20.3.4

260/430

Transmit sequence
The transmit sequence begins when a byte is written in the Tx Buffer.

The data byte is parallel loaded into the 8-bit shift register (from the internal bus) during first
bit transmission and then shifted out serially to the MOSI pin MSB first or LSB first
depending on the LSBFIRST bit in the SPI_CR1 register. The TXE flag will be set on the
transfer of data from the Tx Buffer to the shift register and an interrupt will be generated if
TXIE bit in the SPI_ICR register is set.

When data transfer is complete

® The data in shift register is transferred to RX Buffer and the RXNE flag is set

® An Interrupt is generated if the RXIE bit is set in the SPI_ICR register

At the last sampling clock edge the RXNE bit is set, a copy of the data byte received in the

shift register is moved to the Rx buffer. When the SPI_DR register is read, the SPI
peripheral returns this buffered value.

Clearing the RXNE bit is performed by reading the SPI_DR register.

A continuous transmit stream can be maintained if the next data to be transmitted is put in
the Tx buffer once the transmission is started. Note that TXE flag should be ‘1’ before an
attempt to write the Tx buffer.

Simplex communication

The SPl is capable of operating in simplex mode in 2 configurations.
® 1 clock and 1 bi-directional data wire
® 1 clock and 1 data wire (Rx-only or full duplex)

1 Clock and 1 bi-directional data wire

This mode is enabled by setting the BDM bit in the SPI_CR2 register. In this mode SCK is
used for the clock and MOSI in master or MISO in slave mode is used for data
communication. The transfer direction (Input/Output) is selected by the BDOE bit in the
SPI_CR2 register. When this bit is 1, the data line is output otherwise it is input.

1 Clock and 1 data wire (Rx-only or full duplex)

In order to free an I/O pin so it can be used for other purposes, you can disable the SPI
output function by setting the RXONLY bit in the SPI_CR2 register. In this case, SPI will
function in Receive-only mode. When the RXONLY bit is reset, the SPI will function in full
duplex mode.

Receive-only mode

To start the communication in receive-only mode, you have to configure and enable the SPI.

® In master mode, the communication starts immediately and stops when the SPE bit is
reset and the current reception terminates. There is no need to read the BUSY flag in
this mode. It is always set, as communication is ongoing and bus is busy until the SPE
bit is reset.

® In slave mode, the SPI will continue to receive as long as the NSS is pulled down (or
the SSI bit is reset) and the SCK is running.

RMO0016

Serial peripheral interface (SPI)

Note:

20.3.5

20.3.6

The SPI can be used in Tx-only mode when the RXONLY bit in the SPI_CR2 register is
reset, the RX pin (MISO in master or MOSI in slave) can be used as GPIO. In this case,
when the data register is read, it does not contain the received value.

Status flags

There are three status flags to allow the application to completely monitor the state of the
SPI bus.

Busy flag

This flag indicates the state of the communication layer of the SPI. When it is set, it indicates
that the SPI is busy communicating and/or there is a valid data byte in the Tx buffer waiting
to be transmitted. The purpose of this flag is to indicate if there is any communication
ongoing on the SPI bus or not. This flag will be set as soon as:

1. Data is written in the SPI_DR register in master mode
2. The SCK clock is present in slave mode

The BUSY flag will reset as soon as a byte is transmitted/ received. This flag is set and reset
by hardware. You can monitor this flag to avoid write collision errors. Writing to this flag has
no effect. This flag is has meaning only when the SPE bit is set.

Tx buffer empty flag (TXE)

This flag when set indicates that the Tx buffer is empty and the next data to be transmitted
can be loaded into the buffer. The TXE flag is reset when the Tx buffer already has a data
which is to be transmitted. This flag is reset when the SPI is disabled (SPE bit is reset).

Rx buffer not empty (RXNE)

This flag when set indicates that there is a valid received data in the Rx Buffer. This flag is
reset when SPI Data register is read.

CRC calculation

A CRC calculator has been implemented for communication reliability. Separate CRC
calculators are implemented for transmitted data and received data. The CRC is calculated
using a programmable polynomial serially on each bit. The CRC is calculated on the
sampling clock edge defined by the CPHA and CPOL bits in the SPI_CR1 register.

CRC calculation is enabled by setting the CRCEN bit in the SPI_CR1 register. This action
resets the CRC registers (SPI_RXCRCR and SPI_TXCRCR). When the CRCNEXT bit in
SPI_CR2 is set, the SPI_TXCRCR value is transmitted at the end of the current byte
transmission.

If a byte is present in the Tx buffer, the CRC value is transmitted only after the transmission
of this byte. During the transmission of CRC, the CRC calculator is switched off and the
register value remains unchanged.

The CRCERR flag in the SPI_SR register is set if the value received in the shift register
during the SPI_TXCRCR value transmission does not match the SPI_RXCRCR value.

261/430

Serial peripheral interface (SPI) RM0016

Note:

20.3.7

262/430

SPI communication using CRC is possible through the following procedure:

® Program the CPOL, CPHA, LSBfirst, BR, SSM, SSI and MSTR values.

® Program the polynomial in the SPI_CRCPR register

® Enable the CRC calculation by setting the CRCEN bit in the SPI_CR1 register. This
also clears the SPI_RXCRCR and SPI_TXCRCR registers

® Enable the SPI by setting the SPE bit in SPI_CR1

® Start the communication and sustain the communication until all but one byte has been
transmitted or received.

® On writing the last byte to the Txbuffer, set the CRCNext bit in the SPI_CR2 register to
indicate that after transmission of the last byte, the CRC should be transmitted. The
CRC calculation will be frozen during the CRC transmission.

® After transmitting the last byte, the SPI transmits the CRC. CRCNext bit is reset. The
CRC is also received and compared against the SPI_RXCRCR value. If the value does
not match, the CRCERR flag in SPI_SR is set and an interrupt can be generated when
the ERRIE in the SPI_ICR register is set.

With high bit rate frequencies, the user must take care when transmitting CRC. As the
number of used CPU cycles has to be as low as possible in the CRC transfer phase, the
calling of software functions in the CRC transmission sequence is forbidden to avoid errors
in the last data and CRC reception.

Error flags

Master mode fault (MODF)

Master mode fault occurs when the master device has its NSS pin pulled low (in hardware
mode) or SSI bit low (in software mode), this automatically sets the MODF bit. Master mode
fault affects the SPI peripheral in the following ways:

® The MODF bit is set and an SPI interrupt is generated if the ERRIE bit is set.

® The SPE bit is reset. This blocks all output from the device and disables the SPI
interface.

® The MSTR bit is reset, thus forcing the device into slave mode.

Use the following software sequence to clear the MODF bit:

1. Make a read or write access to the SPI_SR register while the MODF bit is set.

2. Then write to the SPI_CR1 register.

To avoid any multiple slave conflicts in a system comprising several MCUs, the NSS pin

must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits can
be restored to their original state during or after this clearing sequence.

As a security, hardware does not allow you to set the SPE and MSTR bits while the MODF
bit is set.

In a slave device the MODF bit cannot be set. However, in a multi-master configuration, the
device can be in slave mode with this MODF bit set. In this case, the MODF bit indicates that
there might have been a multi-master conflict for system control. You can use an interrupt

routine to recover cleanly from this state by performing a reset or returning to a default state.

574

RMO0016

Serial peripheral interface (SPI)

20.3.8

Note:

20.3.9

Overrun condition

An overrun condition occurs, when the master device has sent data bytes and the slave
device has not cleared the RXNE bit resulting from the previous data byte transmitted.
When an overrun condition occurs:

® OVRbitis set and an interrupt is generated if the ERRIE bit is set.
In this case, the receiver buffer contents will not be updated with the newly received data

from the master device. A read to the SPI_DR register returns this byte. All other
subsequently transmitted bytes are lost.

Clearing the OVR bit is done by a read access to the SPI_SR register.
CRC error

This flag is used to verify the correctness of the value received when the CRCEN bit in the
SPI_CR2 register is set. The CRCERR flag in the SPI_SR register is set if the value
received in the shift register after the SPI_TXCRCR value transmission does not match the
SPI_RXCRCR value. Refer to Chapter 20.3.6: CRC calculation.

Disabling the SPI

When transfer is terminated, the application can stop the communication by disabling the
SPI peripheral. This is done by resetting the SPE bit. Disabling the SPI peripheral while the
last data transfer is still ongoing does not affect the data reliability if the device is notin
Master transmit mode.

In Master transmit mode (full duplex or simplex transmit-only), the application must make
sure that no data transfer is ongoing by checking the BSY flag in the SPI_SR register before
disabling the SPI master.

SPI low power modes

Table 41. SPI behavior in low power modes

Mode Description
Wait No effect on SPI.
SPl interrupt events cause the device to exit from Wait mode.
SPI registers are frozen.
In Halt mode, the SPI is inactive. If the SPI is in master mode, then
Halt communication resumes when the device is woken up by an interrupt with

“wake-up from Halt mode” capability.
If the SPI is in slave mode, then it can wake up the MCU from Halt mode after

detecting the first sampling edge of data.

Using the SPI to wake up the device from Halt mode

- Full duplex and half duplex transmit-only modes

When the microcontroller is in Halt mode, the SPI is still capable of responding as a slave
provided the NSS pin is tied low or the SSI bit is reset before entering Halt mode.

263/430

Serial peripheral interface (SPI) RM0016

264/430

When the first sampling edge of data (as defined by the CPHA bit) is detected:

The WKUP bit is set in the SPI_SR register
An interrupt is generated if the WKIE bit in the SPI_ICR register is set.
This interrupt wakes-up the device from Halt mode.

Due to the time needed to restore the system clock, the SPI slave sends or receives a
few data before being able to communicate correcily. It is then mandatory to use the
following protocol:

— a specific value is written into the SPI_DR before entering Halt mode. This value
indicates to the external master that the SPI is in Halt mode

— The external master sends the same byte continuously until it receives from the
SPI slave device a new value other than the unique value indicating the SPl is in
Halt mode. This new value indicates the SPI slave has woken-up and can correctly
communicate.

- Half duplex receive-only mode

The wake-up functionality is not guaranteed in this half duplex receive-only mode since the
time needed to restore the system clock can be greater than the data reception time. A lost
of data in reception would then be induced.

RMO0016

Serial peripheral interface (SPI)

20.3.10 SPI interrupts

Table 42. SPI interrupt requests

Enable Exit Exit
Event

Interrupt event fla control from from

9 bit Wait Halt

Transmit buffer empty flag TXE TXIE Yes No
Receive buffer not empty flag RXNE RXIE Yes No
Wake-up event flag WKUP WKIE Yes Yes
Master mode fault event MODF Yes No
Overrun error OVR ERRIE Yes No
CRC error flag CRCERR Yes No

265/430

Serial peripheral interface (SPI) RM0016

204 SPI registers

20.4.1 SPI control register 1 (SPI_CR1)

Address offset: 0x00
Reset Value: 0x00

7 6 5 4 3 2 1 0
LSBFIRST SPE BR [2:0] MSTR CPOL CPHA
w rw w w rw w w rw

Bit 7 LSBFIRST: Frame format (")
0: MSB is transmitted first
1: LSB is transmitted first

Bit 6 SPE: SPI Enable (")
0: Peripheral disabled
1: Peripheral enabled

Bits 5:3 BR[2:0]: Baud rate control
000: fMASTER/z
001: fMASTER/4
010: fMASTER/s

011: fMASTER/1 6
100: fMASTER/sz

101: fMASTER/64
110: fMASTER/1 28
111: fMASTER/256
Note: These bits should not be changed when the communication is ongoing.

Bit 2 MSTR: Master selection ()
0: Slave configuration
1: Master configuration

Bit1 CPOL: Clock polarity (1)
0: SCK to 0 when idle
1: SCK to 1 when idle

Bit0 CPHA: Clock phase ()
0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge

1. This bit should not be changed when the communication is ongoing.

266/430 Kﬁ

RMO0016 Serial peripheral interface (SPI)

20.4.2 SPI control register 2 (SPI_CR2)

Address offset: 0x01
Reset Value: 0x00

7 6 5 4 3 2 1 0
BDM BDOE CRCEN CRCNEXT RXOnly SSM SSI
Reserved
w w w w rw rw w

Bit 7 BDM: Bi-directional data mode enable
0: 2-line uni-directional data mode selected
1: 1-line bi-directional data mode selected

Bit 6 BDOE: Input/Output enable in bi-directional mode
This bit selects the direction of transfer in bi-directional mode when BDM is set to 1.
0: Input enabled (receive-only mode)
1: Output enabled (transmit-only mode)
In master mode, the MOSI pin is used and in slave mode, the MISO pin is used.

Bit 5 CRCEN: Hardware CRC calculation enable
0: CRC calculation disabled
1: CRC calculation Enabled
Note: This bit should be written only when SPI is disabled (SPE = ‘0’) for correct operation

Bit 4 CRCNEXT: Transmit CRC next
0: Next transmit value is from Tx buffer
1: Next transmit value is from Tx CRC register

Bit 3 Reserved, must be kept cleared.

Bit 2 RXONLY: Receive only
0: Full duplex (Transmit and receive)
1: Output disabled (Receive only mode)
This bit combined with BDM bit selects the direction of transfer in 2 line uni-directional mode

This bit is also useful in a multi-slave system in which this particular slave is not accessed, the
output from the accessed slave is not corrupted.

Bit 1 SSM: Software slave management
0: Software slave management disabled
1: Software slave management enabled
When the SSM bit is set, the NSS pin input is replaced with the value coming from the SSI bit

Bit 0 SSI: Internal slave select
This bit has effect only when SSM bit is set. The value of this bit is forced onto the NSS pin and the
1/O value of the NSS pin is ignored.
0: Slave mode
1: Master mode

Ky_l 267/430

Serial peripheral interface (SPI) RM0016

20.4.3 SPI interrupt control register (SPI_ICR)
Address offset: 0x02
Reset Value: 0x00
7 6 5 4 3 2 1 0
TXIE RXIE ERRIE WKIE
Reserved
w rw rw rw
Bit 7 TXIE: Tx buffer empty interrupt enable
0: TXE interrupt masked
1: TXE interrupt not masked. This allows a interrupt request to be generated when the TXE flag is
set.
Note: To function correctly, the TXIE bit should not be set at the same time.
Bit 6 RXIE: RX buffer not empty interrupt enable
0: RXNE interrupt masked
1: RXNE interrupt not masked. This allows a interrupt request to be generated when the RXNE flag
is set.
Note: To function correctly, the RXIE bit should not be set at the same time.
Bit 5 ERRIE: Error interrupt enable
0: Error interrupt is masked
1: Error interrupt is enabled. This allows a interrupt request to be generated when an error condition
occurs (CRCERR, OVR, MODF)
Bit 4 WKIE: Wakeup interrupt enable
0: wakeup interrupt masked
1: wakeup interrupt enabled. This allows a interrupt request to be generated when the WKUP flag is
set.
Bits 3:0 Reserved, must be kept cleared.
268/430 17

RMO0016

Serial peripheral interface (SPI)

20.4.4

SPI status register (SPI_SR)
Address offset: 0x03

Reset value: 0x02

6 5 4 3 2 1

BSY

OVR MODF CRCERR WKUP Reserved TXE RxNE

rc_w0 rc_w0 rc_w0 rc_w0 r r

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2
Bit 1

Bit0

BSY: Busy flag
0: SPI not busy
1: SPI is busy in communication or Tx buffer is not empty
This flag is set and reset by hardware.
Note: In master receiver only mode (1-line bidirectional), checking the BSY Flag is forbidden.

OVR: Overrun flag
0: No Overrun occurred
1: Overrun occurred
This flag is set by hardware and reset by a software sequence.

MODF: Mode fault
0: No Mode fault occurred
1: Mode fault occurred
This flag is set by hardware and reset by a software sequence.

CRCERR: CRC error flag
0: CRC value received matches the SPI_RXCRCR value
1: CRC value received does not match the SPI_RXCRCR value
This flag is set by hardware and cleared by software writing O.

WKUP: Wake-up Flag
0: No wake-up event occurred
1: wake-up event occurred

This flag is set on the first sampling edge on SCK when the STM8 is in Halt mode and the SPI is

configured as slave.
This flag is reset by software writing 0.

Reserved, must be kept cleared.

TXE: Transmit buffer empty
0: Tx buffer not empty
1: Tx buffer empty

RxNE: Receive buffer not empty
0: Rx buffer empty
1: Rx buffer not empty

269/430

Serial peripheral interface (SPI) RM0016
20.4.5 SPI data register (SPI_DR)
Address offset: 0x04
Reset value: 0x00
7 6 5 4 3 2 1 0
DRI[7:0]
rw rw w rw rw w rw rw
Bits 7:0 DR[7:0]: Data register
Byte received or to be transmitted.
The data register is split into 2 buffers - one for writing (Transmit buffer) and another one for reading
(Receive buffer). A write to the data register will write into the Tx buffer and a read from the data
register will return the value held in the Rx buffer.
20.4.6 SPI CRC polynomial register (SPI_CRCPR)
Address Offset: 0x05
Reset Value: 0x07
7 6 5 4 3 2 1 0
CRCPOLY[7:0]
rw rw w rw rw rw rw rw
Bits 7:0 CRCPOLY[7:0]: CRC polynomial register
This register contains the polynomial for the CRC calculation.
The CRC polynomial (0x07) is the reset value of this register. You can configure an other polynomial
as required for your application.
20.4.7 SPI Rx CRC register (SPI_RXCRCR)
Address offset: 0x06
Reset Value: 0x00
7 6 5 4 3 2 1 0
RxCRC[7:0]
r r r r r r r r
Bits 7:0 RXCRC[7:0]: Rx CRC Register
When CRC calculation is enabled, the RxCRC[7:0] bits contain the computed CRC value of the
subsequently received bytes. This register is reset when the CRCEN bit in SPI_CR2 register is
written to 1. The CRC is calculated serially using the polynomial programmed in the SPI_CRCPR
register.
Note: A read to this register when the BSY Flag is set could return an incorrect value.
270/430 17

RMO0016

Serial peripheral interface (SPI)

20.4.8 SPI Tx CRC register (SPI_TXCRCR)
Address offset: 0x07
Reset value: 0x00
7 6 5 4 3 2 1 0
TXCRC[7:0]
r r r r r r r r
Bits 7:0 TxCRCJ[7:0]: Tx CRC register
When CRC calculation is enabled, the TxCRC[7:0] bits contain the computed CRC value of the
subsequently transmitted bytes. This register is reset when the CRCEN bit of SPI_CR2 is written to
1. The CRC is calculated serially using the polynomial programmed in the SPI_CRCPR register.
Note: A read to this register when the BSY flag is set could return a incorrect value
20.5 SPI register map and reset values
Table 43. SPI register map and reset values
Address Register 7 6 5 4 3 2 1 0
offset name
0x00 SPI_CR1 LSBFirst SPE BR2 BR1 BR1 MSTR CPOL CPHA
Reset Value 0 0 0 0 0 0 0 0
0x01 SPI_CR2 BDM BDOE | CRCEN | CRCNEXT | Reserved | RXONLY SSM SSI
Reset Value 0 0 0 0 0 0 0 0
0x02 SPI_ICR TXIE RXIE ERRIE WKIE Reserved | Reserved | Reserved Reserved
Reset Value 0 0 0 0 0 0 0 0
0x03 SPI_SR BSY OVR MODF CRCERR WKUP Reserved TXE RXNE
Reset Value 0 0 0 0 0 0 1 0
SPI_DR MSB - - - - - - LSB
0x04 Reset Value 0 0 0 0 0 0 0 0
0x05 SPI_CRCPR MSB - - - - - - LSB
Reset Value 0 0 0 0 0 1 1 1
0%06 SPI_RXCRCR MSB - - - - - - LSB
Reset Value 0 0 0 0 0 0 0 0
0x07 SPI_TXCRCR MSB - - - - - - LSB
Reset Value 0 0 0 0 0 0 0 0
17 271/430

Inter-integrated circuit (12C) Interface RM0016

21

21.1

21.2

272/430

Inter-integrated circuit (I2C) Interface

Introduction

12c (Inter-Integrated Circuit) Bus Interface serves as an interface between the
microcontroller and the serial I2C bus. It provides multi-master capability, and controls all
12C bus-specific sequencing, protocol, arbitration and timing. It supports standard and fast
speed modes.

I2C main features

Parallel-bus/I°C protocol converter

Multi-master capability: the same interface can act as Master or Slave
I°C Master features:

— Clock generation

— Start and Stop generation

I°C Slave features:

- Programmable 1°C Address detection

— Stop bit detection

Generation and detection of 7-bit/10-bit addressing and general call
Supports different communication speeds:

— Standard speed (up to 100 kHz),

— Fast speed (up to 400 kHz)

Status flags:

— Transmitter/Receiver mode flag

— End-of-Byte transmission flag

- I2C busy flag

Error flags:

— Arbitration lost condition for master mode

— Acknowledgement failure after address/ data transmission

— Detection of misplaced start or stop condition

— Overrun/Underrun if clock stretching is disabled

3 types of interrupts:

— 1 Communication interrupt

— 1 Error condition interrupt

— 1 Wakeup from Halt interrupt

Wakeup capability:

— MCU wakes up from low power mode on address detection in slave mode.
Optional clock stretching

RMO0016

Inter-integrated circuit (12C) Interface

21.3

I2C general description

In addition to receiving and transmitting data, this interface converts it from serial to parallel
format and vice versa. The interrupts are enabled or disabled by software. The interface is
connected to the 1°C bus by a data pin (SDA) and by a clock pin (SCL). It can be connected
with a standard (up to 100 kHz), or fast (up to 400 kHz) I°C bus.

Mode selection

The interface can operate in one of the four following modes:

® Slave transmitter

® Slave receiver

® Master transmitter

® Master receiver

By default, it operates in slave mode. The interface automatically switches from slave to

master, after it generates a START condition and from master to slave, if an arbitration loss
or a STOP generation occurs, allowing Multi-Master capability.

Communication flow

In Master mode, the I°C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a start condition and ends with a stop condition. Both
start and stop conditions are generated in master mode by software.

In Slave mode, the interface is capable of recognizing its own addresses (7 or 10-bit), and
the General Call address. The General Call address detection may be enabled or disabled
by software.

Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the
start condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is
always transmitted in Master mode.

A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must
send an acknowledge bit to the transmitter. Refer to the following figure.

Figure 92. I2C bus protocol
SDA—R | ——— ——— - -
/ msB X X X \ ACK
SCL
SN\ N\ e\ e\

<4 P
START STOP
CONDITION CONDITION

Acknowledge may be enabled or disabled by software. The I2C interface addresses (7-bit/
10-bit and/or general call address) can be selected by software.

The Block Diagram of the I2C interface is shown in Figure 93.

273/430

Inter-integrated circuit (12C) Interface

RMO0016

274/430

Figure 93. 12C bl

ock diagram

SDA [

SCL [

DATA REGISTER

=

DATA

~~

l4—>» CONTROL

DATA SHIFT REGISTER

4

U

COMPARATOR

il

OWN ADDRESS REGISTER LSB

OWN ADDRESS REGISTER MSB

CLOCK
J«—>» CONTROL

f

CLOCK CONTROL
REGISTER (CCR)

CONTROL REGISTERS |,
(CR1&CR2)
CONTROL
STATUS REGISTERS LOGIC
(SR1&SR2&SR3)
INTERRUPTS

RMO0016 Inter-integrated circuit (12C) Interface
21.4 I12C functional description
By default the I°C interface operates in Slave mode. To switch from default Slave mode to
Master mode a Start condition generation is needed.
21.4.1 I°C slave mode
The peripheral input clock must be programmed in the 12C_FREQR register in order to
generate correct timings. The peripheral input clock frequency must be at least:
® 1 MHzin Standard mode
® 4 MHz in Fast mode
As soon as a start condition is detected, the address is received from the SDA line and sent
to the shift register. Then it is compared with the address of the interface (OARLSB) and
with OAR2 or the General Call address (if ENGC = 1).
Note: In 10-bit addressing mode, the comparison includes the header sequence (11110xx0),

where xx denotes the two most significant bits of the address.

Header or address not matched: the interface ignores it and waits for another Start
condition.

Header matched (10-bit mode only): the interface generates an acknowledge pulse if the

ACK bit is set and waits for the 8-bit slave address.

Address matched: the interface generates in sequence:

® An acknowledge pulse if the ACK bit is set

® The ADDR bit is set by hardware and an interrupt is generated if the ITEVTEN bit is
set.

In 10-bit mode, after receiving the address sequence the slave is always in Receiver mode.
It will enter Transmitter mode on receiving a repeated Start condition followed by the header
sequence with matching address bits and the least significant bit set (11110xx1).

The TRA bit indicates whether the slave is in Receiver or Transmitter mode.

275/430

Inter-integrated circuit (12C) Interface RM0016

Slave transmitter

Following the address reception and after clearing ADDR, the slave sends bytes from the
DR register to the SDA line via the internal shift register.

The slave stretches SCL low until ADDR is cleared and DR filled with the data to be sent
(see Figure 94 Transfer sequencing EV1 EV3).

When the acknowledge pulse is received:
® The TxE bit is set by hardware with an interrupt if the ITEVTEN and the ITBUFEN bits
are set.

If TXE is set and a data was not written in the DR register before the end of the next data
transmission, the BTF bit is set and the interface waits for a write in the DR register,
stretching SCL low.

Figure 94. Transfer sequence diagram for slave transmitter

7-bit slave transmitter:

S [Address |A Datat |A Data2 |A DataN | NA ?‘

10-bit slave transmitter

EV1 | EV3-1|EV3 | EV3 EV3 EV3-2

| S | Header |A | Address | A

Legend: S= Start, S, = Repeated Start, P= Stop, A= Acknowledge, NA= Non-acknowledge,
EVx= Event (with interrupt if I TEVTEN=1)

EV1: ADDR =1, cleared by reading SR1 register followed by reading SR3.
EV3-1: TxE=1, shift register empty.

EV3: TxE=1, cleared by writing DR; shift register not empty

EV3-2: AF=1, AF is cleared by writing ‘0’ in AF bit of SR2 register.

EV1

S, | Header | A Datal [A[PataN [NA [P]
EV1 |EV3_1 EV3| EV3]| - EV3-2

276/430

RMO0016

Inter-integrated circuit (12C) Interface

Slave receiver

Following the address reception and after clearing ADDR, the slave receives bytes from the
SDA line into the DR register via the internal shift register. After each byte the interface
generates in sequence:

® An acknowledge pulse if the ACK bit is set

® The RxNE bit is set by hardware and an interrupt is generated if the ITEVTEN and
ITBUFEN bit is set.

If RXNE is set and the data in the DR register is not read before the end of the next data
reception, the BTF bit is set and the interface waits for a read to the DR register, stretching
SCL low (see Figure 95 Transfer sequencing).

Figure 95. Transfer sequence diagram for slave receiver
7-bit Slave receiver:

|S|Address |A Datat |A Data2 |A DataN | A P]

EV1 EV2 EV2 EV2 EV4 |
10-bit Slave receiver:
[S[Header [A [Address [A Datal [A DataN | A (P]
EV1 Eve| 77 EV2 EV4|

Legend: S= Start, S, = Repeated Start, P= Stop, A= Acknowledge, NA= Non-acknowledge,
EVx= Event (with interrupt if ITEVTEN=1)

EV1: ADDR =1, cleared by reading SR1 register followed by reading SR3.
EV2: RxNE=1, cleared by reading DR register.
EV4: STOPF=1, cleared by reading SR1 register followed by writing CR2 register

See also: Note 7 on page 291

Closing slave communication

After the last data byte is transferred a Stop Condition is generated by the master. The
interface detects this condition and sets,

® the STOPF bit and generates an interrupt if the ITEVTEN bit is set.

Then the interface waits for a read of the SR1 register followed by a write to the CR2 register
(see Figure 95 Transfer sequencing EV4).

277/430

Inter-integrated circuit (12C) Interface RM0016

21.4.2

278/430

I2C master mode

In Master mode, the I°C interface initiates a data transfer and generates the clock signal. A

serial data transfer always begins with a Start condition and ends with a Stop condition.

Master mode is selected as soon as the Start condition is generated on the bus with a

START bit.

The following is the required sequence in master mode.

® Program the peripheral input clock in I2C_FREQR Register in order to generate correct
timings

® Configure the clock control registers

e Configure the rise time register

® Program the I2C_CR1 register to enable the peripheral

® Setthe START bit in the 12C_CR2 register to generate a Start condition

The peripheral input clock frequency must be at least:

® 1 MHzin Standard mode

® 4 MHzin Fast mode

Start condition

Setting the START bit while the BUSY bit is cleared causes the interface to generate a Start
condition and switch to Master mode (M/SL bit set).

Once the Start condition is sent:
® The SB bit is set by hardware and an interrupt is generated if the ITEVTEN bit is set.

Then the master waits for a read of the SR1 register followed by a write in the DR register
with the Slave address (see Figure 96 & Figure 97 Transfer sequencing EV5).

RMO0016 Inter-integrated circuit (12C) Interface

Slave address transmission

Then the slave address is sent to the SDA line via the internal shift register.
® In 10-bit addressing mode, sending the header sequence causes the following event:

— The ADD10 bit is set by hardware and an interrupt is generated if the ITEVTEN bit
is set.

Then the master waits for a read of the SR1 register followed by a write in the DR
register with the second address byte (see Figure 96 & Figure 97 Transfer sequencing
EV9).

— The ADDR bit is set by hardware and an interrupt is generated if the ITEVTEN bit
is set.

® In 7-bit addressing mode, one address byte is sent.
As soon as the address byte is sent,

— The ADDR bit is set by hardware and an interrupt is generated if the ITEVTEN bit
is set.

Then the master waits for a read of the SR1 register followed by a read in the SR3
register (see Figure 96 & Figure 97 Transfer sequencing EV6).

The master can decide to enter Transmitter or Receiver mode depending on the LSB of
the slave address sent.

® In 7-bit addressing mode,
— To enter Transmitter mode, a master sends the slave address with LSB reset.
— To enter Receiver mode, a master sends the slave address with LSB set.

® In 10-bit addressing mode,

— To enter Transmitter mode, a master sends the header and then the slave address
with LSB reset.

— To enter Receiver mode, a master sends the header and then the slave address
with LSB reset. Then it should send a repeated Start condition followed by the
header sequence with matching address bits and the least significant bit set
(11110xx1).

The TRA bit indicates whether the master is in Receiver or Transmitter mode.

Master transmitter

Following the address transmission and after clearing ADDR, the master sends bytes from
the DR register to the SDA line via the internal shift register.

The master waits until TxE is cleared, (see Figure 96 Transfer sequencing EV8).

When the acknowledge pulse is received:

® The TxE bit is set by hardware and an interrupt is generated if the ITEVTEN and
ITBUFEN bits are set.

If TXE is set and a data byte was not written in the DR register before the end of the next
data transmission, BTF is set and the interface waits until BTF is cleared.

Ky_l 279/430

Inter-integrated circuit (12C) Interface RM0016

Note:

280/430

Closing the communication

After writing the last byte to the DR register, the STOP bit is set by software to generate a
Stop condition (see Figure 96 Transfer sequencing EV8_2). The interface goes
automatically back to slave mode (M/SL bit cleared).

Stop condition should be programmed during EV8_2 event, when either TxE or BTF is set.

Figure 96. Transfer sequence diagram for master transmitter
7-bit Master Transmitter:

|? Address| A Datal | A Data2 | A DataN A T‘

EV5 EV6| EVS_1 EV8 Evs| EV8_2
10-bit Master Transmitter
|? Header | A Address | A Datal [A DataN | A T‘
EV5 EV9 EV6| EV8_1 EV8| """ EV8_2

Legend: S= Start, S, = Repeated Start, P= Stop, A= Acknowledge, NA= Non-acknowledge,
EVx= Event (with interrupt if ITEVTEN=1)

EV5: SB=1, cleared by reading SR1 register followed by writing DR register with Address.

EV6: ADDR=1, cleared by reading SR1 register followed by reading SR3.

EV8_1: TxE=1, cleared by writing DR register twice. (first write fills shift register, second fills DR)
EV8: TxE=1, cleared by writing DR register.

EV8_2: TxE=1, BTF = 1 cleared by HW by stop condition

EV9: ADD10=1, cleared by reading SR1 register followed by writing DR register.

See also: Note 7 on page 291

RMO0016

Inter-integrated circuit (12C) Interface

Master receiver

Following the address transmission and after clearing ADDR, the I°C interface enters
Master Receiver mode. In this mode the interface receives bytes from the SDA line into the
DR register via the internal shift register. After each byte the interface generates in
sequence:

® An acknowledge pulse if the ACK bit is set
® The RxNE bit is set and an interrupt is generated if the ITEVTEN and ITBUFEN bits are
set (see Figure 97 Transfer sequencing EV7).

If the RXNE bit is set and the data was not read in the DR register before the end of the next
data reception, the BTF bit is set by hardware and the interface waits for a read in the DR
register.

Closing the communication

The master send a NACK for the last byte received from the slave. After receiving this
NACK, the slave releases the control of the SCL and SDA lines. Then master can send a
Stop/Re-Start condition.

® In order to generate the non-acknowledge pulse after the last received data byte, the
ACK bit must be cleared just after reading the second last data byte (after second last
RxNE event).

® In order to generate the Stop/Re-Start condition, sofware must set the STOP/ START
bit just after reading the second last data byte (after the second last RXNE event).

After the Stop condition generation, the interface goes automatically back to slave mode
(M/SL bit cleared).

Figure 97. Transfer sequence diagram for master receiver

7-bit Master Receiver:

|? Address| A Data1 | A Data2 | A DataN |NA T‘
EV5 EV6 EV7 EV7| """ EV7_1 \ EV7

10-bit Master Receiver

F Header | A Address| A
EV5 EV9 EV6

L]?, Header | A Datal | A DataN [NA P]

EV5 EV6 EV7 | """ EV7_1 | EV7

Legend: S= Start, S, = Repeated Start, P= Stop, A= Acknowledge, NA= Non-acknowledge,
EVx= Event (with interrupt if ITEVTEN=1)

EV5: SB=1, cleared by reading SR1 register followed by writing DR register.

EV6: ADDR=1, cleared by reading SR1 register followed by reading SR3. In 10-bit master receiver mode, this se-
quence should be followed by writing CR2 with START = 1.

EV7: RXxNE=1, cleared by reading DR register.

EV7_1: RxNE=1, cleared by reading DR register, program ACK=0 and STOP request
EV9: ADD10=1, cleared by reading SR1 register followed by writing DR register.

See also: Note 7 on page 291

281/430

Inter-integrated circuit (12C) Interface RM0016

21.4.3

282/430

Error conditions

The following are the error conditions which may cause communication to fail.

Bus error (BERR)

This error occurs when the 12C interface detects a Stop or a Start condition during a byte
transfer. In this case:

® The BERR bit is set and an interrupt is generated if the ITERREN bit is set
® In Slave mode: data is discarded and the lines are released by hardware:

— In case of misplaced start, the slave considers it is a restart and waits for an
address or a stop condition.

— In case of a misplaced stop, the slave acts in the same way as for a stop condition
and the lines are released by hardware.

® In Master mode, a Stop condition must be generated by software.

Acknowledge failure (AF)

This error occurs when the interface detects a non-acknowledge bit. In this case,
® The AF bit is set and an interrupt is generated if the ITERREN bit is set
® A transmitter which receives a NACK must reset the communication:

— If Slave: lines are released by hardware

— If Master: a Stop condition must be generated by software

Arbitration lost (ARLO)

This error occurs when the 12C interface detects an arbitration lost condition. In this case,

® The ARLO bit is set by hardware (and an interrupt is generated if the ITERREN bit is
set)

® The I°C Interface goes automatically back to slave mode (the M/SL bit is cleared)
® Lines are released by hardware

Overrun/underrun error (OVR)

An Overrun error can occur in slave mode when clock stretching is disabled and the 12C
interface is receiving data. The interface has received a byte (RxNE=1) and the data in DR
has not been read, before the next byte is received by the interface. In this case,

® The last received byte is lost.
® In case of Overrun error, software should clear the RXxNE bit and the transmitter should
re-transmit the last received byte.

Underrun error can occur in slave mode when clock stretching is disabled and the 1’C
interface is transmitting data. The interface has not updated the DR with the next byte
(TxE=1), before the clock comes for the next byte. In this case,

® The same byte in the DR register will be sent again

® The user should make sure that data received on the receiver side during an underrun
error is discarded and that the next bytes are written within the clock low time specified
in the 1°C bus standard.

RMO0016 Inter-integrated circuit (12C) Interface
21.4.4 SDA/SCL line control
® If clock stretching is enabled:

— Transmitter mode: If TxE=1 and BTF=1: the interface holds the clock line low
before transmission to wait for the microcontroller to read SR1 and then write the
byte in the Data Register (both buffer and shift register are empty).

— Receiver mode: If RxNE=1 and BTF=1: the interface holds the clock line low after
reception to wait for the microcontroller to read SR1 and then read the byte in the
Data Register (both buffer and shift register are full).

® If clock stretching is disabled in Slave mode:

— Overrun Error in case of RXNE=1 and no read of DR has been done before the
next byte is received. The last received byte is lost.

— Underrun Error in case TxE=1 and no write into DR has been done before the next
byte must be transmitted. The same byte will be sent again.

— Write Collision not managed.

21.5 I2C low power modes

Table 44.

I2C Interface behavior in low power modes

Mode

Description

WAIT

No effect on I2C interface.
I°C interrupts cause the device to exit from Wait mode.

HALT

In Slave mode : Communication is reset, except for configuration registers. Device is in
slave mode.

Wakeup from Halt interrupt is generated if ITEVTEN=1 and address matched (including
allowed headers).

The matched address is not acknowledged in Halt mode so the master has to send it
again when the CPU is woken up to receive an acknowledge.

If NOSTRETCH=0, SCLH will be stretched after acknowledge pulse in halt mode until
WUFH is cleared by software;

None of the flags are set by the address which wakes-up the CPU.

In Master Mode : Communication is frozen until the CPU is woken up. Wakeup from Halt
flag and interrupt are generated if ITEVTEN=1 and there is a HALT instruction.

Note: it is forbidden to enter halt mode while a communication is on going.

283/430

Inter-integrated circuit (12C) Interface

RMO0016

21.6

Note:

284/430

I2C interrupts

Table 45. I2C Interrupt requests

Enable Exit Exit
Event

Interrupt event fla control from from

9 bit Wait Halt

Start bit sent (Master) SB Yes No
Address sent (Master) or Address matched ADDR Yes No

(Slave)
10-bit header sent (Master) ADD10 ITEVTEN Yes No
Stop received (Slave) STOPF Yes No
Data Byte Transfer Finished BTF Yes No
Wakeup from Halt WUFH ITEVTEN Yes Yes
Receive buffer not empty RxNE ITEVTEN Yes No
and
Transmit buffer empty TxE ITBUFEN Yes No
Bus error BERR Yes No
Arbitration loss (Master) ARLO Yes No
ITERREN

Acknowledge failure AF Yes No
Overrun/Underrun OVR Yes No

SB, ADDR, ADD10, STOPF, BTF, RxNE and TxE are ORed on the same interrupt channel.
BERR, ARLO, AF, OVR, are ORed on the same interrupt channel.

WUFH uses another interrupt channel

The 3 previous channels can be ORed on the same one.

RMO0016 Inter-integrated circuit (12C) Interface

Figure 98. 12c interrupt mapping diagram

ITEVTEN
SB

ADDR
ADD10

STOPF
WUFH

.
| 2 it_event

BTF

TxE

RxNE

'

ITERREN
BERR \
ARLO ' P it_error
AF
OVR

285/430

Inter-integrated circuit (12C) Interface RM0016
21.7 12C registers
21.7.1 Control register 1 (12C_CR1)
Address offset: 0x00
Reset value: 0x00
7 6 5 4 3 2 1 0
NOSTRETCH ENGC Reserved PE
rw rw rw
Bit 7 NOSTRETCH: Clock Stretching Disable (Slave mode)
This bit is used to disable clock stretching in slave mode when ADDR or BTF flag is set, until it is
reset by software.
0: Clock stretching enabled
1: Clock stretching disabled
Bit 6 ENGC: General Call Enable
0: General call disabled. Address 00h is NACKed.
1: General call enabled. Address 00h is ACKed.
Bits 5:1 Reserved, read as 0.
Bit 0 PE: Peripheral Enable
0: Peripheral disable
1: Peripheral enable: the corresponding I/Os are selected as alternate functions.
Note: If this bit is reset while a communication is on going, the peripheral is disabled at the end of the
current communication, when back to IDLE state.
All bit resets due to PE=0 occur at the end of the communication.
286/430 17

RMO0016 Inter-integrated circuit (12C) Interface
21.7.2 Control register 2 (12C_CR2)
Address offset: 0x01
Reset value: 0x00
7 6 5 4 3 2 1 0
SWRST reserved POS ACK STOP START
rw rw w rw rw
Bit 7 SWRST: Software Reset
When set, the 12C is under reset state. Before resetting this bit, make sure the 12C lines are released
and the bus is free.
0: 12C Peripheral not under reset state
1: 12C Peripheral under reset state
Note: This bit can be used in case the BUSY bit is set to ‘1’ when no stop condition has been
detected on the bus.
Bits 6:4 Reserved, read as ‘0’
Bit 3 POS: Acknowledge position (for data reception).
This bit is set and cleared by software and cleared by hardware when PE=0.
0: ACK bit controls the (N)ACK of the current byte being received in the shift register.
1: ACK bit controls the (N)ACK of the next byte which will be received in the shift register.
Note: This bit must be configured before data reception starts.
Bit 2 ACK: Acknowledge Enable
This bit is set and cleared by software and cleared by hardware when PE=0.
0: No acknowledge returned
1: Acknowledge returned after a byte is received (matched address or data)
Bit 1 STOP: Stop Generation
The bit is set and cleared by software, cleared by hardware when a Stop condition is detected, set
by hardware when a timeout error is detected.
® In Master Mode:
0: No Stop generation.
1: Stop generation after the current byte transfer or after the current Start condition is sent.
Note: The BTF bitin the I2C_SR1 register must be cleared when the Stop request occurs.
® In Slave mode:
0: No Stop generation.
1: Release the SCL and SDA lines after the current byte transfer.
Bit 0 START: Start Generation

This bit is set and cleared by software and cleared by hardware when start is sent or PE=0.
® In Master Mode:

0: No Start generation

1: Repeated start generation
® In Slave mode:

0: No Start generation

1: Start generation when the bus is free

287/430

Inter-integrated circuit (12C) Interface RM0016
21.7.3 Frequency register (12C_FREQR)
Reset Value: 0000 0000 (00h)
7 6 5 4 3 2 1 0
reserved FREQ[5:0]
r r w rw rw rw rw rw
Bits 7:6 Reserved, read as ‘0’.
Bits 5:0 FREQ[5:0] Peripheral Clock Frequency. ()
Input clock frequency must be programmed to generate correct timings:
The allowed range is between 1 MHz and 50 MHz
000000: not allowed
000001: 1 MHz
000010: 2 MHz
110010: 50 MHz
Higher values: not allowed.
1. The minimum peripheral clock frequencies for respecting the 12C bus timings are:
1 MHz for standard mode and 4 MHz for fast mode
21.74 Own address register LSB (12C_OARL)
Reset Value: 0000 0000 (00h)
7 6 5 4 3 2 1 0
ADDI[7:1] ADDO
rw rw w rw w w w rw

Bits 7:1 ADD[7:1] Interface Address
bits 7:1 of address

Bit 0 ADDO Interface Address
7-bit addressing mode: don’t care
10-bit addressing mode: bit 0 of address

288/430

RMO0016

Inter-integrated circuit (12C) Interface

21.7.5 Own address register MSB (12C_OARH)
Reset Value: 0000 0000 (00h)
7 6 5 4 3 1 0
ADDMODE ADDCONF reserved ADD[9:8] reserved
rw rw r r r rw r
Bit 7 ADDMODE Addressing mode (Slave mode)
0: 7-bit slave address (10-bit address not acknowledged)
1: 10-bit slave address (7-bit address not acknowledged)
Bit 6 ADDCONF Address mode configuration
This bit must set by software (must always be written as ‘1°).
Bits 5:3 Reserved, read as ‘0’.
Bit 2:1 ADD[9:8] Interface address
10-bit addressing mode: bits9:8 of address.
Bit 0 Reserved, read as ‘0’
21.7.6 Data register (12C_DR)
Reset Value: 0000 0000 (00h)
7 6 5 4 3 2 1 0
DRI[7:0]
w rw rw rw rw rw rw rw
Bits 7:0 DR[7:0] Data Register (/23

Byte received or to be transmitted to the bus.

® Transmitter mode: Byte transmission starts automatically when a byte is written in the DR

register. A continuous transmit stream can be maintained if the next data to be transmitted is put

in DR once the transmission is started (TxE=1)
® Receiver mode: Received byte is copied into DR (RxNE=1).

1. In slave mode, the address is not copied into DR.

2. Write collision is not managed (DR can be written if TXE=0).

3. If an ARLO event occurs on ACK pulse, the received byte is not copied into DR and so cannot be read.

289/430

Inter-integrated circuit (12C) Interface

RMO0016

21.7.7

Status register 1 (12C_SR1)
Reset Value: 0000 0000 (00h)

6 5 4 3 2 1 0

TxE

RxNE Reserved STOPF ADD10 BTF ADDR SB

r r r r r r r

Bit 7

Bit 6

Bit 5
Bit 4

Bit 3

Bit 2

290/430

TxE: Data Register Empty (transmitters) ()

0: Data register not empty
1: Data register empty

Set when DR is empty in transmission. TxE is not set during address phase.

Cleared by software writing to the DR register or by hardware after a start or a stop condition or
when PE=0.

RxNE: Data Register not Empty (receivers) (2 3

0: Data register empty
1: Data register not empty

Set when data register is not empty in receiver mode. RxNE is not set during address phase.
Cleared by software reading or writing the DR register or by hardware when PE=0.

Reserved, read as ‘0.

STOPF: Stop detection (Slave mode))

0: No Stop condition detected

1: Stop condition detected
Set by hardware when a Stop condition is detected on the bus by the slave after an acknowledge
(if ACK=1).
Cleared by software reading the SR1 register followed by a write in the CR2 register, or by
hardware when PE=0

ADD10: 10-bit header sent (Master mode) ®)

0: No ADD10 event occurred.
1: Master has sent first address byte (header).

—Set by hardware when the master has sent the first byte in 10-bit address mode.

—Cleared by software reading the SR1 register followed by a write in the DR register of the second
address byte, or by hardware when PE=0.

BTF: Byte Transfer Finished ©)(?)

0: Data Byte transfer not done
1: Data Byte transfer succeeded

Set by hardware when NOSTRETCH=0 and:

In reception when a new byte is received (including ACK pulse) and DR has not been read
yet (RxNE=1).

In transmission when a new byte should be sent and DR has not been written yet (TxE=1).

Cleared by software reading SR1 followed by either a read or write in the DR register or by
hardware after a start or a stop condition in transmission or when PE=0.

RMO0016

Inter-integrated circuit (12C) Interface

N o o MDD

Bit 1 ADDR: Address sent (master mode)/matched (slave mode))

This bit is cleared by software reading SR1 register followed reading SR3, or by hardware when
PE=0.

® Address matched (Slave)

0: Address mismatched or not received.
1: Received address matched.

— Set by hardware as soon as the received slave address matched with the OAR registers
content or a general call is recognized. (when enabled depending on configuration).

® Address sent (Master)

0: No end of address transmission
1: End of address transmission

— For 10-bit addressing, the bit is set after the ACK of the 2nd byte.
— For 7-bit addressing, the bit is set after the ACK of the byte.
Note: ADDR is not set after a NACK reception

Bit0 SB: Start Bit (Master mode) ()

0: No Start condition
1: Start condition generated.
— Setwhen a Start condition generated.
— Cleared by software by reading the SR1 register followed by writing the DR register, or by
hardware when PE=0

The interrupt will be generated when DR is copied into shift register after an ACK pulse. If a NACK is received, copy is not
done and TxE is not set.

The interrupt will be generated when Shift register is copied into DR after an ACK pulse.
RxNE is not set in case of ARLO event.

The STOPF bit is not set after a NACK reception

The ADD10 bit is not set after a NACK reception

The BTF bit is not set after a NACK reception, or in case of an ARLO event.

If fmasTER IS < 2 MHz, it is highly recommended to use interrupts to manage the communication. Otherwise, if polling is
used to manage the SB, ADDR or BTF flags, 5 CPU cycles must be inserted between detecting that the flag has been set
and the second action which clears it (a write to I2C_DR for SB, a write or a read to I2C_DR for BTF, a read from 12C_SR3
for ADDR) these 5 CPU cycles can be inserted by executing 5 NOPs, for example.

Ky_l 291/430

Inter-integrated circuit (12C) Interface

RM0016
21.7.8 Status register 2 (12C_SR2)
Reset Value: 0000 0000 (00h)
7 6 5 4 3 2 1 0
Reserved WUFH Reserved OVR AF ARLO BERR
rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 7:6 Reserved, always read as 0.

Bit 5 WUFH: Wakeup from Halt
0: no wakeup from HALT mode
1: 7-bit address or header match in HALT mode (slave mode) or Halt entered when in master mode.

Note: This bit is set asynchronously in slave mode (during HALT mode). It is set only if ITEVTEN = 1.
— cleared by software writing 0, or by hardware when PE=0.

Bit 4 Reserved, always read as 0.

Bit 3 OVR: Overrun/Underrun

0: No overrun/underrun
1: Overrun or underrun

— Set by hardware in slave mode when NOSTRETCH=1 and:

— Inreception when a new byte is received (including ACK pulse) and the DR register has not
been read yet. New received byte is lost.

In transmission when a new byte should be sent and the DR register has not been written
yet. The same byte is sent twice.

Cleared by software writing 0, or by hardware when PE=0.

Note: if the DR write occurs very close to the SCL rising edge, the sent data is unspecified and a hold
timing error occurs.

Bit2 AF: Acknowledge Failure.

0: No acknowledge failure
1: Acknowledge failure

— Set by hardware when no acknowledge is returned.
— Cleared by software writing 0, or by hardware when PE=0.
Bit 1 ARLO: Arbitration Lost (master mode)
0: No Arbitration Lost detected
1: Arbitration Lost detected
Set by hardware when the interface loses the arbitration of the bus to another master .
— Cleared by software writing 0, or by hardware when PE=0.
After an ARLO event the interface switches back automatically to Slave mode (M/SL=0).
Bit 0 BERR: Bus Error

0: No misplaced Start or Stop condition
1: Misplaced Start or Stop condition

Set by hardware when the interface detects a misplaced Start or Stop condition
— Cleared by software writing 0, or by hardware when PE=0.

292/430 Ky_’

RMO0016 Inter-integrated circuit (12C) Interface

21.7.9 Status register 3 (12C_SR3)
Reset Value: 0000 0000 (00h)

7 6 5 4 3 2 1 0

Reserved GENCALL Reserved TRA BUSY MSL

r r r r r r r r

Bits 7:5 Reserved, read as ‘0’.

Bit 4 GENCALL: General Call Header (Slave mode)

0: No General Call
1: General Call header received when ENGC=1

— Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.
Bit 3 Reserved, read as ‘0.

Bit 2 TRA: Transmitter/Receiver

0: Data bytes received
1: Data bytes transmitted

This bit is set depending on R/W bit of address byte, at the end of total address phase.
It is also cleared by hardware after detection of Stop condition (STOPF=1), repeated Start condition,
loss of bus arbitration (ARLO=1), or when PE=0.

Bit 1 BUSY: Bus Busy

0: No communication on the bus
1: Communication ongoing on the bus

— Set by hardware on detection of SDA or SCL low
— cleared by hardware on detection of a Stop condition.
It indicates a communication in progress on the bus. This information is still updated when the
interface is disabled (PE=0).
Bit 0 MSL: Master/Slave

0: Slave Mode
1: Master Mode

— Set by hardware as soon as the interface is in Master mode (SB=1).

— Cleared by hardware after detecting a Stop condition on the bus or a loss of arbitration
(ARLO=1), or by hardware when PE=0.

Ky_l 293/430

Inter-integrated circuit (12C) Interface

RMO0016

21.7.10 Interrupt register (I12C_ITR)
Reset Value: 0000 0000 (00h)

7 6 5 4 3

2

1

0

reserved

ITBUFEN

ITEVTEN

ITERREN

r r r w w

w

w

rw

Bits 7:3 Reserved, read as ‘0’.
Bit 2 ITBUFEN: Buffer Interrupt Enable

0: TXE =1 or RXNE = 1 does not generate any interrupt.

1:TxXE = 1 or RXNE = 1 generates Event Interrupt

Bit 1 ITEVTEN: Event Interrupt Enable

0: Event interrupt disabled

1: Event interrupt enabled

This interrupt is generated when:
- SB =1 (Master)
— ADDR =1 (Master/Slave)
— ADD10= 1 (Master)
— STOPF =1 (Slave)
— BTF =1 with no TXE or RXNE event
— TxEeventto1if ITBUFEN =1
- RxNE event to 1if ITBUFEN = 1

— WUFH = 1 (asynchronous interrupt to wakeup from halt)

Bit 0 ITERREN: Error Interrupt Enable
0: Error interrupt disabled
1: Error interrupt enabled
This interrupt is generated when:
- BERR=1
- ARLO=1
- AF=1
- OVR=1

294/430

RMO0016 Inter-integrated circuit (12C) Interface

21.7.11 Clock control register low (I12C_CCRL)
Reset Value: 0000 0000 (00h)

7 6 5 4 3 2 1 0

CCR[7:0]

Bits 7:0 CCR[7:0] Clock Control Register (Master mode)
Controls the SCLH clock in master mode.
® Standard Mode:
thigh = CCR * tck
tiow = CCR " ok
® Fast Mode:
If DUTY = 0:
thigh = CCR * tck
tow =2 * CCR * tck
If DUTY = 1: (to reach 400 kHz)
thigh =9 * CCR " tck
tow =16 * CCR * tck
Notes:
— tck = 1/ fek- fok is the input clock to the peripheral configured using clock control register.
— The minimum allowed value is 04h, except in FAST DUTY mode where the minimum allowed value
is 0x01.
= thigh includes the SCLH rising edge
— tiow includes the SCLH falling edge
— I2C communication speed, fscL = 1/(Thigh + Tlow)
— These timings are without filters.

Ky_l 295/430

Inter-integrated circuit (12C) Interface RM0016

21.7.12 Clock control register high (12C_CCRH)
Reset Value: 0000 0000 (00h)

7 6 5 4 3 2 1 0
F/S DUTY reserved CCRJ[11:8]
w w r rw

Bit 7 F/S: I12C master mode selection

0: Standard mode 12C
1: Fast mode 12C

Bit 6 DUTY: Fast Mode Duty Cycle
0: Fast mode tjoy/thigh = 2
1: Fast mode to,/thigh = 16/9 (see CCR)
Bits 5:4 Reserved, must be kept cleared.

Bits 3:0 CCRJ[11:8]: Clock Control Register in Fast/Standard mode (Master mode)

Controls the SCLH clock in master mode.

® Standard Mode:
thigh = CCR " tck
tiow = CCR " tck

® Fast Mode:
If DUTY = 0:
thigh = CCR ™ tck
tow =2 * CCR ™ tck
If DUTY = 1: (to reach 400 kHz)
thigh =9 * CCR ™ tck
tiow =16 * CCR * tck
For instance: in standard mode, to generate a 100 kHz SCL frequency:
If FREQR = 08, tck = 125 ns so CCR must be programmed with 28h
(0x28 <=> 40 x 125 ns = 5000 ns.)

Note: 1 tygy includes the SCLH rising edge
2 [ty includes the SCLH falling edge
3 These timings are without filters.

Note: 1 The CCR registers must be configured only when the I2C is disabled (PE=0).
2 feok = multiple of 10 MHz is required to generate Fast clock at 400 kHz
3 focx =1 MHz is required to generate Standard clock at 100 kHz

296/430 Ky_’

RMO0016 Inter-integrated circuit (12C) Interface

21.7.13 TRISE register (I12C_TRISER)

Address offset: 0xOD

Reset value: 0x02

7 6 5 4 3 2 1 0

Reserved TRISE[5:0]

Bits 7:6 Reserved, read as ‘0’.
Bits 5:0 TRISE[5:0] Maximum Rise Time in Fast/Standard mode (Master mode)

These bits must be programmed with the maximum SCL rise time given in the 12C bus specification,
incremented by 1.

For instance: in standard mode, the maximum allowed SCL rise time is 1000 ns.

If the value in the I2C_FREQR register = 08h, then tck = 125ns therefore the TRISE[5:0] bits must
be programmed with 09h.

(1000 ns /125 ns =8 + 1)
The filter value can also be added to TRISE[5:0].

If the result is not an integer, TRISE[5:0] must be programmed with the integer part, in order to
respect the ty gy parameter.

Note: TRISE[5:0] must be configured only when the I12C is disabled (PE = 0).

297/430

Inter-integrated circuit (12C) Interface RM0016
21.7.14 I2C register map and reset values
Table 46. 12C register map
Address | Register
9 7 6 5 4 3 2 1 0
offset name
0x00 12C_CR1 NO STRETCH ENGC - - - - - PE
Reset Value 0 0 0 0 0 0 0 0
0x01 12C_CR2 SWRST - - - POS ACK STOP START
Reset Value 0 0 0 0 0 0 0 0
0x02 I12C_FREQR - FREQ5 FREQ4 FREQ3 FREQ2 FREQ1 FREQO
Reset Value 0 0 0 0 0 0 0 0
0x03 12C_OARL ADD7 ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 ADDO
Reset Value 0 0 0 0 0 0 0 0
ox04 12C_OARH ADDMODE | ADDCONF - - - ADD9 ADDS8 -
Reset Value 0 0 0 0 0 0 0 0
0x05 Reserved
0x06 12C_DR DR7 DR6 DR5 DR4 DR3 DR2 DR1 DRO
Reset Value 0 0 0 0 0 0 0 0
0x07 12C_SR1 TxE RxNE - STOPF ADD10 BTF ADDR SB
Reset Value 0 0 0 0 0 0 0 0
0x08 12C_SR2 - - WUFH - OVR AF ARLO BERR
Reset Value 0 0 0 0 0 0 0 0
0x09 12C_SR3 - - - GENCALL - TRA BUSY MSL
Reset Value 0 0 0 0 0 0 0 0
OxOA 12C_ITR - - - - ITBUFEN | ITEVTEN | ITERREN
Reset Value 0 0 0 0 0 0 0
Ox0B 12C_CCRL CCR7 CCR6 CCR5 CCR4 CCR3 CCR2 CCR1 CCRO
Reset Value 0 0 0 0 0 0 0 0
0x0C 12C_CCRH FS DUTY - - CCR11 CCR10 CCR9 CCR8
Reset Value 0 0 0 0 0 0 0 0
0x0D I2C_TRISER - - TRISE5 TRISE4 TRISE3 TRISE2 TRISE1 TRISEO
Reset Value 0 0 0 0 0 0 1 0
298/430 [‘II

RMO0016

Universal asynchronous receiver transmitter (UART)

22

22.1

Universal asynchronous receiver transmitter (UART)

Introduction

The UARTSs in the STM8S microcontroller family (UART1, UARTZ2 or UART3) offer a flexible
means of full-duplex data exchange with external equipment requiring an industry standard
NRZ asynchronous serial data format (UART mode). The STM8 UARTSs offer a very wide
range of baud rates and can also be used for multi-processor communication. They also
support LIN (Local Interconnection Network) protocol version 1.3, 2.0 and 2.1 and J2602 in
master mode.

UART1 and UART2 have extended features (see Table 47):
® LIN slave mode is supported in UART2 and UART3.

® Synchronous one-way communication, Smartcard Protocol and IrDA (Infrared Data
Association) SIR ENDEC specifications are supported in UART1 and UART2.

e Half-duplex single wire communication is supported in UART1.

Refer to the datasheet for information on the availability of the UART configurations (UART1,
UART2 or UART3) in each microcontroller type.

Table 47. UART configurations(!)

Feature UART1 UART2 UART3

Asynchronous mode X X X
Multiprocessor Communication X X X
Synchronous communication X X NA
Smartcard mode X X NA
IrDA mode X X NA
Half-Duplex (Single-Wire mode) X NA NA
LIN master mode X X
LIN slave mode NA X X

1. X = supported; NA = not applicable.

299/430

Universal asynchronous receiver transmitter (UART) RMO0016

22.2

300/430

UART main features

Full duplex, asynchronous communications

NRZ standard format (Mark/Space)

High-precision baud rate generator system

— Common programmable transmit and receive baud rates up to fy asTer/16
Programmable data word length (8 or 9 bits)

Configurable stop bits - support for 1 or 2 stop bits

LIN Master mode:

— LIN break and delimiter generation

— LIN break and delimiter detection with separate flag and interrupt source for
readback checking

Transmitter clock output for synchronous communication (UART1, UART2)
IrDA SIR Encoder Decoder (UART1, UART2)

— Support for 3/16 bit duration for normal mode

Smartcard Emulation Capability (UART1, UART2)

— The Smartcard interface supports the asynchronous protocol for Smartcards as
defined in ISO 7816-3 standards

— 1.5 Stop Bits for Smartcard operation

Single wire Half Duplex Communication (UART1)
Separate enable bits for Transmitter and Receiver
Transfer detection flags:

— Receive buffer full

— Transmit buffer empty

— End of Transmission flags

Parity control:

— Transmits parity bit

— Checks parity of received data byte

4 error detection flags:

Overrun error

Noise error

Frame error

Parity error

6 interrupt sources with flags:

— Transmit data register empty

— Transmission complete

— Receive data register full

— Idle line received

— Parity error

— LIN break and delimiter detection (UART2, UART3)

RMO0016

Universal asynchronous receiver transmitter (UART)

22.3

® 2 interrupt vectors:
— Transmitter interrupt
— Receiver interrupt
® Reduced power consumption mode

® Multi-Processor communication - enter into mute mode if address match does not
occur

® Wakeup from mute mode (by idle line detection or address mark detection)
® 2 receiver wakeup modes:

— Address bit (MSB)

— Idle line

UART functional description

The interface is externally connected to another device by two or three pins (see Figure 99:
UART1 block diagram, Figure 100: UARTZ2 block diagram and Figure 101: UART3 block
diagram). Any UART bidirectional communication requires a minimum of two pins: UART
Receive data input (UART_RX) and UART transmit data output (UART_TX):

UART_RX is the serial data input. Over-sampling techniques are used for data recovery by
discriminating between valid incoming data and noise.

UART_TX is the serial data output. When the transmitter is disabled, the output pin returns
to its I/O port configuration. When the transmitter is enabled and nothing is to be
transmitted, the pin is at high level.

Through these pins, serial data is transmitted and received in normal UART mode as frames
comprising:

An Idle Line prior to transmission or reception

A start bit

A data word (8 or 9 bits) least significant bit first

1, 1.5 and 2 Stop bits indicating that the frame is complete

A status register (UART_SR)

Data Register (UART_DR)

16-bit baud rate prescaler (UART_BRR)

Guard time Register for use in Smartcard mode

Refer to the register description for the definitions of each bit.

The following pin is required to interface in synchronous mode:

UART_CK: Transmitter clock output. This pin outputs the transmitter data clock for
synchronous transmission (no clock pulses on start bit and stop bit, and a software
option to send a clock pulse on the last data bit). This can be used to control
peripherals that have shift registers (e.g. LCD drivers). The clock phase and polarity
are software programmable.

The UART_RX and UART_TX pins are used in IrDA mode as follows:

UART_RX = IrDA_RDI: Receive Data Input in I[rDA mode
UART_TX = IrDA_TDO: Transmit Data Output in IrDA mode

301/430

Universal asynchronous receiver transmitter (UART)

RMO0016

Figure 99. UART1 block diagram

UART1_TX [

MCU bus

.

Read
- UART1_DR(DATA REGISTER) |

Transmit Data Register (TDR)

Receive Data Register (RDR)

Z S

|
: o
|

» Transmit Shift Register Receive Shift Register
8 T — — — — _ _ _ A
UART1_RX 1{]
UART1_CK [1« UART_CK CONTROL
UART1_GTR 4
$| GUARD TIME REGISTER
UARTLCR5|7—| UART1_CR3
‘ - ‘ - ‘SCEN |NACK‘HDSEL‘IRLP‘IREN‘ - ‘ ‘ - ‘LINEN‘STOP BITS ‘CLKEN ‘CPOL‘CPHA|LBCL‘
IrDA
SIR ENDEC
BLOCK
UART1_CR4 UART1_CR1
T T T
‘ ; |LBDIEN‘LBDL‘LBDF‘ ADD ‘ _pl R8 |T8 I UARTDI M |WAKE‘PCEN| PS IPIEN‘
UART1_BRR . v v
fwASTER | BAUD RATE TRANSMIT WAKE_UP < . RECEIVER <
GENERATOR CONTROL UNIT CONTROL
y A 4| [

UART1_CR2 | YI Y Y ey vy
|TIEN|TCIEN‘RIEN|ILIEN|TEN|REN|RWU‘SBK‘ ‘TXE| TC ‘RXNE|IDLE‘ OR ‘ NF |FE ‘ PE|

¢ UART1_SR

INTERRUPT <
CONTROL <
302/430 Lys

RM0016 Universal asynchronous receiver transmitter (UART)

Figure 100. UART2 block diagram

MCU bus
Write Read
I UART2_DR(DATA REGISTER) |
| Transmit Data Register (TDR) Receive Data Register (RDR) |
[D |
vaRT2 TX [—{[¢ i 4\ !l |
| > Transmit Shift Register Receive Shift Register |
8 - —_ —_ —_ — _ _ _ o
UART2_RX [1 »D
UART2 CK [1¢ UART2_CK CONTROL
UART2_GTR 4
*| GUARD TIME REGISTER
UARTz,CRF —I UART2_CR3
‘ - ‘ - ‘SCEN|NACK‘ - ‘IRLP‘IREN‘ - ‘ ‘ - ‘LINEN‘STOP BITS‘CLKEN‘CPOL‘CPHA|LBCL‘
IrDA
SIR ENDEC
BLOCK
UART2_CR4 UART2_CR1
T T T
‘ . |LBDIEN‘LBDL‘LBDF‘ ADD ‘ _;I R8 |T8 I UARTDI M |WAKE‘PCEN| PS IPIEN‘
4 * v
o TRANSMIT WAKE_UP P N RECEIVER <
Ll N
CONTROL UNIT CONTROL <
[A J [
UART2_CR2 | Y Y vY v YV vy
ITIEN|TCIEN‘RIEN|ILIEN| TEN IREN|RWU‘SBK‘ ‘TXE| TC ‘RXNE|IDLE‘ OR ‘ NF | FE ‘ PE |
¢ ¢ ¢ ¢ UART2_SR
INTERRUPT <
CONTROL <
TEN—| TRANSMITTER RATE
CONTROL
A UART2 BRR1
JUARTDIV |€——— | UARTDIV[11:4]
A fmasTER
UART2_BRR2
AUTOMATIC RESYNCHRONIZATION ‘ UARTDIV[15:12] | UARTDIV[3:0]
> UNIT |
2 7 | 43 0
UART2_CR6
RECEIVER RATE
|LDUM‘ ‘ LSLV‘ LASE| |LHIEN‘ LHDF‘ LSF| REN—— & CONTROL

‘y_l 303/430

Universal asynchronous receiver transmitter (UART)

RMO0016

Figure 101. UART3 block diagram

B

UNIT

UART3_CR6

7| 43

UARTDIV[3:0] !
0

|LDUM‘ ‘ LSLV‘ LASE| ‘LHIEN‘ LHDF‘ LSF‘

REN——P|

RECEIVER RATE
CONTROL

_____________ -
| Transmit Data Register (TDR) Receive Data Register (RDR) !
UART3_TX [| 1 4‘ ’; |
| N J |
| Transmit Shift Register l—} Receive Shift Register |
S A _ _ A _ _ _ _ o
UART3_RX [} T_
UART3_CR4 UART3_CR3
|LBDIEN‘LBDL|LBDF|ADD[3:O]| ‘LINEN‘ STOP[1:0] l ‘ | ’ ‘
[
UART2_CR1
‘ R8 ‘TB |UARTD| M ‘WAKE‘PCEN‘ PS ‘PIEN‘
[|
v * < A
WAKE | -
TRANSMITTER TRANSMIT upP v L RECEIVER P RECEIVER
CLOCK ld CONTROL UNIT > CONTROL bl CLOCK
t | A
UART3_CR2] ¢ ¢ 4
’TIEN|TCIEN‘RIEN|ILIEN‘ TEN‘REN|RWU‘SBK‘ ‘TXE| TC ‘RXNE|IDLE O | ne |FE ‘ PE ‘
UART3_SR
d
INTERRUPT
CONTROL
TEN—| TRANSMITTER RATE
CONTROL
A UART3_BRR1
JUARTDIV |€—— | UARTDIV[11:4]
2 fmasTER
UART3_BRR2
AUTOMATIC RESYNCHRONIZATION | UARTDIV[15:12] ‘

304/430

RMO0016

Universal asynchronous receiver transmitter (UART)

22.3.1

UART character description

Word length may be selected as being either 8 or 9 bits by programming the M bit in the
UART_CR1 register (see Figure 102).

The UART_TX pin is in low state during the start bit. It is in high state during the stop bit.

An Idle character is interpreted as an entire frame of “1”s (the number of “1” ‘s includes the
start bit, the number of data bits and the number of stop bits).

A Break character is interpreted on receiving “0”s for a frame period. At the end of the
break frame the transmitter inserts either 1 or 2 stop bits (logic “1” bit) to acknowledge the
start bit.

Transmission and reception are driven by a common baud rate generator, the clock for each
is generated when the enable bit is set respectively for the transmitter and receiver.

The details of each block is given below.

Figure 102. Word length programming

9-bit Word length (M bit is set), 1 stop bit

Possible Next Data Frame
Data Frame "M
Bit Next

Séﬁrt| Bit0 | Bit1 | Bit2 | Bit3 | Bit4 | Bit5 | Bit6 | Bit7| Bit8 | SBti‘;P| Sstﬁrt|

CLOCK o
Start
J Idle Frame Bit
Break Frame Extra | Start
' Bit

** LBCL bit controls last data clock pulse

8-bit Word length (M bit is reset), 1 stop bit
Possible Next Data Frame

Data Frame Parity

Start Bit Next
| B?t | Bit0 | Bit1 | Bit2 | Bit3 | Bit4 | Bit5 | Bit6 | Bit7 | Séﬁp Séﬁ”
eiue S I I I I A IR

_, Idle Frame Sé?tﬂ :

—‘ Break Frame l@l Séﬁrt ’—

** LBCL bit controls last data clock pulse

305/430

Universal asynchronous receiver transmitter (UART) RMO0016

22.3.2 Transmitter

The transmitter can send data words of either 8 or 9 bits depending on the M bit status.
When the M bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the
T8 bit in the UART_CR1 register.

When the transmit enable bit (TEN) is set, the data in the transmit shift register is output on
the UART_TX pin and the corresponding clock pulses are output on the UART_CK pin.

Character transmission

During an UART transmission, data shifts out least significant bit first on the UART_TX pin.
In this mode, the UART_DR register consists of a buffer (TDR) between the internal bus and
the transmit shift register (see Figure 99).

Every character is preceded by a start bit which is a logic level low for one bit period. The
character is terminated by a configurable number of stop bits.

The following stop bits are supported by UART.

Note: 1 The TEN bit should not be reset during transmission of data.Resetting the TEN bit during
the transmission will corrupt the data on the UART_TX pin as the baud rate counters will get
frozen. The current data being transmitted will be lost.

2 Anidle frame will be sent after the TEN bit is enabled.

Configurable stop bits

The number of stop bits to be transmitted with every character can be programmed in
Control register 3, bits 5,4.

® 1 stop bit This is the default value of number of stop bits.

® 2 Stop bits: This is supported by normal mode UART.

® 1.5 Stop bits: To be used in Smartcard mode only.

An idle frame transmission will include the stop bits.

A break transmission consists of 10 low bits followed by the configured number of stop bits
(when m =0) and 11 low bits followed by the configured number of stop bits (when m = 1). It
is not possible to transmit long breaks (break of length greater than 10/11 low bits).

Note: In LIN mode (see Section 22.3.7 on page 315), a standard 13-bit break is always
generated.

306/430 Kﬁ

RM0016 Universal asynchronous receiver transmitter (UART)

Figure 103. Configurable stop bits

8-bit Word length (M bit is reset)

Possible Next Data Frame
Data Frame Parity
Start Bit geXt
c . . . : . . : . Sto tart
| Bit | Bit0 | Bit1 | Bit2 | Bit3 | Bit4 | Bit5 | Bit6 | B|t7| o | Bit
CLOCK e
** LBCL bit controls last data clock pulse
a) 1 Stop Bit
P%sasri.lt)le Next Data Frame
Data Frame y
! Next
Start .)])) Start
Bit | Bit0 | Bit1 | Bit2 | Bit3 | Bit4 | Bit5 | Bit6 | Bit7 Bit
b) 1 1/2 stop Bits * 11/2 stop bits
P%SSi.’t)'e Next Data Frame
Data Frame artty
Next
Start |) .)| 2Stop Start
Bit Bit0 Bit1 Bit2 | Bit3 Bit4 | Bit5 Bit6 Bit7 | Bits Bit

c) 2 Stop Bits

Procedure:
1. Program the M bit in UART_CR1 to define the word length.
2. Program the number of stop bits in UART_CRS3.

3. Select the desired baud rate by programming the baud rate registers in the following
order:

a) UART_BRR2
b) UART_BRR1
4. Setthe TEN bit in UART_CR2 to enable transmitter mode.

5. Write the data to send in the UART_DR register (this clears the TXE bit). Repeat this
for each data to be transmitted in case of single buffer.

Single byte communication
Clearing the TXE bit is always performed by a write to the data register.

The TXE bit is set by hardware and it indicates:

® The data has been moved from TDR to the shift register and the data transmission has
started.

® The TDR register is empty.

® The next data can be written in the UART_DR register without overwriting the previous
data.

This flag generates an interrupt if the TIEN bit is set.

When a transmission is taking place, a write instruction to the UART_DR register stores the
data in the TDR register. The data is copied in the shift register at the end of the current
transmission.

Ky_l 307/430

Universal asynchronous receiver transmitter (UART) RMO0016

Note:

Note:

22.3.3

308/430

When no transmission is taking place, a write instruction to the UART_DR register places
the data directly in the shift register, the data transmission starts, and the TXE bit is
immediately set.

When a frame transmission is complete (after the stop bit) the TC bit is set and an interrupt
is generated if the TCIEN is set. Clearing the TC bit is performed by the following software
sequence:

1. Aread to the UART_SR register
2. A write to the UART_DR register

Break character

Setting the SBK bit transmits a break character. The break frame length depends on the M
bit (see Figure 102).

If the SBK bit is set to ‘1’ a break character is sent on the UART_TX line after completing the
current character transmission. This bit is reset by hardware when the break character is
completed (during the stop bit of the break character).The UART inserts a logic 1 bit at the
end of the last break frame to guarantee the recognition of the start bit of the next frame.

The break character is sent without taking into account the number of stop bits. If the UART
is programmed with 2 stop bits, the TX line is pulled low until the end of the first stop bit only.
Then 2 logic 1 bits are inserted before the next character.

If the software resets the SBK bit before the start of break transmission, the break character
is not transmitted. For two consecutive breaks, the SBK bit should be set after the stop bit of
the previous break.

Idle character
Setting the TEN bit drives the UART to send an idle frame before the first data frame.

Receiver

The UART can receive data words of either 8 or 9 bits. When the M bit is set, word length is
9 bits and the MSB is stored in the R8 bit in the UART_CR1 register.

Character reception

During an UART reception, data shifts in least significant bit first through the UART_RX pin.
In this mode, the UART_DR register consists of a buffer (RDR) between the internal bus and
the received shift register (see Figure 2).

Procedure:

1. Program the M bit in UART_CR1 to define the word length.

2. Program the number of stop bits in UART_CR3.

3. Select the desired baud rate by programming the baud rate registers in the following
order:

a) UART_BRR2
b) UART_BRR1

4. Setthe REN bit UART_CR2. This enables the receiver which begins searching for a
start bit.

RMO0016

Universal asynchronous receiver transmitter (UART)

Note:

When a character is received

® The RXNE bitis set. It indicates that the content of the shift register is transferred to the
RDR.

® Aninterrupt is generated if the RIEN bit is set.

® The error flags can be set if a frame error, noise or an overrun error has been detected
during reception.

® Clearing the RXNE bit is performed by a software read to the UART_DR register. The
RXNE flag can also be cleared by writing a zero to it. The RXNE bit must be cleared
before the end of the reception of the next character to avoid an overrun error.

The REN bit should not be reset while receiving data. If the REN bit is disabled during
reception, the reception of the current byte will be aborted.

Break character

When a break character is received, the UART handles it as a framing error.

Idle character

When an idle frame is detected, there is the same procedure as a data received character
plus an interrupt if the ILIEN bit is set.

Overrun error

An overrun error occurs when a character is received when RXNE has not been reset. Data
can not be transferred from the shift register to the RDR register until the RXNE bit is
cleared.

When an overrun error occurs:

® The OR bitis set.

® The RDR content will not be lost. The previous data is available when a read to
UART_DR is performed.

® The shift register will be overwritten. The second data received during overrun is lost.
An interrupt is generated if the RIEN bit is set.

® The OR bitis reset by a read to the UART_SR register followed by a UART_DR register
read operation.

309/430

Universal asynchronous receiver transmitter (UART)

RMO0016

Note:

310/430

Noise error

Over-sampling techniques are used for data recovery by discriminating between valid
incoming data and noise.

Figure 104. Data sampling for noise detection

| | | | | | | | | | | |
RX LINE I A A N N N | | [[| I| I |
| | | | | | | | sallmpled va,ues | | | | | |
Sample T * [AT N N |
SRR R R b R Rt h

| | | |
| | L 6/16 > |
L 7/16 R | 7/16 R
I; One bﬁltime) :

|

The sample clock frequency is 16x baud rate.

RM0016 Universal asynchronous receiver transmitter (UART)

Table 48. Noise detection from sampled data

Sampled value NF status Received bit value Data validity

000 0 0 Valid

001 1 0 Not Valid
010 1 0 Not Valid
011 1 1 Not Valid
100 1 0 Not Valid
101 1 1 Not Valid
110 1 1 Not Valid
111 0 1 Valid

When noise is detected in a frame:

® The NF is set at the rising edge of the RXNE bit.

® The invalid data is transferred from the Shift register to the UART_DR register.

This bit rises at the same time as the RXNE bit which generates an interrupt. The NF bit is

reset by a UART_SR register read operation followed by a UART_DR register read
operation.

Framing error
A framing error is detected when:

The stop bit is not recognized on reception at the expected time, following either a de-
synchronization or excessive noise.

When the framing error is detected:

® The FE bit is set by hardware

® The invalid data is transferred from the Shift register to the UART_DR register.

® Nointerrupt is generated in case of single byte communication. However, this bit rises
at the same time as the RXNE bit which itself generates an interrupt.

The FE bit is reset by a UART_SR register read operation followed by a UART_DR register
read operation.

Configurable stop bits during reception:

The number of stop bits to be received can be configured through the control bits of Control
Register 3 - it can be either 1 or 2 in normal mode, 1 in IrDA mode and 1.5 in Smartcard
mode.

1. 1 Stop Bit: Sampling for 1 stop Bit is done on the 8th, 9th and 10th samples.

2. 1.5 stop Bits (Smartcard mode only): Sampling for 1.5 stop bits is done on the
16th,17th and 18th samples. An NACK signal received from the Smartcard forces the
data signal low during the sampling, flagged as a framing error. Then, the FE flag is set
with the RXNE at the end of the 1.5 stop bit.

3. 2 Stop Bits: Sampling for 2 stop bits is done on the 8th, 9th and 10th samples of the
first stop bit.If a framing error is detected during the first stop bit the framing error flag
will be set. The second stop bit is not checked for framing error. The RXNE flag will be
set at the end of the first stop bit.

Ky_l 311/430

Universal asynchronous receiver transmitter (UART) RMO0016

22.3.4

Note:

Note:

312/430

High precision baud rate generator

The receiver and transmitter (Rx and Tx) are both set to the same baud rate programmed by
a 16-bit divider UART_DIV according to the following formula:

fMASTER

Tx/ Rx baud rate = m

The UART_DIV baud rate divider is an unsigned integer, coded in the BRR1 and BRR2
registers as shown in Figure 105.

Refer to Table 49. for typical baud rate programming examples.

Figure 105. How to code UART_DIV in the BRR registers
Example: To obtain 9600 baud with fyjaster = 10 MHz.
UART_DIV = 10 000 000/9600
UART_DIV = 1042d = 0412h See Table 49.

— | l

41h Oh 2h

v v v
UART_DIV[11:4] UART_DIV[15:12] |UART_DIV[3:0]
Ly L1] I
7 0 7 43 0
UART_BRR1 UART_BRR2
register = 41h register = 02h

The Baud Counters will be updated with the new value of the Baud Registers after a write to
BRR1. Hence the Baud Register value should not be changed during a transaction. The
BRR2 should be programmed before BRR1.

UART_DIV must be greater than or equal to 16d.

RM0016 Universal asynchronous receiver transmitter (UART)
Table 49. Baud rate programming and error calculation
Baud
rate fMASTER =10 MHz fMASTER =24 MHz
k:;s Actual | % Error (! | UART_DIV |BRR1|BRR2| Actual | % Errorl") | UART_DIV |BRR1|BRR2
2.4 2.399 -0.04% 1047h 04h 17h 2.4 0.0% 2710h 71h 20h
9.6 9.596 -0.04% 0412h 41h 02h 9.6 0.0% 09C4h 9Ch | 04h
19.2 | 19.193 -0.03% 0209h 20h 09h 19.2 0.0% 04E2 4Eh 02h
57.6 | 57.471 -0.22% 00AEh 0Ah | OEh | 57.554 -0.08% 01A1h 1Ah | 01h
115.2 |114.942| -0.22% 0057h 05h | 07h |115.385| 0.16% 00DOh 0Dh | 00h
230.4 |232.558 -0.94% 002Bh 02h 0Bh |230.769 0.16% 0068h 06h 08h
460.8 |454.545 -1.36% 0016h O1h 06h |461.538 0.16% 0034h 03h 04h
921.6 NA NA NA 923.077 0.16% 001Ah 01h O0Ah

1. Error % = (Calculated - Desired) Baud Rate / Desired Baud Rate

Note:

22.3.5

Note:

The lower the fypsT1ER frequency, the lower will be the accuracy for a particular baud

rate.The upper limit of the achievable baud rate can be fixed with this data.

Parity control

Parity control (generation of parity bit in transmission and parity checking in reception) can
be enabled by setting the PCEN bit in the UART_CR1 register. Depending on the frame
length defined by the M bit, the possible UART frame formats are as listed in Table 50.

Table 50. Frame formats
M bit PCEN bit UART frame
0 0 | SB | 8 bit data | STB |
0 1 | SB | 7-bit data | PB | STB |
1 0 | SB | 9-bit data | STB |
1 1 | SB | 8-bit data PB | STB |

Legends: SB: Start Bit, STB: Stop Bit, PB: Parity Bit

In case of wakeup by an address mark, the MSB bit of the data is taken into account and not
the parity bit

Even parity: the parity bit is calculated to obtain an even number of “1s” inside the frame
made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

Ex: data=00110101; 4 bits set => parity bit will be 0 if even parity is selected (PS bit in
UART_CR1 =0).

Odd parity: the parity bit is calculated to obtain an odd number of “1s” inside the frame
made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

313/430

Universal asynchronous receiver transmitter (UART) RMO0016

22.3.6

314/430

Example: data=00110101; 4 bits set => parity bit will be 1 if odd parity is selected (PS bit in
UART_CR1 =1).

Transmission: If the PCEN bit is set in UART_CR1 then the MSB bit of the data written in
the data register is not transmitted but is changed by the parity bit to give an even number of
‘1’s if even parity is selected (PS=0) or an odd number of ‘1’s if odd parity is selected
(PS=1).

Reception: If the parity check fails, the PE flag is set in the UART_SR register and an
interrupt is generated if the PIEN bit is set in the UART_CR1 register.

Multi-processor communication

It is possible to perform multi-processor communication with the UART (several UARTs
connected in a network). For example, one of the UARTSs can be the master, its TX output is
connected to the RX input of the other UART. The others are slaves, their respective TX
outputs are logically ANDed together and connected to the RX input of the master.

In multi-processor configurations it is often desirable that only the intended message
recipient should actively receive the full message contents, thus reducing redundant UART
service overhead for all non addressed receivers.

The non addressed devices may be placed in mute mode by means of the muting function.

In mute mode:

® None of the reception status bits can be set.

® All the receive interrupts are inhibited.

® The RWU bitin UART_CR1 register is set to 1. RWU can be controlled automatically by
hardware or written by the software under certain conditions.

The UART can enter or exit from mute mode using one of two methods, depending on the

WAKE bit in the UART_CR1 register:

® Idle Line detection if the WAKE bit is reset,

® Address Mark detection if the WAKE bit is set.

Idle line detection (WAKE=0)
The UART enters mute mode when the RWU bit is written to 1.

It wakes up when an Idle frame is detected. Then the RWU bit is cleared by hardware but
the IDLE bit is not set in the UART_SR register. RWU can also be written to 0 by software.

An example of mute mode behavior using idle line detection is given in Figure 106.

Figure 106. Mute mode using Idle line detection

RXNEA RXNEA
AN
RX Datat | Data2 | Data3 | Data4 | IDLE | Datas | Data6 |
RWU J Mute Mode | Normal Mode
b B
RWU written to 1 Idle frame detected

RMO0016

Universal asynchronous receiver transmitter (UART)

Note:

22.3.7

Address mark detection (WAKE=1)

In this mode, bytes are recognized as addresses if their MSB is a ‘1’ else they are
considered as data. In an address byte, the address of the targeted receiver is put on the 4
LSB. This 4-bit word is compared by the receiver with its own address which is programmed
in the ADD bits in the UART_CR4 register.

The UART enters mute mode when an address character is received which does not match
its programmed address. The RXNE flag is not set for this address byte and no interrupt
request is issued as the UART would have entered mute mode.

It exits from mute mode when an address character is received which matches the
programmed address. Then the RWU bit is cleared and subsequent bytes are received
normally. The RXNE bit is set for the address character since the RWU bit has been cleared.

The RWU bit can be written to 0 or 1 when the receiver buffer contains no data (RXNE=0 in
the UART_SR register). Otherwise the write attempt is ignored.

An example of mute mode behavior using address mark detection is given in Figure 107.

Figure 107. Mute mode using Address mark detection

In this example, the current address of the receiver is 1 RXNE_A— RXNE_A—
(programmed in the UART_CR4 register)

RX IDLE |Addr=0 Data1| Data 2| IDLE |Addr=1| Data3| Data4| Addr=2| Data 5|

RWU | Mute Mode | Normal Mode Mute Mode
/ A /

Non-matching address Matching address Non-matching address

RWU written to 1
(RXNE was cleared)

If parity control is enabled, the parity bit remains in the MSB and the address bit is put in the
"MSB - 1" bit.
For example, with 7-bit data, address mode and parity control:
SB | 7-bit data | ADD | PB | STB
where:

SB = Start Bit
STB = Stop Bit
ADD = Address bit
PB = Parity Bit

LIN (local interconnection network) mode

The UART supports LIN break and delimiter generation in LIN master mode.

Refer to Section 22.4.1: Master mode on page 323 for details. LIN slave mode is supported
by the UART2 and 3 only, not by UART1.

LIN mode is selected by setting the LINEN bit in the UART_CRS register. In LIN mode, the
following bits must be kept cleared:
® CLKEN, STOP[1:0] in the UART_CRS register

® SCEN, HDSEL and IREN in the UART_CRS5 register

315/430

Universal asynchronous receiver transmitter (UART) RMO0016

22.3.8

Note:

Note:

316/430

UART synchronous communication

The UART transmitter allows the user to control bidirectional synchronous serial
communications in master mode.

In synchronous mode, the following bits must be kept cleared:
® LINEN bit in the UART_CRS register
® SCEN, HDSEL and IREN bits in the UART_CRS register

This feature is only available in UART1 and UART2.

The UART_CK pin is the output of the UART transmitter clock. No clock pulses are sent to
the UART_CK pin during start bit and stop bit. Depending on the state of the LBCL bit in the
UART_CRS3 register clock pulses will or will not be generated during the last valid data bit
(address mark). The CPOL bit in the UART_CRS register allows the user to select the clock
polarity, and the CPHA bit in the UART_CRBS register allows the user to select the phase of
the external clock (see Figure 108, Figure 109 & Figure 110).

During idle and break frames, the external CK clock is not activated.

In synchronous mode, the UART receiver works differently compared to asynchronous
mode. If RE=1, the data is sampled on SCLK (rising or falling edge, depending on CPOL
and CPHA), without any oversampling. A setup and a hold time (even if the hold time is not
relevant due to the SPI protocol) must be respected (which depends on the baud rate: 1/16
bit time for an integer baud rate).

The UART_CK pin works in conjunction with the TX pin. When the UART transmitter is
disabled (TEN and REN= 0), the UART_CK and UART_TX pins go into high impedance
state.

The LBCL, CPOL and CPHA bits in UART_CR3 have to be selected when both the
transmitter and the receiver are disabled (TEN=REN=0) to ensure that the clock pulses
function correctly. These bits should not be changed while the transmitter or the receiver is
enabled.

It is recommended to set TE and RE are set in the same instruction in order to minimize the
setup and the hold time of the receiver.

The UART supports master mode only: it cannot receive or send data related to an input
clock (SCLK is always an output).

The data given in this section apply only when the UART_DIV[3:0] bits in the UART_BRR2
register are kept at 0. Else the setup and hold times are not 1/16 of a bit time but 4/16 of a
bit time.

This option allows to serially control peripherals which consist of shift registers, without
losing any functions of the asynchronous communication which can still talk to other
asynchronous transmitters and receivers.

RMO0016

Universal asynchronous receiver transmitter (UART)

Figure 108. UART example of synchronous transmission

RX |€— Dataout
X Data in

UART Synchronous device
(for example slave SPI)

SCLK Clock

Figure 109. UART data clock timing diagram (M=0)

Idle or precedin Idle or next
fransmission > Start M=0 (8 data bits) Stop transmission

> >

Clock (CPOL=0,CPRAD) © [[[[[[l

Clock (CPOL=0, CPHA=1) | ' : ' ' : : : : Lo

Clock (CPOL=1, CPHA=0) | -

Clock (CPOL=1, CPHA=1) [| | A

Data [0 X3 X2 X3 X e X5 Xe X 7/

Start LSB MSB Stop

* LBCL bit controls last data clock pulse

Figure 110. UART data clock timing diagram (M=1)

Idle or precedin

fransmiesion 0 Start M=1 (9 data bits) Idle or next

Stop transmission

————P
Clock (CPOL=0, CPHA=0) . . " i

Clock (CPOL=1, CPHA=0) | *

Clock (CPOL=1, CPHA=1) [[b i

Dta '
Start LSB MSB Stop
* LBCL bit controls last data clock pulse

317/430

Universal asynchronous receiver transmitter (UART) RMO0016

Note:

22.3.9

Note:

22.3.10

Note:

318/430

Figure 111. RX data setup/hold time

SCLK (capture strobe on SCLK |
rising edge in this example) '

| .
| I
| ! 1
Data on RX X valid DATA bit hd
| I

(from slave) |
| tsetup | tHoLp |

tseTup = thoLp 1/16 bit time = 1/1 6*fsc|_K

The function of UART_CK is different in Smartcard mode. Refer to Section 22.3.10:
Smartcard for more details.

Single wire half duplex communication

The UART can be configured to follow a single wire half duplex protocol. Single-wire half-
duplex mode is selected by setting the HDSEL bit in the UART_CRS5 register. In this mode,
the following bits must be kept cleared:

® LINEN and CLKEN bits in the UART_CRS register
® SCEN and IREN bits in the UART_CRS5 register

This feature is only available in UART1.

As soon as HDSEL is set:
® UART_RX s no longer used

® UART_TX is always released when no data is transmitted. Thus, it acts as a standard
I/0 inidle or in reception. This means that the 1/0 must be configured so that UART_TX
is configured as floating input (or output high open-drain) when not driven by the UART.

Apart from this, the communications are similar to what is done in normal UART mode. The
conflicts on the line must be managed by the software (by the use of a centralized arbiter, for
instance). In particular, the transmission is never blocked by hardware and continue to occur
as soon as a data is written in the data register while the TEN bit is set.

Smartcard

Smartcard mode is selected by setting the SCEN bit in the UART_CRS5 register. In
smartcard mode, the following bits must be kept cleared:

® LINEN bit in the UART_CRS register,

e HDSEL and IREN bits in the UART_CRS register.

Moreover, the CKEN bit may be set in order to provide a clock to the smartcard.
This feature is only available in UART1 and UART2.

The Smartcard interface is designed to support asynchronous protocol Smartcards as
defined in the ISO7816-3 standard. The UART should be configured as eight bits plus parity
and 1.5 stop bits. With Smartcard mode enabled (which can be done by setting the SCEN
bit in the UART_CR5) the UART can communication with an asynchronous Smartcard.

RMO0016

Universal asynchronous receiver transmitter (UART)

Figure 112. ISO 7816-3 asynchronous protocol

I Guard time
I
S ol 1| 2| 3| 4|5 | 6| 7| P |
Start Li!ne pulled low
bit by receiver during stop in

case of parity error

When connected to a smartcard, the UART_TX output drives a bidirectional line that is also
driven by the smartcard.

Smartcard is a single wire half duplex communication protocol.

Transmission of data from the transmit shift register is guaranteed to be delayed by a
minimum of 1/2 baud clock. In normal operation a full transmit shift register will start
shifting on the next baud clock edge. In Smartcard mode this transmission is further
delayed by a guaranteed 1/2 baud clock.

If a parity error is detected during reception of a frame programmed with a 1.5 stop bit
period, the transmit line is pulled low for a baud clock period after 1/2 baud clock
period. This is to indicate to the Smartcard that the data transmitted to the UART has
not been correctly received. This NACK signal (pulling transmit line low for 1 baud
clock) will cause a framing error on the transmitter side (configured with 1.5 stop bits).
The application can handle re-sending of data according to the protocol. A parity error
is ‘NACK’ed by the receiver if the NACK control bit is set, otherwise a NACK is not
transmitted.

The TE bit must be set to enable:
— Data transmission
— Transmission of acknowledgements in case of parity error.

Software must manage the timing of data transmission to avoid conflicts on the
data line when it writes new data in the data register.

The RE bit must be set to enable:

— Data reception (sent by the Smartcard as well as by the UART),

— Detection of acknowledgements in case of parity error.

The assertion of the TC flag can be delayed by programming the Guard Time register.
In normal operation, TC is asserted when the transmit shift register is empty and no
further transmit requests are outstanding. In Smartcard mode an empty transmit shift
register triggers the guard time counter to count up to the programmed value in the
Guard Time register. TC is forced low during this time. When the guard time counter
reaches the programmed value TC is asserted high.

The de-assertion of TC flag is unaffected by Smartcard mode.

If a framing error is detected on the transmitter end (due to a NACK from the receiver),
the NACK will not be detected as a start bit by the receive block of the transmitter.
According to the ISO protocol, the duration of the received NACK can be 1 or 2 baud
clock periods.

On the receiver side, if a parity error is detected and a NACK is transmitted the receiver
will not detect the NACK as a start bit.

The output enable signal for the Smartcard 1/O enables driving into a bidirectional line
which is also driven by the Smartcard. This signal is active while transmitting the start

319/430

Universal asynchronous receiver transmitter (UART) RMO0016

Note:

22.3.11

Note:

320/430

1

and data bits and transmitting NACK. While transmitting the stop bits this signal is
disabled, so that the UART weakly drives a ‘1’ on the bidirectional line.

A break character is not significant in Smartcard mode. A 00h data with a framing error will
be treated as data and not as a break.

No IDLE frame is transmitted when toggling the TEN bit. The IDLE frame (as defined for the
other configurations) is not defined by the ISO protocol.

Figure 113 details how the NACK signal is sampled by the UART. In this example the UART
is transmitting a data and is configured with 1.5 stop bits. The receiver part of the UART is
enabled in order to check the integrity of the data and the NACK signal.

Figure 113. Parity error detection using 1.5 stop bits

Bit7 ! Parity Bit 1.5 Stop Bit !
| 1 bit time | | 1.5 bit time I
I~ | | ™
l sampling at | | samplingat |
| 8th, 9th, 10th | | 16th, 17th, 18th |
! | 0.5 bit timcla 1 bit time !
| >l<—>= >
N .
| sampling at | | sampling at |
[[

! 8th, 9th, 10th 8th, 9th, 10th |

The UART can provide a clock to the smartcard through the UART_CK output. In smartcard
mode, UART_CK is not associated to the communication but is simply derived from the
internal peripheral input clock through a 5-bit prescaler. The division ratio is configured in
the prescaler register UART_PSCR. UART_CK frequency can be programmed from
fmAsTER/2 0 fmasTER/62, Where fyasTeR is the peripheral input clock.

IrDA SIR ENDEC block

IrDA mode is selected by setting the IREN bit in the UART_CRS5 register. The STOP bits in
the UART_CRS register must be configured to “1 stop bit”. In IrDA mode, the following bits
must be kept cleared:

® LINEN, STOP and CKEN bits in the UART_CRS register,
® SCEN and HDSEL bits in the UART_CRS5 register.

This feature is only available in UART1 and UART2.

The IrDA SIR physical layer specifies use of a Return to Zero, Inverted (RZI) modulation
scheme that represents logic 0 as an infrared light pulse (see Figure 114).

The SIR Transmit encoder modulates the Non Return to Zero (NRZ) transmit bit stream
output from the UART. The output pulse stream is transmitted to an external output driver
and infrared LED. The UART supports only bit rates up to 115.2 kbps for the SIR ENDEC. In
normal mode the transmitted pulse width is specified as 3/16 of a bit period.

574

RMO0016

Universal asynchronous receiver transmitter (UART)

Note:

1

The SIR receive decoder demodulates the return-to-zero bit stream from the infrared
detector and outputs the received NRZ serial bit stream to UART. The decoder input is
normally HIGH (marking state) in the idle state. The transmit encoder output has the
opposite polarity to the decoder input. A start bit is detected when the decoder input is low.

@ IrDA is a half duplex communication protocol. If the Transmitter is busy (i.e. the UART is
sending data to the IrDA encoder), any data on the IrDA receive line will be ignored by
the IrDA decoder and if the Receiver is busy (UART is receiving decoded data from the
UART), data on the TX from the UART to IrDA will not be encoded by IrDA. While
receiving data, transmission should be avoided as the data to be transmitted could be
corrupted.

® A’0Q istransmitted as a high pulse and a ’1’ is transmitted as a ’0’. The width of the
pulse is specified as 3/16th of the selected bit period in normal mode (see Figure 115).

® The SIR decoder converts the IrDA compliant receive signal into a bit stream for the
UART.

® The SIR receive logic interprets a high state as a logic one and low pulses as logic
Zeros.

® The transmit encoder output has the opposite polarity to the decoder input. The SIR
output is in low state when idle.

® The IrDA specification requires the acceptance of pulses greater than 1.41 us. The
acceptable pulse width is programmable. Glitch detection logic on the receiver end
filters out pulses of width less than 2 PSC periods (PSC is the prescaler value
programmed in UART_PSCR). Pulses of width less than 1 PSC period are always
rejected, but those of width greater than one and less than two periods may be
accepted or rejected, those greater than 2 periods will be accepted as a pulse. The
IrDA encoder/decoder doesn’'t work when PSC=0.

® The receiver can communicate with a low-power transmitter.

® In IrDA mode, the STOP bits in the UART_CR2 register must be configured to “1 stop
bit”.

IrDA low-power mode

The IrDA can be used either in normal mode or in Low Power mode. The Low Power mode
is selected by setting the IRLP bit in UART_CRS5 register.

Transmitter:

In low-power mode the pulse width is not maintained at 3/16 of the bit period. Instead, the
width of the pulse is 3 times the low-power baud rate which can be a minimum of 1.42 MHz.
Generally this value is 1.8432 MHz (1.42 MHz < PSC< 2.12 MHz). A low-power mode
programmable divisor divides the system clock to achieve this value.

Receiver:

Receiving in low-power mode is similar to receiving in normal mode. For glitch detection the
UART should discard pulses of duration shorter than 1/PSC. A valid low is accepted only if
its duration is greater than 2 periods of the IrDA low-power Baud clock (PSC value in
UART_PSCR).

A pulse of width less than two and greater than one PSC period(s) may or may not be
rejected.

The receiver set up time should be managed by software. The IrDA physical layer
specification specifies a minimum of 10 ms delay between transmission and reception (IrDA
is a half duplex protocol).

321/430

Universal asynchronous receiver transmitter (UART) RMO0016

Figure 114. IrDA SIR ENDEC- block diagram

IREN bit
IrDA ——p[] UART_TX pin
X Transmit IrDA_TX
Encoder
UART IREN bit
IrDA
RX Receive [€—PAPX [] UART_RX pin
< Decoder
Figure 115. IrDA data modulation (3/16) - normal mode
Start stop bit
TX bit
0 1] o 1 0 0 ‘ 1 1 o[4
| bit period
rA_TDo | |]! B B B M
—> |- 315 g

IrDA_RDI : |_|! L |] || |]
RX —‘ 0 ’—1‘ 0 ‘1‘ 0 0 1 1 0 1

322/430 Ky_’

RM0016 Universal asynchronous receiver transmitter (UART)
22.4 LIN mode functional description
In LIN mode, 8-bit data format with 1 stop bit is required in accordance with the LIN
standard.
To configure these settings, clear the M bit in UART_CR1 register and clear the STOP[1:0]
bits in the UART_CRS register.
2241 Master mode

UART initialization

Procedure:
1. Select the desired baudrate by programming the UART_BRR2 and UART_BRR1
registers.

2. Enable LIN mode by setting the LINEN bit in the UART_CRS3 register.

3. Enable the transmitter and receiver by setting the TEN and REN bits in the UART_CR2
register.

LIN header transmission

According to the LIN protocol, any communication on the LIN bus is triggered by the Master
sending a Header, followed by the response. The Header is transmitted by the Master Task
(master node) while the data are transmitted by the Slave task of a node (master node or
one of the slave nodes).

Procedure without error monitoring:

1. Request Break + Delimiter transmission (13 dominant bits and 1 recessive bit) by
setting the SBK bit in the UART_CR2 register.

2. Request Synch Field transmission by writing 0x55 in the UART_DR register.
3. Wait for the TC flag in the UART_SR register.

4. Request Identifier Field transmission by writing the protected identifier value in the
UART_DR register.

5. Wait for the TC flag in the UART_SR register.

Procedure with error monitoring:

1. Request Break + Delimiter transmission (13 dominant bits and 1 recessive bit) by
setting the SBK bit in the UART_CR2 register;

Wait for the LBDF flag in the UART_CR4 register.
Request Synch Field transmission by writing 0x55 into UART_DR register.
Wait for the RXNE flag in the UART_SR register and read back the UART_DR register.

Request Identifier Field transmission by writing the protected identifier value in the
UART_DR register.

6. Wait for the RXNE flag in the UART_SR register and read back the UART_DR register.

AT A

The LBDF flag is set only if a valid Break + Delimiter has been received back on the
UART_RX pin.

323/430

Universal asynchronous receiver transmitter (UART) RMO0016

324/430

LIN break and delimiter detection

When the LIN mode is enabled, the break detection circuit is activated. The detection is
totally independent from the normal UART receiver. A break can be detected whenever it
occurs, during idle state or during a frame.

When the receiver is enabled (REN=1 in UART_CRZ2), the circuit looks at the UART_RX
input for a start signal. The method for detecting start bits is the same when searching break
characters or data. After a start bit has been detected, the circuit samples the next bits
exactly like for the data (on the 8th, 9th and 10th samples). If 10 bits (when the LBDL =0 in
UART_CR4) or 11 bits (when LBDL=1 in UART_CRA4) are detected as ‘0’, and are followed
by a delimiter character, the LBDF flag is set in UART_CRA4. If the LBDIEN bit=1, an
interrupt is generated.

If a ‘1’ is sampled before the 10 or 11 have occurred, the break detection circuit cancels the
current detection and searches for a start bit again. If LIN mode is disabled (LINEN=0), the
receiver continues working as a normal UART, without taking into account the break
detection.

If LIN mode is enabled (LINEN=1), as soon as a framing error occurs (i.e. stop bit detected
at ‘0’, which will be the case for any break frame), the receiver stops until the break detection
circuit receives either a ‘1, if the break word was not complete, or a delimiter character if a
break has been detected.

The behavior of the break detector state machine and the break flag is shown in Figure 116:
Break detection in LIN mode (11-bit break length - LBDL bit is set) on page 325.

The LBDF flag is used in master mode, in slave mode the LHDF flag is used instead.

Examples of break frames are given on Figure 117: Break detection in LIN mode vs Framing
error detection on page 325.

RMO0016

Universal asynchronous receiver transmitter (UART)

Figure 116. Break detection in LIN mode (11-bit break length - LBDL bit is set)

Case 1: break signal not long enough => break discarded, LBDF is not set

RX line “Short” Break Frame ‘

Capture Strobe [1 1 1 | | | | | |

Break State machine Id|e| Bit0 | Bit1 | Bit2 | Bit3 | Bit4| Bit5 | Bit6 | Bit7 | Bits | Bit9 |Bit10| Idle
Read Samples 0o 0o o 0 o0 0 0 0 0 0) I'1't
elimiter

Case 2: break signal just long enough => break detected, LBDF is set

RX line Break Frame |

Capture Strobe | | | | | | | | | | |

delimiter is immediate

Break State machine Idle| Bit0 | Bit1 | Bit2 | Bit3 | Bit4| Bit5 | Bit6 | Bit7 | Bitg | Bit9 |B10| \ | Idle

Read Samples 0 0 0 0 0 0 0 0 0 0 0

LBDF
Case 3: break signal long enough => break detected, LBDF is set

RX line Break Frame

Capture Strobe | | | | | | | | | | |

Break State machine Idle| Bit0 | Bit1 | Bit2 | Bit3 | Bit4 | Bit5 | Bit6 | Bit7 | Bit8 | Bit9 |Bit10 |wait delimiter|de|imiter

Read Samples 0 0 0 0 0 0 0 0 0 0 0

LBDF [

Figure 117. Break detection in LIN mode vs Framing error detection

In these examples, we suppose that LBDL=1 (11-bit break length), M=0 (8-bit data)

Case 1: break occurring after an Idle

RXline datat IDLE BREAK | data2(0x55) | data3 (header)

1 data time 1 data time

RXNE / FE |

LBDF |

Case 2: break occurring while a data is being received

RXlne daa1 | data2 | BREAK | data2 (0x55) data 3 (header)
1 data time 1 data time
- -
RXNE / FE
LBDF
325/430

Universal asynchronous receiver transmitter (UART) RMO0016

Response transmission (master is the publisher of the response)

The response is composed of bytes with a standard UART format: 8-bit data, 1 stop bit, no
parity.

In order to send n data bytes, the application must repeat the following sequence n times:
1. Write data in UART_DR register

2. Wait for RXNE flag in UART_SR register

3. Check for readback value by reading the UART_DR register

Response reception (master is the subscriber of the response)

In order to receive n data bytes, the application must repeat following sequence n times:
1. Wait for the RXNE flag in the UART_SR register
2. Read the UART_DR register

Discard Response (slave to slave communication)

In case of slave to slave communication and if the master does not need to check errors in
the response, the application can ignore the RXNE flag till the next frame slot. The RXNE
and OR flags should be cleared before starting the next Break transmission.

Note: Receiving back a Break will also set the RXNE and FE flags before setting the LBDF flag.
Therefore, if the RX interrupt is used, it's better to disable it (by clearing the RIEN bit in the
UART_CR2 register) before sending the Break, to avoid an additional interrupt. In case of
slave to slave communication, RIEN bit can be cleared once the header has been
transmitted.

326/430 Kﬁ

RMO0016

Universal asynchronous receiver transmitter (UART)

22.4.2
Note:

Note:

Slave mode with automatic resynchronization disabled
This feature is only available in UART2 and UARTS3.

UART initialization

Procedure:

1. Select the desired baudrate by programming UART_BRR2 and UART_BRR1 registers,
2. Enable transmitter and receiver by setting TEN and REN bits in UART_CR2 register,
3. Enable LSLV bit in UART_CRS register,

4. Enable LIN mode by setting LINEN bit in UART_CRS register,

LIN Header reception

According to the LIN protocol, a slave node must wait for a valid header, coming from the
master node. Then application has to take following action, depending on the header
Identifier value:

® Receive the response
® Transmit the response
® Ignore the response and wait for next header

When a LIN Header is received:

® The LHDF flag in the UART_CRE® register indicates that a LIN Header has been
detected.

® Aninterrupt is generated if the LHDIEN bit in the UART_CREG register is set.
® The LIN Identifier is available in the UART_DR register.

It is recommended to put UART in mute mode by setting RWU bit. This mode allows
detection of headers only and prevents the reception of any other characters.

Setting the PCEN bit in the UART_CR2 register while LIN is in slave mode enables the
Identifier parity check. The PE flag in the UART_CRG6 register is set together with the LHDF
flag in the UART_CR® register if the Identifier parity is not correct.

Response transmission (slave is the publisher of the response)

In order to send n data bytes, the application must repeat following sequence n times:
1. Write data in the UART_DR register

2. Wait for the RXNE flag in the UART_SR register

3. Check for readback value by reading the UART_DR register

Once response transmission is completed, software can set the RWU bit.
Response reception (slave is the subscriber of the response)

In order to receive n data bytes, the application must repeat following sequence n times:
1. Wait for the RXNE flag in the UART_SR register
2. Read the UART_DR register

Once response reception is completed, software can set the RWU bit.

Discard Response

Software can set the RWU bit immediately.

327/430

Universal asynchronous receiver transmitter (UART) RMO0016

Note:

328/430

LIN Slave parity

In LIN Slave mode (LINEN and LSLYV bits are set) LIN parity checking can be enabled by
setting the PCEN bit. An interrupt is generated if an ID parity error occurs (PE bit rises) and
the PIEN bit is set.

In this case, the parity bits of the LIN Identifier Field are checked. The identifier character is
recognized as the third received character after a break character (included):

Figure 118. LIN identifier field parity bits

. parity bits .

LIN Break LIN Synch Identifier
Field Field

The bits involved are the two MSB positions (7th and 8th bits) of the identifier character. The
check is performed as specified by the LIN specification:

Figure 119. LIN identifier field parity check

start bit parity bits stop bit

: \ identifier bits \\‘ f
5 [IDO[ID1[ID2 [ID3[ID4[ID5]| PO | P1 |

i
l

- .".

Identifier Field

PO= IDO®ID1@®ID2® D4

P1=ID1®ID3®ID4®ID5

LIN header error detection
The LIN Header Error Flag indicates that an invalid LIN Header has been detected.

When a LIN Header Error occurs:

® The LHE flag is set

® Aninterrupt is generated if the RIEN bit in the UART_CR2 register is set.

The LHE bit is reset by an access to the UART_SR register followed by a read of the
UART_DR register.

LHE is set if one of the following conditions occurs:

® Break Delimiter is too short

® Synch Field is different from 55h

® Framing error in Synch Field or Identifier Field

® A LIN header reception time-out

If a LIN header error occurs, the LSF bit in the UART_CRG6 register must be cleared by
software

574

RMO0016

Universal asynchronous receiver transmitter (UART)

LIN header time-out error

The UART automatically monitors the THEADER_MAX condition given by the LIN protocol.

If the entire Header (up to and including the STOP bit of the LIN Identifier Field) is not
received within the maximum time limit of 57 bit times then a LIN Header Error is signaled
and the LHE bit is set in the UART_SR register.

Figure 120. LIN header reception time-out

L LTI LT
©LIN Synch LIN Synch Identifier -
Break . Field * Field

A
. A

THEADER -

The time-out counter is enabled at each break detection. It is stopped in the following
conditions:

® A LIN Identifier Field has been received
® An LHE error occurred (other than a time-out error).

® A software reset of LSF bit (transition from high to low) occurred during the analysis of
the LIN Synch Field

If LHE bit is set due to this error during the LIN Synch Field (if LASE bit = 1) then the UART
goes into a blocked state (the LSF bit is set).

If LHE bit is set due to this error during Fields other than LIN Synch Field or if LASE bit is
reset then the current received Header is discarded and the UART searches for a new Break
Field.

Note on LIN Header time-out limit

According to the LIN specification, the maximum length of a LIN Header which does not
cause a time-out is equal to:

1.4* (34 + 1) =49 TBIT_MASTER.
TBIT_MASTER refers to the master baud rate.

When checking this time-out, the slave node is desynchronized for the reception of the LIN
Break and Synch fields. Consequently, a margin must be allowed, taking into account the
worst case: This occurs when the LIN identifier lasts exactly 10 TBIT_MASTER periods. In
this case, the LIN Break and Synch fields last 49 - 10 = 39 TBIT_MASTER periods.

Assuming the slave measures these first 39 bits with a desynchronized clock of 15.5%. This
leads to a maximum allowed Header Length of:

39 x (1/0.845) TBIT_MASTER + 10 TBIT_MASTER
=56.15 TBIT_SLAVE

329/430

Universal asynchronous receiver transmitter (UART) RMO0016

A margin is provided so that the time-out occurs when the header length is greater than 57
TBIT_SLAVE periods. If it is less than or equal to 57 TBIT_SLAVE periods, then no time-out
occurs.

Mute mode and errors

In mute mode, if an LHE error occurs during the analysis of the LIN Synch Field or if a LIN

Header Time-out occurs then the LHE bit is set but it does not wake up from mute mode. In
this case, the current header analysis is discarded. If needed, the software has to reset the
LSF bit. Then the UART searches for a new LIN header.

In mute mode, if a framing error occurs on a data (which is not a break), it is discarded and
the FE bit is not set.

Any LIN header which respects the following conditions causes a wake-up from mute mode:
® A valid LIN Break and Delimiter

® Avalid LIN Synch Field (without deviation error)

® A LIN Identifier Field without framing error. Note that a LIN parity error on the LIN
Identifier Field does not prevent wake-up from mute mode.

® No LIN Header Time-out should occur during Header reception.

2243 Slave mode with automatic resynchronization enabled

This mode is similar to slave mode as described in Section 22.4.2: Slave mode with
automatic resynchronization disabled, with the addition of automatic resynchronization
enabled by the LASE bit. In this mode UART adjusts the baudrate generator after each
Synch Field reception.

Note: This feature is only available in UART2 and UARTS.

Automatic resynchronization

When automatic resynchronization is enabled, after each LIN Break, the time duration
between 5 falling edges on RDI is sampled on fy asTeR @and the result of this measurement
is stored in an internal 19-bit register called SM (not user accessible) (See Figure 121).
Then the UARTDIV value (and its associated BRR1 and BRR2 registers) are automatically
updated at the end of the fifth falling edge. During LIN Synch field measurement, the UART
state machine is stopped and no data is transferred to the data register.

Figure 121. LIN synch field measurement

TmasTER = Master clock period
Tgg = Baud Rate period Tgr = UARTDIV.TyasTeR
SM = Synch Measurement Register (19 bits)
Ter
<P
I ! ;
LIN Break | . | | LIN Synch Field Next
tart | Start
1 Y Broaky "4 gito ¥ gitt | Bit2 ¥ Bita | Bita ¥ Bits | Bits ¥ BitrA SB‘_Ct’P| Bit
77 iy [R !
[l | |4 |
i Megsurement = 8.Tgg = SM.TyasTER
|
|
UARTDIV(n) ! X UARTDIV(n+1)
I
UARTDIV = TBR / (TMASTER) = Rounding (SM / 128) |
1

330/430 Kﬁ

RMO0016

Universal asynchronous receiver transmitter (UART)

UARTDIV is an unsigned integer, coded in the BRR1 and BRR2 registers as shown in
Figure 105.

If LASE bit = 1 then UARTDIV is automatically updated at the end of each LIN Synch Field.
Three registers are used internally to manage the auto-update of the LIN divider

(UARTDIV):

® UARTDIV_NOM (nominal value written by software at UART_BRR1 and UART_BRR2
addresses)

® UARTDIV_MEAS (results of the Field Synch measurement)

e UARTDIV (used to generate the local baud rate)

The control and interactions of these registers are explained in Figure 122 and Figure 123.
They depend on the LDUM bit setting (LIN Divider Update Method)

As explained in Figure 122 and Figure 123, UARTDIV can be updated by two concurrent
actions: a transfer from UARTDIV_MEAS at the end of the LIN Sync Field and a transfer
from UARTDIV_NOM due to a software write to BRR1. If both operations occur at the same
time, the transfer from UARTDIV_NOM has priority.

Figure 122. UARTDIV read / write operations when LDUM =0

Write UART2_BRR1 Write UART2_BRR2
. LIN Sync Field
.41 |UARTDIV[15:2]
UARTDIV[11:4] UARTDIV[3:0] UARTDIV_NOM Measurement

o

UART2_BRR1 UARTDIV[11:4] |JARTDIV[15:12] UARTDIV_MEAS

UARTDIV[3:0]
Update
at end of
/ ynch Field

JUARTDIV[15:12] | UARTDIV Baud R
UARTDIVIZ:0) ' ARTDIV[3:0] > B e

o

Read UART2_BRR1 Read UART2_BRR2

331/430

Universal asynchronous receiver transmitter (UART) RMO0016

Figure 123. UARTDIV read / write operations when LDUM = 1
Write UART2_BRR1 Write UART2_BRR2

LIN Sync Field

UARTDIV[11:4] %/XF;TT[E)'I\(/[EB%]Z] UARTDIV_NOM Measurement

ved

UARTDIV[11:4] %‘;‘RRT%I‘(/[ES]ZI UARTDIV_MEAS

Update
at end of LDUM is reset
Synch Field
I /

.41|UARTDIV[15:12]| yARTDIV Baud Rate
UARTDIVI11:4] | A RTDN3.0] > oo ration

K

Read UART2_BRR1 Read UART2_BRR2

Deviation error on the synch field

The deviation error is checked by comparing the current baud rate (relative to the slave
oscillator) with the received LIN Synch Field (relative to the master oscillator). Two checks
are performed in parallel.

The first check is based on a measurement between the first falling edge and the last falling

edge of the Synch Field.

® [fD1>14.84% LHE is set

® [fD1<14.06% LHE is not set

® [f14.06% < D1 < 14.84% LHE can be either set or reset depending on the dephasing
between the signal on UART_RX pin and the f\yasteR clock

The second check is based on a measurement of time between each falling edge of the

Synch Field

e |[fD2>18.75% LHE is set

® |[fD2 < 15.62% LHE is not set

o [f15.62% < D2 < 18.75% LHE can be either set or reset depending on dephasing
between the signal on UART_RX pin and the fyasTeR clock

Note that the UART does not need to check if the next edge occurs slower than expected.
This is covered by the check for deviation error on the full synch byte.

Note: Deviation checking is based on the current baudrate and not on the nominal one. Therefore,
in order to guarantee correct deviation checking, the baudrate generator must reload the
nominal value before each new Break reception. This nominal value is programmed by the

332/430 Kﬁ

RMO0016

Universal asynchronous receiver transmitter (UART)

application during initialization. To do this software must set the LDUM bit before checksum
reception.

If LDUM bit is set, the next character reception will automatically reload the baudrate
generator with nominal value.

You can also reload the nominal value by writing to BRR2 and BRR1. This second method is
typically used when an error occurs during response transmission or reception.

If for any reason, the LDUM bit is set when UART is receiving a new Break and a Synch
Field, this bit will be ignored and cleared. UART will adjust the baudrate generator with a
value calculated from the synch field.

LIN header error detection

LHE is set if one of the following conditions occurs:
® Break Delimiter is too short

® Deviation error on the Synch Field is outside the LIN specification which allows up to +/
-14% of period deviation between the slave and master oscillators.

® Framing error in Synch Field or Identifier Field
® A LIN header reception time-out

® An overflow during the Synch Field Measurement, which leads to an overflow of the
divider registers

LIN header time-out error
The description in the section LIN header time-out error on page 329 applies also when
automatic resynchronization is enabled.

UART clock tolerance when synchronized

When synchronization has been performed, following reception of a LIN Break, the UART
has the same clock deviation tolerance as in UART mode, which is explained below:

During reception, each bit is oversampled 16 times. The mean of the 8th, 9th and 10th
samples is considered as the bit value.

Consequently, the clock frequency should not vary more than 6/16 (37.5%) within one bit.

The sampling clock is resynchronized at each start bit, so that when receiving 10 bits (one
start bit, 1 data byte, 1 stop bit), the clock deviation should not exceed 3.75%.

UART clock tolerance when unsynchronized

When LIN slaves are unsynchronized (meaning no characters have been transmitted for a
relatively long time), the maximum tolerated deviation of the UART clock is +/-14%.

If the deviation is within this range then the LIN Break is detected properly when a new
reception occurs.

This is made possible by the fact that masters send 13 low bits for the LIN Break, which can
be interpreted as 11 low bits (13 bits -14% = 11.18) by a "fast" slave and then considered as
a LIN Break. According to the LIN specification, a LIN Break is valid when its duration is
greater than tggrkTts = 10. This means that the LIN Break must last at least 11 low bits.

If the period desynchronization of the slave is +14% (slave too slow), the character "00h"
which represents a sequence of 9 low bits must not be interpreted as a break character (9
bits + 14% = 10.26). Consequently, a valid LIN break must last at least 11 low bits.

333/430

Universal asynchronous receiver transmitter (UART) RMO0016

334/430

Clock deviation causes

The causes which contribute to the total deviation are:

® DTRA: Deviation due to transmitter error. Note: the transmitter can be either a master
or a slave (in case of a slave listening to the response of another slave).

® DMEAS: Error due to the LIN Synch measurement performed by the receiver.
DQUANT: Error due to the baud rate quantization of the receiver.

® DREC: Deviation of the local oscillator of the receiver: This deviation can occur during
the reception of one complete LIN message assuming that the deviation has been
compensated at the beginning of the message.

® DTCL: Deviation due to the transmission line (generally due to the transceivers)

® All the deviations of the system should be added and compared to the UART clock
tolerance:

— DTRA + DMEAS+ DQUANT + DREC + DTCL < 3.75%

Error due to LIN synch measurement

The LIN Synch Field is measured over eight bit times.

This measurement is performed using a counter clocked by the CPU clock. The edge
detections are performed using the CPU clock cycle.

This leads to a precision of 2 CPU clock cycles for the measurement which lasts
8*UARTDIV clock cycles.

Consequently, this error (DMEAS) is equal to:

2/ (8*UARTDIVMIN)

UARTDIVMIN corresponds to the minimum LIN prescaler content, leading to the maximum
baud rate, taking into account the maximum deviation of +/-14%.

Error due to baud rate quantization

The baud rate can be adjusted in steps of 1/ (UARTDIV). The worst case occurs when the
"real" baud rate is in the middle of the step.

This leads to a quantization error (DQUANT) equal to 1/ (2*UARTDIVMIN).

Impact of clock deviation on maximum baud rate

The choice of the nominal baud rate (UARTDIVNOM) will influence both the quantization
error (DQUANT) and the measurement error (DMEAS). The worst case occurs for
UARTDIVMIN.

Consequently, at a given CPU frequency, the maximum possible nominal baud rate
(LPRMIN) should be chosen with respect to the maximum tolerated deviation given by the
equation:

DTRA + 1/ (2*UARTDIVMIN) + DREC + DTCL < 3.75%
Example:
A nominal baud rate of 20 Kbits/s at TCPU = 125 ns (8 MHz) leads to UARTDIVNOM = 25d.

UARTDIVMIN = 25 - 0.15*25 = 21.25
DQUANT =1/ (2*UARTDIVMIN) = 0.0015%

RM0016 Universal asynchronous receiver transmitter (UART)
Figure 124. Bit sampling in reception mode
I I I I I I I I I I I I T‘T‘T—
RDI Lll\:m [1 1 [1 [| I [11 1 |
[I Ly I
sampled values
| N Y N N B ey N | O I
Sample
SRR R R b b b bbb o]
| I I |
| I I‘ 6/16 Al :
| |‘ L
:< 7116 N € 7/16 N
> One bit time o
2244 LIN mode selection
Table 51. LIN mode selection
LINE | LSLV | LASE Meaning
0 LIN mode disabled
0 0
LIN Master Mode
0 LIN Slave Mode
1 with Automatic resynchronization disabled
1
1 LIN Slave Mode
with Automatic resynchronization enabled
22.5 UART low power modes

Table 52. UART interface behavior in low power modes
Mode Description
WAIT No effect on UART.

UART interrupts cause the device to exit from Wait mode.
HALT UART registers are frozen.

In Halt mode, the UART stops transmitting/receiving until Halt mode is exited.

335/430

Universal asynchronous receiver transmitter (UART) RMO0016
22.6 UART interrupts
Table 53. UART interrupt requests
Enable Exit Exit
Interrupt event Ef‘{:;t con_trol fror_n from
bit Wait Halt
Transmit data register empty TXE TIEN Yes No
Transmission complete TC TCIEN Yes No
Received data ready to be read RXNE Yes No
Overrun error detected / LIN header error OR/LHE RIEN Yes No
Idle line detected IDLE ILIEN Yes No
Parity error PE PIEN Yes No
Break flag LBDF LBDIEN Yes No
Header Flag LHDF LHDIEN Yes No
Note: 1 The UART interrupt events are connected to two interrupt vectors (see Figure 125).

a) Transmission Complete or Transmit Data Register empty interrupt.
b) Idle Line detection, Overrun error, Receive Data register full, Parity error interrupt,

and Noise Flag.

2 These events generate an interrupt if the corresponding Enable Control Bit is set and the

interrupt mask in the CC register is reset (RIM instruction).

Figure 125. UART interrupt mapping diagram

TC
TCIEN
TXE

TIEN

IDLE

ILIEN
RIEN

OR/LHE
RIEN

D—> Transmitter Interrupt

RXNE

P
PIEN

LBDF

LBDIEN

LHDF

LHDIEN

M@M@f

Receiver Interrupt

336/430

RM0016 Universal asynchronous receiver transmitter (UART)

22.7 UART registers

22.7.1 Status register (UART_SR)
Address offset: 0x00

Reset value: 0xCO

7 6 5 4 3 2 1 0
TXE TC RXNE IDLE OR/LHE NF FE PE
r rc_wo0 rc_wo0 r r r r r

Bit 7 TXE: Transmit data register empty

This bit is set by hardware when the content of the TDR register has been transferred into the shift
register. An interrupt is generated if the TIEN bit =1 in the UART_CR2 register. It is cleared by a
write to the UART_DR register.

0: Data is not transferred to the shift register
1: Data is transferred to the shift register

Bit 6 TC: Transmission complete

This bit is set by hardware when transmission of a frame containing Data is complete. An interrupt is
generated if TCIEN=1 in the UART_CR2 register. It is cleared by a software sequence (a read to the
UART_SR register followed by a write to the UART_DR register). In UART2 and UARTS, it can also
be cleared by writing 0.

0: Transmission is not complete
1: Transmission is complete

Bit 5 RXNE: Read data register not empty

This bit is set by hardware when the content of the RDR shift register has been transferred to the
UART_DR register. An interrupt is generated if RIEN=1 in the UART_CR2 register. It is cleared by a
read to the UART_DR register. In UART2 and UARTS3, it can also be cleared by writing 0.

0: Data is not received

1: Received data is ready to be read.

Bit 4 |DLE: IDLE line detected (V

This bit is set by hardware when an Idle Line is detected. An interrupt is generated if the ILIEN=1 in
the UART_CR2 register. It is cleared by a software sequence (a read to the UART_SR register
followed by a read to the UART_DR register).

0: No Idle Line is detected

1: Idle Line is detected

Ky_l 337/430

Universal asynchronous receiver transmitter (UART) RMO0016

Bit 3 OR: Overrun error®

This bit is set by hardware when the word currently being received in the shift register is ready to be
transferred into the RDR register while RXNE=1. An interrupt is generated if RIEN=1 in the
UART_CR2 register. It is cleared by a software sequence (a read to the UART_SR register followed
by a read to the UART_DR register).

0: No Overrun error
1: Overrun error is detected

LHE LIN Header Error (LIN slave mode)

During LIN Header reception, this bit signals three error types:
- Break delimiter too short
— Synch Field error
— Deviation error (if LASE=1)
— ldentifier framing error

0: No LIN Header error

1: LIN Header error detected

Bit2 NF: Noise flag ®
This bit is set by hardware when noise is detected on a received frame. It is cleared by a software
sequence (a read to the UART_SR register followed by a read to the UART_DR register).
0: No noise is detected
1: Noise is detected

Bit 1 FE: Framing error ()

This bit is set by hardware when a de-synchronization, excessive noise or a break character is
detected. Itis cleared by a software sequence (a read to the UART_SR register followed by a read to
the UART_DR register).

0: No Framing error is detected
1: Framing error or break character is detected
Bit 0 PE: Parity error

This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by a software
sequence (a read to the status register followed by a read to the UART_DR data register). You have
to wait for the RXNE flag to be set before clearing it. An interrupt is generated if PIEN=1 in the
UART_CR1 register.

0: No parity error

1: Parity error (or, in LIN slave mode, identifier parity error)

—_

The IDLE bit will not be set again until the RXNE bit has been set itself (i.e. a new idle line occurs)
When this bit is set, the RDR register content will not be lost but the shift register will be overwritten.

This bit does not generate interrupt as it appears at the same time as the RXNE bit which itself generates an interrupt.

> w DN

This bit does not generate interrupt as it appears at the same time as the RXNE bit which itself generates an interrupt. If the
word currently being transferred causes both frame error and overrun error, it will be transferred and only the OR bit will be
set.

338/430 Ky_’

RM0016 Universal asynchronous receiver transmitter (UART)
22.7.2 Data register (UART_DR)
Address offset: 0x01
Reset value: Undefined
7 6 5 4 3 2 1 0
DR[7:0]
rw rw w rw rw w rw rw
Bits 7:0 DR[7:0]: Data value
Contains the Received or Transmitted data character, depending on whether it is read from or
written to.
The Data register performs a double function (read and write) since it is composed of two registers,
one for transmission (TDR) and one for reception (RDR)
The TDR register provides the parallel interface between the internal bus and the output shift
register.
The RDR register provides the parallel interface between the input shift register and the internal bus.
22.7.3 Baud rate register 1 (UART_BRR1)
The Baud Rate Registers are common to both the transmitter and the receiver. The baud
rate is programmed using two registers BRR1 and BRR2. Writing of BRR2 (if required)
should precede BRR1, since a write to BRR1 will update the baud counters.
See Figure 105: How to code UART_DIV in the BRR registers on page 312 and Table 49:
Baud rate programming and error calculation on page 313
Note: 1 The baud counters stop counting if the TEN or REN bits are disabled respectively.
Address offset: 0x02
Reset value: 0x00
7 6 5 4 3 2 1 0
UART_DIV[11:4]
rw rw w rw w rw rw

Bits 7:0 UART_DIV[11:4] UART_DIV bits (V)

These 8 bits define the 2nd and 3rd nibbles of the 16-bit UART divider (UART_DIV).

1. BRR1 = 00h means UART clock is disabled.

339/430

Universal asynchronous receiver transmitter (UART) RMO0016

22.7.4 Baud rate register 2 (UART_BRR2)
Address offset: 0x03
Reset value: 0x00
7 6 5 4 3 2 1 0
UART_DIV[15:12] UART_DIV[3:0]
rw rw w rw rw w rw rw
Bits 7:4 UART_DIV[15:12] MSB of UART_DIV.
These 4 bits define the MSB of the UART Divider (UART_DIV)
Bits 3:0 UART_DIV[3:0]: LSB of UART_DIV.
These 4 bits define the LSB of the UART Divider (UART_DIV)
22.7.5 Control register 1 (UART_CR1)
Address offset: 0x04
Reset value: 0x00
7 6 5 4 3 2 1 0
R8 T8 UARTD M WAKE PCEN PS PIEN
rw rw w rw rw rw rw rw
Bit 7 R8: Receive Data bit 8.
This bit is used to store the 9th bit of the received word when M=1
Bit 6 T8: Transmit data bit 8.
This bit is used to store the 9th bit of the transmitted word when M=1
Bit 5 UARTD: UART Disable (for low power consumption).
When this bit is set the UART prescaler and outputs are stopped at the end of the current byte
transfer in order to reduce power consumption. This bit is set and cleared by software.
0: UART enabled
1: UART prescaler and outputs disabled
Bit 4 M: word length.
This bit determines the word length. It is set or cleared by software.
0: 1 Start bit, 8 Data bits, n Stop bit (n depending on STOP[1:0] bits in the UART_CRS3 register)
1: 1 Start bit, 9 Data bits, 1 Stop bit
Note: The M bit must not be modified during a data transfer (both transmission and reception) In LIN
slave mode, the M bit and the STOP[1:0] bits in the UART_CR3 register should be kept at 0.
Bit 3 WAKE: Wakeup method.

340/430

This bit determines the UART wakeup method, it is set or cleared by software.
0: Idle Line
1: Address Mark

RMO0016

Universal asynchronous receiver transmitter (UART)

Bit 2

Bit 1

Bit0

22.7.6

PCEN: Parity control enable.
® UART Mode

This bit selects the hardware parity control (generation and detection). When the parity control is
enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and parity
is checked on the received data. This bit is set and cleared by software. Once it is set, PCEN is
active after the current byte (in reception and in transmission).

0: Parity control disabled
1: Parity control enabled
® LIN slave mode
This bit enables the LIN identifier parity check while the UART is in LIN slave mode.
0: Identifier parity check disabled
1: Identifier parity check enabled

PS: Parity selection.

This bit selects the odd or even parity when the parity generation/detection is enabled (PCEN bit set)
in UART mode. It is set and cleared by software. The parity will be selected after the current byte.

0: Even parity
1: Odd parity
PIEN: Parity interrupt enable.
This bit is set and cleared by software.
0: Parity interrupt disabled
1: Parity interrupt is generated whenever PE=1 in the UART_SR register

Control register 2 (UART_CR2)
Address offset: 0x05

Reset value: 0x00

TIEN

TCIEN RIEN ILIEN TEN REN RWU SBK

rw

Bit 7

Bit 6

Bit 5

TIEN: Transmitter interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An UART interrupt is generated whenever TXE=1 in the UART_SR register

TCIEN: Transmission complete interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An UART interrupt is generated whenever TC=1 in the UART_SR register

RIEN: Receiver interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An UART interrupt is generated whenever OR=1 or RXNE=1 in the UART_SR register

341/430

Universal asynchronous receiver transmitter (UART) RMO0016

Bit 4 ILIEN: IDLE Line interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An UART interrupt is generated whenever IDLE=1 in the UART_SR register

Bit 3 TEN: Transmitter enable (V) (@)
This bit enables the transmitter. It is set and cleared by software.
0: Transmitter is disabled
1: Transmitter is enabled

Bit2 REN: Receiver enable
This bit enables the receiver. It is set and cleared by software.
0: Receiver is disabled
1: Receiver is enabled and begins searching for a start bit

Bit 1 RWU: Receiver wakeup
® UART Mode
This bit determines if the UART is in mute mode or not. It is set and cleared by software and can be
cleared by hardware when a wakeup sequence is recognized.(S) “)
® LIN mode

While LIN is used in slave mode, setting the RWU bit allows the detection of Headers only and
prevents the reception of any other characters. Refer to Mute mode and errors on page 330. In LIN
slave mode, when RDREF is set, the software can not set or clear the RWU bit.

0: Receiver in active mode
1: Receiver in mute mode

Bit 0 SBK: Send break

This bit set is used to send break characters. It can be set and cleared by software.lt should be set
by software, and will be reset by hardware during the stop bit of break.

0: No break character is transmitted
1: Break character will be transmitted

1. During transmission, a “0” pulse on the TEN bit (“0” followed by “1”) sends a preamble (idle line) after the current word.
When TEN is set there is a 1 bit-time delay before the transmission starts.

Before selecting Mute mode (by setting the RWU bit) the UART must first receive a data byte, otherwise it cannot function
in Mute mode with wakeup by Idle line detection.

4. In Address Mark Detection wakeup configuration (WAKE bit=1) the RWU bit cannot be modified by software while the
RXNE bit is set.

342/430 Ky_’

RM0016 Universal asynchronous receiver transmitter (UART)

22.7.7 Control register 3 (UART_CR3)
Address offset: 0x06

Reset value: 0x00

7 6 5 4 3 2 1 0
LINEN STOPI[1:0] CLKEN CPOL CPHA LBCL
Reserved
rw w w rw rw rw w

Bit7 Reserved, must be kept cleared.

Bit 6 LINEN: LIN mode enable
This bit is set and cleared by software.
0: LIN mode disabled
1: LIN mode enabled

Bits 5:4 STOP: STOP bits.
These bits are used for programming the stop bits.
00: 1 Stop bit
01: Reserved
10: 2 Stop bits
11: 1.5 Stop bits
Note: For LIN slave mode, both bits should be kept cleared.

Bit 3 CLKEN: Clock enable
This bit allows the user to enable the SCLK pin.
0: SLK pin disabled
1: SLK pin enabled
Note: This bit is not available for UARTS3.

Bit2 CPOL: Clock polarity ()
This bit allows the user to select the polarity of the clock output on the SCLK pin. It works in
conjunction with the CPHA bit to produce the desired clock/data relationship
0: SCK to 0 when idle
1: SCK to 1 when idle.
Note: This bit is not available for UARTS3.

Bit 1 CPHA: Clock phase (")

This bit allows the user to select the phase of the clock output on the SCLK pin. It works in
conjunction with the CPOL bit to produce the desired clock/data relationship

0: The first clock transition is the first data capture edge

1: The second clock transition is the first data capture edge

Note: This bit is not available for UARTS3.
1. These 3 bits (CPOL, CPHA, LBCL) should not be written while the transmitter is enabled.

Ky_l 343/430

Universal asynchronous receiver transmitter (UART) RMO0016

Bit 0 LBCL: Last bit clock pulse.(N(™

This bit allows the user to select whether the clock pulse associated with the last data bit transmitted
(MSB) has to be output on the SCLK pin.

0: The clock pulse of the last data bit is not output to the SCLK pin.
1: The clock pulse of the last data bit is output to the SCLK pin.
Note: This bit is not available for UARTS.

1. The last bit is the 8th or 9th data bit transmitted depending on the 8 or 9 bit format selected by the M bit in the UART_CR1
register.

22.7.8 Control register 4 (UART_CR4)
Address offset: 0x07

Reset value: 0x00

7 6 5 4 3 2 1 0
LBDIEN LBDL LBDF ADDI[3:0]
Reserved
w w w rw rw rw w

Bit 7 Reserved, must be kept cleared.

Bit 6 LBDIEN: LIN Break Detection Interrupt Enable.
Break interrupt mask (break detection using break delimiter).
0: LIN break detection interrupt disabled
1: LIN break detection interrupt enabled

Bit 5 LBDL: LIN Break Detection Length.
This bit is for selection between 11 bit or 10 bit break detection.
0: 10 bit break detection
1: 11 bit break detection

Bit 4 LBDF: LIN Break Detection Flag.
LIN Break Detection Flag (Status flag)
This bit is set by hardware and cleared by software writing 0.
0: LIN Break not detected
1: LIN Break detected
An interrupt is generated when LBDF=1 if LBDIEN=1

Bits 3:0 ADD[3:0]: Address of the UART node.
This bit-field gives the address of the UART node.

This is used in multi-processor communication during mute mode, for wakeup with address mark
detection.

344/430 Kﬁ

RM0016 Universal asynchronous receiver transmitter (UART)

22.7.9 Control register 5 (UART_CR5)
Address offset: 0x08

Reset value: 0x00

7 6 5 4 3 2 1 0
SCEN NACK HDSEL IRLP IREN
Reserved Reserved
r r rw rw rw

Bits 7:6 Reserved, must be kept cleared.

Bit 5 SCEN: Smartcard mode enable.
This bit is used for enabling Smartcard mode.
0: Smartcard Mode disabled
1: Smartcard Mode enabled
Note: This bit is not available for UART3.

Bit4 NACK: Smartcard NACK enable
0: NACK transmission in case of parity error is disabled

1: NACK transmission during parity error is enabled.
Note: This bit is not available for UART3.

Bit 3 HDSEL: Half-Duplex Selection
Selection of Single-wire Half-duplex mode
0: Half duplex mode is not selected
1: Half duplex mode is selected
Note: This bit is not available for UART2 and UARTS3.

Bit 2 IRLP: IrDA Low Power
This bit is used for selected between normal and Low power IrDA mode
0: Normal mode
1: Low power mode
Note: This bit is not available for UARTS3.
Bit 1 IREN: IrDA mode Enable
This bit is set and cleared by software.
0: IrDA disabled
1: IrDA enabled
Note: This bit is not available for UARTS3.

Bit 0 Reserved, must be kept cleared.

Ky_l 345/430

Universal asynchronous receiver transmitter (UART) RMO0016

22.7.10

Control register 6 (UART_CRG6)
Address offset: 0x09

Reset value: 0x00

6 5 4 3 2 1 0

LDUM

LSLV LASE LHDIEN LHDF LSF

Reserved Reserved
w w rw rc_w0 rc_w0

Note:

Bit 7

Bit 6
Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bits 0

346/430

This register is not available for UART1.

LDUM: LIN Divider Update Method

0: LDIV is updated as soon as BRR1 is written (if no automatic resynchronization update occurs at
the same time).

1: LDIV is updated at the next received character (when RXNE=1) after a write to the BRR1 register.
LDIV is coded using the two register BRR1 and BRR2
This bit is reset by hardware once LDIV is updated with the measured baud rate at the end of the
synch field.

Reserved

LSLV: LIN Slave Enable
0: LIN Master Mode
1: LIN Slave Mode

LASE: LIN automatic resynchronisation enable
0: LIN automatic resynchronization disabled
1: LIN automatic resynchronization enabled

Reserved

LHDIEN: LIN Header Detection Interrupt Enable.
Header interrupt mask.
0: LIN header detection interrupt disabled
1: LIN header detection interrupt enabled

LHDF: LIN Header Detection Flag.
This bit is set by hardware when a LIN header is detected in LIN slave mode and cleared by software
writing O.
0: LIN Header not detected
1: LIN Header detected (Break+Sync+Ident)
An interrupt is generated when LHDF=1 if LHDIEN=1

LSF: LIN Sync Field

This bit indicates that the LIN Synch Field is being analyzed. It is only used in LIN Slave mode. In
automatic resynchronization mode (LASE bit=1), when the UART is in the LIN Synch Field State it
waits or counts the falling edges on the RDI line.

It is set by hardware as soon as a LIN Break is detected and cleared by hardware when the LIN
Synch Field analysis is finished. This bit can also be cleared by software writing 0 to exit LIN Synch
State and return to idle mode.

0: The current character is not the LIN Synch Field

1: LIN Synch Field State (LIN Synch Field undergoing analysis)

RM0016 Universal asynchronous receiver transmitter (UART)

22.7.11 Guard time register (UART_GTR)
Address offset: 0x09 (UART1), Ox0A (UART2)

Reset value: 0x00

GT[7:0]

Bits 7:0 GT[7:0]: Guard time value.
This register gives the Guard time value in terms of number of baud clocks.
This is used in Smartcard mode.The Transmission Complete flag is set after this guard time value.
Note: These bits are not available for UARTS.

Ky_l 347/430

Universal asynchronous receiver transmitter (UART)

RMO0016

22.7.12 Prescaler register (UART_PSCR)
Address offset: 0xOA (UART1), 0x0B (UART2)
Reset value: 0x00
Note: Care must be taken to program this register with correct value, when both Smartcard and
IrDA interfaces are used in the application
7 6 5 4 3 2 1 0
PSCI7:0]
rw w w w w w w rw

Bits 7:0 PSCJ[7:0]: Prescaler value.

® InIrDA Low Power mode
PSCI[7:0] = IrDA Low Power Baud Rate ()

Used for programming the prescaler for dividing the system clock to achieve the low power
frequency:

The source clock is divided by the value given in the register (8 significant bits):

0000 0000: Reserved - do not program this value

0000 0001: divides the source clock by 1

0000 0010: divides the source clock by 2

® In Smartcard mode
PSCI[4:0]: Prescaler value. @)

Used for programming the prescaler for dividing the system clock to provide the smartcard clock.
The value given in the register (5 significant bits) is multiplied by 2 to give the division factor of the

source clock frequency:

0 0000: Reserved - do not program this value
0 0001: divides the source clock by 2

0 0010: divides the source clock by 4

0 0011: divides the source clock by 6

Note: These bits are not available for UART3.

1. This prescaler setting has no effect if I'lDA mode is not enabled.
2. This prescaler setting has no effect if Smartcard mode is not enabled.
3. Bits [7:5] have no effect even if Smartcard mode is enabled.

348/430

RMO0016

Universal asynchronous receiver transmitter (UART)

22.7.13 UART register map and reset values

Table 54. UART1 register map
Register
Address 9 7 6 5 4 3 2 1 0
name
0x00 UART1_SR TXE TC RXNE IDLE OR NF FE PE
Reset Value 1 1 0 0 0 0 0 0
UART1_DR DR7 DR6 DR5 DR4 DR3 DR2 DR1 DRO
0x01
Reset Value X X X X X X X X
0x02 UART1_BRR1 UART_DIV[11:4]
Reset Value 00000000
0x03 UART1_BRR2 UART_DIV[15:12] UART_DIV[3:0]
Reset Value 0000 0000
0x04 UART1_CR1 R8 T8 UARTD M WAKE PCEN PS PIEN
Reset Value 0 0 0 0 0 0 0 0
0x05 UART1_CR2 TIEN TCIEN RIEN ILIEN TEN REN RWU SBK
Reset Value 0 0 0 0 0 0 0 0
0x06 UART1_CRS3 - LINEN STOP CKEN CPOL CPHA LBCL
Reset Value 0 0 00 0 0 0 0
0x07 UART1_CR4 - LBDIEN LBDL LBDF ADD[3:0]
Reset Value 0 0 0 0 0000
0x08 UART1_CR5 - - SCEN NACK HDSEL IRLP IREN
Reset Value 0 0 0 0 0 0 0 0
0x09 UART1_GTR GT7 GT6 GT5 GT4 GT3 GT2 GT1 GTO
Reset Value 0 0 0 0 0 0 0 0
OX0A UART1_PSCR PSC7 PSC6 PSC5 PSC4 PSC3 PSC2 PSC1 PSCO
Reset Value 0 0 0 0 0 0 0 0
Table 55. UART2 register map
Register
Address 9 7 6 5 4 3 2 1 0
name
0x00 UART2_SR TXE TC RXNE IDLE OR NF FE PE
Reset Value 1 1 0 0 0 0 0 0
UART2_DR DR7 DR6 DR5 DR4 DR3 DR2 DR1 DRO
0x01
Reset Value X X X X X X X X
0x02 UART2_BRR1 UART_DIV[11:4]
Reset Value 00000000
0x03 UART2_BRR2 UART_DIV[15:12] UART_DIV[3:0]
Reset Value 0000 0000
0x04 UART2_CR1 R8 T8 UARTD M WAKE PCEN PS PIEN
Reset Value 0 0 0 0 0 0 0 0
0%05 UART2_CR2 TIEN TCIEN RIEN ILIEN TEN REN RWU SBK
Reset Value 0 0 0 0 0 0 0 0
0X06 UART2_CRS3 - LINEN STOP CKEN CPOL CPHA LBCL
Reset Value 0 0 00 0 0 0 0
0x07 UART2_CR4 - LBDIEN LBDL LBDF ADD[3:0]
Reset Value 0 0 0 0 0000
0x08 UART2_CR5 - - SCEN NACK HDSEL IRLP IREN
Reset Value 0 0 0 0 0 0 0 0
0x09 UART2_CR6 LDUM LSLV LASE LHDIEN LHDF LSF
Reset Value 0 0 0 0 0 0 0 0
Ly 349/430

Universal asynchronous receiver transmitter (UART) RMO0016
Table 55. UART2 register map
Register
Address 9 7 6 5 4 3 2 1 0
name
OX0A UART2_GTR GT7 GT6 GT5 GT4 GT3 GT2 GT1 GTO
Reset Value 0 0 0 0 0 0 0 0
OXOB UART2_PSCR PSC7 PSC6 PSC5 PSC4 PSC3 PSC2 PSC1 PSCO
Reset Value 0 0 0 0 0 0 0 0
Table 56. UARTS register map
Register
Address 9 7 6 5 4 3 2 1 0
name
0x00 UART3_SR TXE TC RXNE IDLE OR NF FE PE
Reset Value 1 1 0 0 0 0 0 0
UART3_DR DR7 DR6 DR5 DR4 DR3 DR2 DR1 DRO
0x01
Reset Value X X X X X X X X
0x02 UART3_BRR1 UART_DIV[11:4]
Reset Value 00000000
0x03 UART3_BRR2 UART_DIV[15:12] UART_DIVI[3:0]
Reset Value 0000 0000
0x04 UART3_CR1 R8 T8 UARTD M WAKE PCEN PS PIEN
Reset Value 0 0 0 0 0 0 0 0
0x05 UART3_CR2 TIEN TCIEN RIEN ILIEN TEN REN RWU SBK
Reset Value 0 0 0 0 0 0 0 0
0X06 UART3_CR3 - LINEN STOP - - - -
Reset Value 0 0 00 0 0 0 0
0xX07 UART3_CR4 - LBDIEN LBDL LBDF ADDI[3:0]
Reset Value 0 0 0 0 0000
0x08 Reserved
0x09 UART2_CR6 LDUM - LSLV LASE - LHDIEN LHDF LSF
Reset Value 0 0 0 0 0 0 0 0
350/430 17

RMO0016

Controller area network (beCAN)

23

23.1

23.2

23.3

Controller area network (beCAN)

Introduction

The Basic Enhanced CAN peripheral, named beCAN, interfaces the CAN network. It

supports the CAN protocol version 2.0A and B. It has been designed to manage high

number of incoming messages efficiently with a minimum CPU load. It also meets the
priority requirements for transmit messages.

For safety-critical applications the CAN controller provides all hardware functions for
supporting the CAN Time triggered Communication option.

beCAN main features

® Supports CAN protocol version 2.0 A, B Active

@ Bitrates up to 1 Mbit/s

® Supports the Time Triggered Communication option
® Selectable clock source (fyasTer Of feaNEXT)
Transmission

® Three transmit mailboxes

® Configurable transmit priority

® Time Stamp on SOF transmission

Reception

® One receive FIFO with three stages
® Six scalable filter banks

o Identifier list feature

® Configurable FIFO overrun

® Time Stamp on SOF reception

Time triggered communication option

® Disable automatic retransmission mode
® 16-bit free running timer

® Configurable timer resolution

® Time Stamp sent in last two data bytes

Management
® Maskable interrupts
e Software-efficient mailbox mapping at a unique address space

beCAN general description

In today’s CAN applications, the number of nodes in a network is increasing and often
several networks are linked together via gateways. Typically the number of messages in the
system (and thus to be handled by each node) has significantly increased. In addition to the

351/430

Controller area network (beCAN) RM0016

23.3.1

23.3.2

23.3.3

352/430

application messages, Network Management and Diagnostic messages have been
introduced.
® An enhanced filtering mechanism is required to handle each type of message.

Furthermore, application tasks require more CPU time, therefore real-time constraints

caused by message reception have to be reduced.

® A receive FIFO scheme allows the CPU to be dedicated to application tasks for a long
time period without losing messages.

The standard HLP (Higher Layer Protocol) based on standard CAN drivers requires an
efficient interface to the CAN controller.

® All mailboxes and registers are organized in 16-byte pages mapped at the same
address and selected via a page select register.

Figure 126. CAN network topology

-— N c
8 STM8 MCU g 8
Applicati
b3 pplication 3 3
c c c
Z [om Z Z
(@) Controller &))
CAN 4 CAN
Rx v Tx
CAN
Transceiver
CAN CAN A A A A
High Low
v v A4 A4
CAN Bus

CAN 2.0B active core

The beCAN module handles the transmission and the reception of CAN messages fully
autonomously. Standard identifiers (11-bit) and extended identifiers (29-bit) are fully
supported by hardware.

Control, status and configuration registers

The application uses these registers to:

® Configure CAN parameters, e.g. baud rate
® Request transmissions

® Handle receptions

® Manage interrupts

® Get diagnostic information

Tx mailboxes

Three transmit mailboxes are provided to the software for setting up messages. The
Transmission Scheduler decides which mailbox has to be transmitted first.

RMO0016

Controller area network (beCAN)

23.3.4

Acceptance filters

The beCAN provides six scalable/configurable identifier filter banks for selecting the
incoming messages the software needs and discarding the others.

Receive FIFO

The receive FIFO is used by the CAN controller to store the incoming messages. Three
complete messages can be stored in the FIFO. The software always accesses the next
available message at the same address. The FIFO is managed completely by hardware.

Figure 127. beCAN block diagram

Tx Mailboxes Receive FIFO
Mailbox 2

Master Control

Master Status

Transmit Control Mailbox 0

Transmit Status Mailbox 1

Transmit Priority

Receive FIFO

Mailbox 0

Interrupt Enable

1T

Acceptance Filters

Error Status

Error Int. Enable

Tx Error Counter . zﬁiﬁ

[
Transmission ;
Rx Error Counter Scheduler Filter bank 0O
Diagnostic
Bit Timing @ ﬁ

Filter Mode

CAN 2.0B Active C
Filter Config. ctive Core

Control / Status / Configuration

Figure 128. beCAN operating modes

Reset

Normal

SLAK =0
INAK =0

INRQ . ACK

Initialization
SLAK =0
INAK =1

INRQ . SYNC . SLEEP

353/430

Controller area network (beCAN) RM0016

23.4

23.4.1

23.4.2

23.4.3

Note:

354/430

Operating modes

beCAN has three main operating modes: Initialization, Normal and Sleep. After a
hardware reset, beCAN is in sleep mode to reduce power consumption. The software
requests beCAN to enter Initialization or Sleep mode by setting the INRQ or SLEEP bits in
the CAN_MCR register. Once the mode has been entered, beCAN confirms it by setting the
INAK or SLAK bits in the CAN_MSR register. When neither INAK nor SLAK are set, beCAN
is in Normal mode. Before entering Normal mode beCAN always has to synchronize on
the CAN bus. To synchronize, beCAN waits until the CAN bus is idle, this means 11
consecutive recessive bits have been monitored on CANRX.

Initialization mode

The software initialization can be done while the hardware is in Initialization mode. To enter
this mode the software sets the INRQ bit in the CAN_MCR register and waits until the
hardware has confirmed the request by setting the INAK bit in the CAN_MSR register.

To leave Initialization mode, the software clears the INQR bit. beCAN has left Initialization
mode once the INAK bit has been cleared by hardware. However the Rx line has to be in
recessive state to leave this mode.

While in Initialization mode, all message transfers to and from the CAN bus are stopped and
the status of the CAN bus output CANTX is recessive (high).

Entering Initialization Mode does not change any of the configuration registers.

To initialize the CAN Controller, software has to set up the Bit Timing registers and the filter
banks. If a filter bank is not used, it is recommended to leave it non active (leave the
corresponding FACT bit in the CAN_FCRXx register cleared).

Normal mode

Once the initialization has been done, the software must request the hardware to enter
Normal mode, to synchronize on the CAN bus and start reception and transmission.
Entering Normal mode is done by clearing the INRQ bit in the CAN_MCR register and
waiting until the hardware has confirmed the request by clearing the INAK bit in the
CAN_MBSR register. Afterwards, the beCAN synchronizes with the data transfer on the CAN
bus by waiting for the occurrence of a sequence of 11 consecutive recessive bits (Bus Idle
state) before it can take part in bus activities and start message transfer.

The initialization of the filter values is independent from Initialization mode but must be done
while the filter bank is not active (corresponding FACTXx bit cleared). The filter bank scale
and mode configuration must be configured in initialization mode.

Sleep mode (low power)

To reduce power consumption, beCAN has a low power mode called Sleep mode. This
mode is entered on software request by setting the SLEEP bit in the CAN_MCR register. In
this mode, the beCAN clock is stopped, however software can still access the beCAN
mailboxes.

If software requests entry to initialization mode by setting the INRQ bit while beCAN is in
sleep mode, it must also clear the SLEEP bit.

beCAN can be woken up (exit Sleep mode) either by software clearing the SLEEP bit or on
detection of CAN bus activity.

574

RMO0016

Controller area network (beCAN)

Note:

23.4.4

23.5

23.5.1

On CAN bus activity detection, hardware automatically performs the wakeup sequence by
clearing the SLEEP bit if the AWUM bit in the CAN_MCR register is set. If the AWUM bit is
cleared, software has to clear the SLEEP bit when a wakeup interrupt occurs, in order to exit
from sleep mode.

If the wakeup interrupt is enabled (WKUIE bit set in CAN_IER register) a wakeup interrupt
will be generated on detection of CAN bus activity, even if the beCAN automatically
performs the wakeup sequence.

After the SLEEP bit has been cleared, Sleep mode is exited once beCAN has synchronized
with the CAN bus, refer to Figure 128: beCAN operating modes. However the Rx line has to
be in recessive state to leave this mode. Sleep mode is exited once the SLAK bit has been
cleared by hardware.

Time triggered communication mode

In this mode, the internal counter of the CAN hardware is activated and used to generate the
Time Stamp value stored in the CAN_MTSRH and CAN_MTSRL registers (for Rx and Tx
mailboxes). The internal counter is captured on the sample point of the Start Of Frame bit in
both reception and transmission.

The TGT bit (Transmit Global Time in CAN_MDLCR) enables automatic transmission of the
contents of both CAN_MTSRH and CAN_MTSRL in the two last data bytes of the message
(refer to the TTCAN specification ISO 11898-4). In this case, the TTCM (Time Triggered
Communication Mode in CAN_MCR) bit has to be set to enable the Time Triggered
Communication mechanism.

Test modes

Test modes can be selected by the SILM and LBKM bits in the CAN_DGR register. These
bits must be configured while beCAN is in Initialization mode. Once a test mode has been
selected, the INRQ bit in the CAN_MCR register must be reset to enter Normal mode.

Silent mode
The beCAN can be put in Silent mode by setting the SILM bit in the CAN_DGR register.

In Silent mode, the beCAN is able to receive valid data frames and valid remote frames, but
it sends only recessive bits on the CAN bus and it cannot start a transmission. If the beCAN
has to send a dominant bit (ACK bit, overload flag, active error flag), the bit is rerouted
internally so that the CAN Core monitors this dominant bit, although the CAN bus may
remain in recessive state. Silent mode can be used to analyze the traffic on a CAN bus
without affecting it by the transmission of dominant bits (Acknowledge Bits, Error Frames).

355/430

Controller area network (beCAN) RM0016

Figure 129. beCAN in silent mode

beCAN

CANTX CANRX

23.5.2 Loop back mode

The beCAN can be set in Loop Back Mode by setting the LBKM bit in the CAN_DGR
register. In Loop Back Mode, the beCAN treats its own transmitted messages as received
messages and stores them (if they pass acceptance filtering) in the FIFO.

Figure 130. beCAN in loop back mode

beCAN

Tx Rx

A
T

y

CANTX CANRX

This mode is provided for self-test functions. To be independent of external events, the CAN
Core ignores acknowledge errors (no dominant bit sampled in the acknowledge slot of a
data / remote frame) in Loop Back Mode. In this mode, the beCAN performs an internal
feedback from its Tx output to its Rx input. The actual value of the CANRX input pin is
disregarded by the beCAN. The transmitted messages can be monitored on the CANTX pin.

Note: As the Tx line is still active in this mode, be aware that it can disturb the communication on
the CAN bus.

23.5.3 Loop back combined with silent mode

It is also possible to combine Loop Back mode and Silent mode by setting the LBKM and
SILM bits in the CAN_DGR register. This mode can be used for a “Hot Selftest”, meaning
the beCAN can be tested like in Loop Back mode but without affecting a running CAN
system connected to the CANTX and CANRX pins. In this mode, the CANRX pin is
disconnected from the beCAN and the CANTX pin is held recessive.

356/430 Kﬁ

RM0016 Controller area network (beCAN)
Figure 131. beCAN in combined mode
beCAN

Tx Rx

L)

=1

!

CANTX CANRX

23.6 Functional description
23.6.1 Transmission handling

In order to transmit a message, the application must select one empty transmit mailbox, set
up the identifier, the data length code (DLC) and the data before requesting the transmission
by setting the corresponding TXRQ bit in the CAN_MCSR register. Once the mailbox has
left empty state, the software no longer has write access to the mailbox registers.
Immediately after the TXRQ bit has been set, the mailbox enters pending state and waits to
become the highest priority mailbox, see Transmit Priority. As soon as the mailbox has the
highest priority it will be scheduled for transmission. The transmission of the message of
the scheduled mailbox will start (enter transmit state) when the CAN bus becomes idle.
Once the mailbox has been successfully transmitted, it will become empty again. The
hardware indicates a successful transmission by setting the RQCP and TXOK bits in the
CAN_MCSR and CAN_TSR registers.

If the transmission fails, the cause is indicated by the ALST bit in the CAN_MCSR register in
case of an Arbitration Lost, and/or the TERR bit, in case of transmission error detection.

Transmit priority

By identifier:

When more than one transmit mailbox is pending, the transmission order is given by the
identifier of the message stored in the mailbox. The message with the lowest identifier value

has the highest priority according to the arbitration of the CAN protocol. If the identifier
values are equal, the lower mailbox number will be scheduled first.

By transmit request order:
The transmit mailboxes can be configured as a transmit FIFO by setting the TXFP bit in the
CAN_MCR register. In this mode the priority order is given by the transmit request order.

This mode is very useful for segmented transmission.
Abort

A transmission request can be aborted by the user setting the ABRQ bit in the CAN_MCSR
register. In pending or scheduled state, the mailbox is aborted immediately. An abort
request while the mailbox is in transmit state can have two results. If the mailbox is
transmitted successfully the mailbox becomes empty with the TXOK bit set in the
CAN_MCSR and CAN_TSR registers. If the transmission fails, the mailbox becomes
scheduled, the transmission is aborted and becomes empty with TXOK cleared. In all
cases the mailbox will become empty again at least at the end of the current transmission.

357/430

Controller area network (beCAN) RM0016

358/430

Non-automatic retransmission mode

This mode has been implemented in order to fulfil the requirement of the Time Triggered
Communication option of the CAN standard. To configure the hardware in this mode the
NART bit in the CAN_MCR register must be set.

In this mode, each transmission is started only once. If the first attempt fails, due to an
arbitration loss or an error, the hardware will not automatically restart the message
transmission.

At the end of the first transmission attempt, the hardware considers the request as
completed and sets the RQCP bit in the CAN_MCSR register. The result of the transmission
is indicated in the CAN_MCSR register by the TXOK, ALST and TERR bits.

Figure 132. Transmit mailbox states

TXRQ =1
PENDING
RQCP =0 Mailbox has
TXOK =0 highest priority
ABRQ = 1 TME=0

Mailbox does not
have highest priority

CAN Bus = IDLE

Transmit failed (NART = 1)

TRANSMIT

RQCP =0
TXOK =0
TME =

Transmit failed (NART = 0)

Transmit succeeded

RMO0016

Controller area network (beCAN)

23.6.2

Reception handling

For the reception of CAN messages, three mailboxes organized as a FIFO are provided. In
order to save CPU load, simplify the software and guarantee data consistency, the FIFO is
managed completely by hardware. The application accesses the messages stored in the
FIFO through the FIFO output mailbox.

Valid message

A received message is considered as valid when it has been received correctly according to
the CAN protocol (no error until the last but one bit of the EOF field) and It passed through
the identifier filtering successfully, see Section 23.6.3: Identifier filtering.

Figure 133. Receive FIFO states

Valid Message

Wi

Release

PENDING_1
FMP =01b

Mailbox FOVR =0

Release Valid Message
Mailbox Received
RFOM =1

PENDING_2

FMP = 10b

FOVR=0
Release Valid Message
Mailbox Received
RFOM =1

PENDING_3
FMP = 11b

Valid Message

FOVR =0 WC‘A
OVERRUN
Release EMP = 11b
Mailbox FOVR = 1
RFOM =1

Valid Message
Received

FIFO management

Starting from the empty state, the first valid message received is stored in the FIFO which
becomes pending_1. The hardware signals the event setting the FMP[1:0] bits in the
CAN_RFR register to the value Ob01. The message is available in the FIFO output mailbox.
The software reads out the mailbox content and releases it by setting the RFOM bit in the
CAN_RFR register. The FIFO becomes empty again. If a new valid message has been
received in the meantime, the FIFO stays in pending_1 state and the new message is
available in the output mailbox.

359/430

Controller area network (beCAN) RM0016

23.6.3

360/430

If the application does not release the mailbox, the next valid message will be stored in the
FIFO which enters pending_2 state (FMP[1:0] = 0b10). The storage process is repeated for
the next valid message putting the FIFO into pending_3 state (FMP[1:0] = 0b11). At this
point, the software must release the output mailbox by setting the RFOM bit, so that a
mailbox is free to store the next valid message. Otherwise the next valid message received
will cause a loss of message.

Refer also to Section 23.6.4: Message storage.
Overrun

Once the FIFO is in pending_3 state (i.e. the three mailboxes are full) the next valid
message reception will lead to an overrun and a message will be lost. The hardware
signals the overrun condition by setting the FOVR bit in the CAN_RFR register. Which
message is lost depends on the configuration of the FIFO:

— If the FIFO lock function is disabled (RFLM bit in the CAN_MCR register cleared)
the last message stored in the FIFO will be overwritten by the new incoming
message. As a result, the last message is always available to the application.

Note:The previously received messages will stay in their positions in the FIFO,
only the last one will be overwritten.

— If the FIFO lock function is enabled (RFLM bit in the CAN_MCR register set) the
most recent message will be discarded and the software will have the three oldest
messages in the FIFO available.

Reception related interrupts

On the storage of the first message in the FIFO - FMP[1:0] bits change from 0b00 to 0b01 -
an interrupt is generated if the FMPIE bit in the CAN_IER register is set.

When the FIFO becomes full (i.e. a third message is stored) the FULL bit in the CAN_RFR
register is set and an interrupt is generated if the FFIE bit in the CAN_IER register is set.

On overrun condition, the FOVR bit is set and an interrupt is generated if the FOVIE bit in
the CAN_IER register is set.

Identifier filtering

In the CAN protocol the identifier of a message is not associated with the address of a node
but related to the content of the message. Consequently a transmitter broadcasts its
message to all receivers. On message reception a receiver node decides - depending on
the identifier value - whether the software needs the message or not. If the message is
needed, it is copied into the RAM. If not, the message must be discarded without
intervention by the software.

To fulfil this requirement, the beCAN Controller provides 6 configurable and scalable filter
banks (5:0) in order to receive only the messages the software needs. This hardware
filtering saves CPU resources which would be otherwise needed to perform filtering by
software. Each filter bank x consists of eight 8-bit registers, CAN_FxR[8:1].

RMO0016

Controller area network (beCAN)

Scalable width

To optimize and adapt the filters to the application needs, each filter bank can be scaled
independently. Depending on the filter scale a filter bank provides:

One 32-bit filter for the STDID[10:0] / EXID[28:18], IDE, EXID[17:0] and RTR bits.
Two 16-bit filters for the STDID[10:0] / EXID[28:18], RTR and IDE bits.

Four 8-bit filters for the STDID[10:3] / EXID[28:21] bits. The other bits are
considered as don’t care.

One 16-bit filter and two 8-bit filters for filtering the same set of bits as the 16 and
8-bit filters described above.

Refer to Figure 134 through Figure 137.

Furthermore, the filters can be configured in mask mode or in identifier list mode.

Mask mode

In mask mode the identifier registers are associated with mask registers specifying which
bits of the identifier are handled as “must match” or as “don’t care”.

361/430

Controller area network (beCAN) RM0016

Note:

Identifier list mode

In identifier list mode, the mask registers are used as identifier registers. Thus instead of
defining an identifier and a mask, two identifiers are specified, doubling the number of single
identifiers. All bits of the incoming identifier must match the bits specified in the filter
registers.

Filter bank scale and mode configuration

The filter banks are configured by means of the corresponding CAN_FCRXx register. To
configure a filter bank this must be deactivated by clearing the FACT bit in the CAN_FCRXx
register. The filter scale is configured by means of the FSC[1:0] bits in the corresponding
CAN_FCRx register. The identifier list or identifier mask mode for the corresponding
Mask/Identifier registers is configured by means of the FMLx and FMHXx bits in the
CAN_FMRXx register. The FMLx bit defines the mode for the lower half (registers
CAN_FxR1-4), and the FMHXx bit the mode for the upper half (registers CAN_FxR5-8) of
filter bank x. Refer to Figure 134 through Figure 137 for details.

Examples:

— Iffilter bank 1 is configured as two 16-bit filters, then the FML1 bit defines the
mode of the CAN_F1R3 and CAN_F1R4 registers and the FMH1 bit defines the
mode of the CAN_F1R7 and CAN_F1R8 registers.

— Iffilter bank 1 is configured as four 8-bit filters, then the FML1 bit defines the mode
of the CAN_F1R2 and CAN_F1R4 registers and the FMH1 bit defines the mode of
the CAN_F1R6 and CAN_F1R8 registers.

In 32-bit configuration, the FMLx and FMHx bits must have the same value to ensure that
the four Mask/Identifier registers are in the same mode.

When a standard identifier is received (IDE bit is zero), the extended part of 32-bit or 16-bit
filters is not compared.

To filter a group of identifiers, configure the Mask/Identifier registers in mask mode.
To select single identifiers, configure the Mask/Identifier registers in identifier list mode.
Filters not used by the application should be left deactivated.

Each filter within a filter bank is numbered (called the Filter Number) from 0 to a maximum
dependent on the mode and the scale of each of the 6 filter banks.

For the filter configuration, refer to Figure 134 through Figure 137.

Figure 134. 32-bit filter bank configuration (FSCx bits = 0b11 in CAN_FCRXx register)

Filter registers Filter mode'
Vapping| iR |SoEall g wl B0 | ewpen | ewma o | eso | e
Identifier CAN_FxR1 CAN_FxR2 CAN_FxR3 CAN_FxR4 D ID n
Identifier/Mask CAN_FxR5 CAN_FxR6 CAN_FxR7 CAN_FxR8 T ! D | n+t
ID= Identifier n = Filter number
M = Mask x = Filter bank number
" The FMHx and FMLx bits are located in the CAN_FMR1 and CAN_FMR2 registers

362/430

RM0016 Controller area network (beCAN)

Figure 135. 16-bit filter bank configuration (FSCx bits = 0b10 in CAN_FCRXx register)

Filter registers Filter mode'
Mappin STID[10:3] / STID[2:0]/ | | w| EXID FMHXx = 0 FMHXx = 0 FMHx = 1 FMHx = 1
pping EXID[28:21] EXID[20:18] | k| 2| [17:15] FMLx =0 FMLx =1 FMLx =0 FMLx =1
Identifier CAN_FxR1 CAN_FxR2 ID D n ID ID n
1 n — n
Identifier/Mask CAN_FxR3 CAN_FxR4 M ID| n+1 M D | n+l
Identifier CAN_FxR5 CAN_FxR6 ID ID ID| n+1 ID| n+2
— n+1 1 n+2
Identifier/Mask CAN_FxR7 CAN_FxR8 M M ID| n+2 ID| n+3
ID= Identifier n = Filter number
M = Mask x = Filter bank number
" The FMHx and FMLx bits are located in the CAN_FMR1 and CAN_FMR2 registers

Figure 136. 16/8-bit filter bank configuration (FSCx bits = 0b01 in CAN_FCRXx register)

Filter registers Filter mode'
Maboin STID[10:3] / STID[2:0]/ | | w| EXID FMHx = 0 FMHx = 0 FMHx = 1 FMHXx = 1
pping EXID[28:21] EXID [20:18] | k£ | 2| [17:15] FMLx = 0 FMLx = 1 FMLx =0 FMLx =1
Identifier CAN_FxR1 CAN_FxR2 ID ID n D D n
. n 1 n
Identifier/Mask CAN_FxR3 CAN_FxR4 M ID| n+1 M ID| n+
Identifier CAN_FxR5 ID ID ID| n+1 ID| n+2
1 n+1 — n+2
Identifier/Mask CAN_FxR6 M M ID| n+2 ID| n+3
Identifier CAN_FxR7 ID ID ID| n+3 ID| n+4
1 n+2 —— n+3
Identifier/Mask CAN_FxR8 M M ID| n+4 ID| n+5
ID= Identifier n = Filter number
M = Mask x = Filter bank number

" The FMHx and FMLx bits are located in the CAN_FMR1 and CAN_FMR2 registers

‘y_l 363/430

Controller area network (beCAN) RM0016
Figure 137. 8-bit filter bank configuration (FSCx bits = 0b00 in CAN_FCRXx register)
Filter registers Filter mode'
: STID[10:3] / FMHXx = 0 FMHx = 0 FMHx =1 FMHx =1
Mapping EXID[28:21] FMLx = 0 FMLx = 1 FMLx = 0 FMLx = 1
Identifier CAN_FxR1 ID ID n ID ID n
] n — n
Identifier/Mask CAN_FxR2 M D n+1 M ID n+1
Identifier CAN_FxR3 ID ID n+2 ID ID n+2
— n+1 — n+1
Identifier/Mask CAN_FxR4 M ID n+3 M ID n+3
Identifier CAN_FxR5 ID ID ID n+2 D n+4
— n+2 — n+4
Identifier/Mask CAN_FxR6 M M D n+3 ID n+5
Identifier CAN_FxR7 ID ID ID n+4 D n+6
— n+3 — n+5
Identifier/Mask CAN_FxR8 M M D n+5 ID n+7
ID= Identifier n = Filter number
M = Mask x = Filter bank number
" The FMHx and FMLx bits are located in the CAN_FMR1 and CAN_FMR2 registers

364/430

RMO0016

Controller area network (beCAN)

Note:

Filter match index

Once a message has been received in the FIFO it is available to the application. Typically
application data are copied into RAM locations. To copy the data to the right location the
application has to identify the data by means of the identifier. To avoid this and to ease the
access to the RAM locations, the CAN controller provides a Filter Match Index.

This index is stored in the mailbox together with the message according to the filter priority
rules. Thus each received message has its associated Filter Match Index.

The Filter Match Index can be used in two ways:
— Compare the Filter Match Index with a list of expected values.

— Use the Filter Match Index as an index on an array to access the data destination
location.

For non-masked filters, the software no longer has to compare the identifier.

If the filter is masked the software reduces the comparison to the masked bits only.

The index value of the filter number does not take into account the activation state of the
filter banks.

Table 57. Example of filter numbering

Filter bank
Filter number
Number| FCS FMH FML FACT Configuration

0 0Ob11 1 1 1 Identifier list (32-bit) ?
1 Ob11 0 0 1 Identifier mask (32-bit) 2
3

2 0b10 1 1 1 Identifier list (16-bit) g
6

7

Deactivated g

3 0b00 0 1 0 Identifier List/Identifier 10
mask (8-bit) 11

12

Deactivated 13

4 0b1 0

0 0 0 Identifier Mask (16-bit) 14

15
5 0bO01 0 0 1 Identifier Mask (16/8-bit) 16
17

365/430

Controller area network (beCAN) RM0016

366/430

Filter priority rules

Depending on the filter combination it may occur that an identifier passes successfully
through several filters. In this case the filter match value stored in the receive mailbox is
chosen according to the following rules:

— A 32-bit filter takes priority over 16-bit filter which takes itself priority over 8-bit
filter.

— For filters of equal scale, priority is given to the identifier List mode over the
identifier Mask mode.

— For filters of equal scale and mode, priority is given by the filter number (the lower
the number, the higher the priority).

Figure 138. Filter banks configured as in the example in Table 57.

Message Received

[Identifier [Ctrl] Data |

Filter bank ‘

Num Receive FIFO
0 Identifier

Identifier
Identifier
Identifier
Identifier
Identifier

Identifier LI:

Mask 2

Identifier . .
Mask 15 » Emi | Filter number stored in the

Tdentifier Fi.Ite.r Match Index field
Mask 16 wnhm the CAN_MFMIR
Identifier 17 register

Mask

No Match
Found

Message Discarded

Message —

Stored |
Identifier #4 Match—|

[l E M EH (=)
[]

n
Identifier List

Identifier & Mask

The example above shows the filtering principle of the beCAN. On reception of a message,
the identifier is compared first with the filters configured in identifier list mode. If there is a
match, the message is stored in the FIFO and the index of the matching filter is stored in the
Filter Match Index. As shown in the example, the identifier matches with Identifier #4 thus
the message content and FMI 4 is stored in the FIFO.

If there is no match, the incoming identifier is then compared with the filters configured in
mask mode.

If the identifier does not match any of the identifiers configured in the filters, the message is
discarded by hardware without disturbing the software.

RMO0016

Controller area network (beCAN)

23.6.4

Message storage

The interface between the software and the hardware for the CAN messages is
implemented by means of mailboxes. A mailbox contains all information related to a

message; identifier, data, control, status and time stamp information.

Transmit mailbox

The software sets up the message to be transmitted in an empty transmit mailbox. The

status of the transmission is indicated by hardware in the CAN_MCSR register.

Table 58. Transmit mailbox mapping

Offset to Transmit Mailbox base Register name
address (bytes)

0 CAN_MCSR
1 CAN_MDLCR
2 CAN_MIDR1
3 CAN_MIDR2
4 CAN_MIDR3
5 CAN_MIDR4
6 CAN_MDARH1
7 CAN_MDAR2
8 CAN_MDARS3
9 CAN_MDAR4
10 CAN_MDAR5
11 CAN_MDARG6
12 CAN_MDAR7
13 CAN_MDARS
14 CAN_MTSRL
15 CAN_MTSRH

367/430

Controller area network (beCAN)

RMO0016

368/430

Receive mailbox

When a message has been received, it is available to the software in the FIFO output
mailbox. Once the software has handled the message (e.g. read it) the software must
release the FIFO output mailbox by means of the RFOM bit in the CAN_RFR register to

make the next incoming message available. The filter match index is stored in the

CAN_MFMIR register. The 16-bit time stamp value is stored in the CAN_MTSRH and

CAN_MTSRL registers.

Table 59. Receive mailbox mapping

Offset to Receive Mailbox base Register name
address (bytes)

0 CAN_MFMIR
1 CAN_MDLCR
2 CAN_MIDR1
3 CAN_MIDR2
4 CAN_MIDR3
5 CAN_MIDR4
6 CAN_MDAR1
7 CAN_MDAR2
8 CAN_MDAR3
9 CAN_MDAR4
10 CAN_MDARS5
11 CAN_MDARS6
12 CAN_MDAR7
13 CAN_MDARS
14 CAN_MTSRL
15 CAN_MTSRH

RMO0016

Controller area network (beCAN)

23.6.5

Note:

Error management

The error management as described in the CAN protocol is handled entirely by hardware
using a Transmit Error Counter (CAN_TECR register) and a Receive Error Counter
(CAN_RECR register), which get incremented or decremented according to the error
condition. For detailed information about TEC and REC management, please refer to the
CAN standard.

Both of them may be read by software to determine the stability of the network.
Furthermore, the CAN hardware provides detailed information on the current error status in
CAN_ESR register. By means of CAN_EIER register and ERRIE bit in CAN_IER register,
the software can configure the interrupt generation on error detection in a very flexible way.

Bus-Off Recovery

The Bus-Off state is reached when TEC is greater then 255, this state is indicated by BOFF
bit in CAN_ESR register. In Bus-Off state, the beCAN is no longer able to transmit and
receive messages.

Depending on the ABOM bit in the CAN_MCR register beCAN will recover from Bus-Off
(become error active again) either automatically or on software request. But in both cases
the beCAN has to wait at least for the recovery sequence specified in the CAN standard
(128 x 11 consecutive recessive bits monitored on CANRX).

If ABOM is set, the beCAN will start the recovering sequence automatically after it has
entered Bus-Off state.

If ABOM is cleared, the software must initiate the recovering sequence by requesting
beCAN to enter initialization mode. Then beCAN starts monitoring the recovery sequence
when the beCAN is requested to leave the initialisation mode.

In initialization mode, beCAN does not monitor the CANRX signal, therefore it cannot
complete the recovery sequence. To recover, beCAN must be in normal mode.

Figure 139. CAN error state diagram

When TEC or REC > 127

ERROR ACTIVE ERROR PASSIVE

When TEC and REC < 128

When 128 * 11 recessive bits occur When TEC > 255

369/430

Controller area network (beCAN) RM0016

23.6.6 Bit timing

The bit timing logic monitors the serial bus-line and performs sampling and adjustment of
the sample point by synchronizing on the start-bit edge and resynchronizing on the following
edges.

Its operation may be explained simply by splitting nominal bit time into three segments as
follows:

— Synchronization segment (SYNC_SEG): a bit change is expected to occur
within this time segment. It has a fixed length of one time quantum (1 x tcan)-

— Bit segment 1 (BS1): defines the location of the sample point. It includes the
PROP_SEG and PHASE_SEG1 of the CAN standard. Its duration is
programmable between 1 and 16 time quanta but may be automatically
lengthened to compensate for positive phase drifts due to differences in the
frequency of the various nodes of the network.

— Bit segment 2 (BS2): defines the location of the transmit point. It represents the
PHASE_SEG2 of the CAN standard. Its duration is programmable between 1 and

8 time quanta but may also be automatically shortened to compensate for
negative phase drifts.

The reSynchronization Jump Width (SJW) defines an upper bound to the amount of
lengthening or shortening of the bit segments. It is programmable between 1 and 4 time
quanta.

To guarantee the correct behaviour of the CAN controller, SYNC_SEG + BS1 + BS2 must
be greater than or equal to 5 time quanta.

Note: For a detailed description of the CAN bit timing and resynchronization mechanism, please
refer to the ISO 11898 standard.

As a safeguard against programming errors, the configuration of the Bit Timing Registers
CAN_BTR1 and CAN_BTR2 is only possible while the device is in Initialization mode.

Figure 140. Bit timing

NOMINAL BIT TIME
(min. 5 x tq)
SYNC_SEG BIT SEGMENT 1 (BS1) BIT SEGMENT 2 (BS2)
i tg 1 tes1 f tes2 A
(1.16x1y 4 (1..8xty)
) SAMPLE POINT TRANSMIT POINT
BaudRate =

NominalBitTime
NominalBitTime = 1 ><tq+tBs1 +1ps0
with:

tgg1 = (BS1[3:0] + 1) x tg,

tgso = (BS2[2:0] + 1) x t,

tq = (BRP[5:0] + 1) X tgys

where t, refers to the Time quantum
tsys = time period of the system clock (fuaster Of fcanexT, depending on CLKS bit
configuration in CAN_BTR2 register)

BRP[5:0], BS1[3:0] and BS2[2:0] are defined in the CAN_BTR1 and CAN_BTR2 registers.

370/430 Kﬁ

RMO0016

Controller area network (beCAN)

Figure 141. CAN frames

Inter-Frame Space

—

Data Frame (Standard identifier)

Arbitration Field Ctrl Field Data Field

l«—— 12— >« 65—« 8*N—>

+— 16

44+8*N——m——————————————>-———

CRC Field

Inter-Frame Space
or Overload Frame

Ack Field
2

> 7 —>

STID[10:0]

DLC

CRC

r0 ——

Lo

(o]
n

RTR [
IDE/r

Inter-Frame Space

Data Frame (Extended identifier)

64 +8*N

Std Arbitr. Field

ACK

Inter-Frame Space
or Overload Frame

Ext Arbitr. Field Ctrl Field Data Field CRC Field Acl2(Field

>

f«—— 12 —>»<-—20) —>»<— (> <8 *N><—16 > 7—>
EXID[28:18] ‘ | EXID[17:0] | H DLC CRC EOF
L ocw T o X
o rfa) E I}
@ n= 29 <

Inter-Frame Space

Remote Frame (Standard identifier)

Inter-Frame Space

or Overload Frame
> |- 44 > <
Arbitration Field Ctrl Field CRC Field Ack Field
2
-< 12 > G —> 16 77—
STID[10:0] | | | bLe CRC EOF
r~o
w Ex= N
3 =3 2
Inter-Frame Space
Inter-Frame Space Remote Frame (Extended identifier) or Overload Frame
> 64 -
Std Arbitr. Field Ext Arbitr. Field Ctrl Field CRC Field Ack Field
2
e—— 12 —><+—20 — > < 6 > <+—— 16 - 7
EXID[28:18] ‘ | EXID[17:0] | | ‘ DLC CRC EOF

w o w re o N

o [ifa) = Q

@ %) [as <

Data Frame or Inter-Frame Space
Remote Framg Error Frame or Overload Frame Notes:
Error - Flag Echo Error Delimiter *0<=N<=8

Flag

—— 5> < 6 >e— 8 —>

Any Frame| _ Inter-Frame Space

Data Frame or

Bemote Frame

spend

Ao Su
9 . .
Intermhsuén Transmission

A

Bus Idle

< >le 8

End Of Frame or
Error Delimiter or

Overload Delimiter Overload Frame

Inter-Frame Space
or Error Frame

Overload Flag

Flag Echo
«— f—> 1< 5 Pre—

Overload |
Delimiter
8 —»|

* SOF = Start Of Frame

« ID = Identifier

* RTR = Remote Transmission Request

* IDE = Identifier Extension

* 10, r1 = Reserved bits

* DLC = Data Length Code

* CRC = Cyclic Redundancy Code

« Error flag: 6 dominant bits if node is error
active else 6 recessive bits.

* Suspend transmission: applies to error
passive nodes only.

* EOF = End of Frame

* ACK = Acknowledge bit (send as
recessive)

« Ctrl = Control

371/430

Controller area network (beCAN) RM0016

23.7

372/430

Interrupts

Two interrupt vectors are dedicated to beCAN. Each interrupt source can be independently
enabled or disabled by means of the CAN Interrupt Enable Register (CAN_IER) and CAN
Error Interrupt Enable register (CAN_EIER).

Figure 142. Event flags and interrupt generation

FIFO
INTERRUPT

.
CAN_RFR) ' T » >

CAN_ESR- 1 [EPVE h !

TRANSMIT/
STATUS CHANGE/
ERROR
INTERRUPT

CAN_MSR

CAN_TSR - - - -

CAN_MSR- - - [WKUI }; ; —>

® The FIFO interrupt can be generated by the following events:
— Reception of a new message, FMP bits in the CAN_RFR register incremented.
— FIFO full condition, FULL bit in the CAN_RFR register set.
— FIFO overrun condition, FOVR bit in the CAN_RFR register set.

® The transmit, error and status change interrupt can be generated by the following
events:

— Transmit mailbox 0 becomes empty, RQCPO bit in the CAN_TSR register set.
— Transmit mailbox 1 becomes empty, RQCP1 bit in the CAN_TSR register set.
— Transmit mailbox 2 becomes empty, RQCP2 bit in the CAN_TSR register set.

— Error condition, for more details on error conditions please refer to the CAN Error
Status register (CAN_ESR).

— Wakeup condition, SOF monitored on the CAN Rx signal.

RMO0016

Controller area network (beCAN)

23.8

23.9

Note:

Register access protection

Erroneous access to certain configuration registers can cause the hardware to temporarily
disturb the whole CAN network. Therefore the following registers can be modified by
software only while the hardware is in initialization mode:

CAN_BTR1, CAN_BTR2, CAN_FCR1, CAN_FCR2, CAN_FMR1, CAN_FMR2 and
CAN_DGR registers.

Although the transmission of incorrect data will not cause problems at the CAN network
level, it can severely disturb the application. A transmit mailbox can be only modified by
software while it is in empty state, refer to Figure 132: Transmit mailbox states.

The filters must be deactivated before their value can be modified by software. The
modification of the filter configuration (scale or mode) can be done by software only in
initialization mode.

Clock system

The clock tolerance limit as specified in CAN protocol is 1.58 % at speeds of up to 125
Kbps. For higher baud rates, it is suggested to use a crystal oscillator. In order to allow
beCAN to be used with the full range of baud rates, an interface is provided to allow beCAN
to work with two different clock domains: fy asTER OF an accurate external clock (HSE). The
interface between beCAN and the CPU is done at CPU clock speed whereas the various
nodes in the CAN network communicate using a Baud rate clock generated from an external
clock. Refer to the description of the CLKS bit in the CAN_BTR2 register.

Figure 143. Clock interface

fmAsTER Tpecan - - =

|
CAN peripheral clock enable bit (CLK_PCKENR2) ’ | Time quanta clock
»
L

Prescaler
fCAN (164) 1/tq

foanexT
e ———f P |

L} CLKS bit (CAN_BTR2)

|
CANDIV[2:0] bits (CLK_CANCCR) L

The frequency of the external clock foanexT Must be less than that of the CPU clock (fepy)-

There are two ways to configure the beCAN clock:

1. By selecting fyyasTeRr @s CAN clock. In this case, the clock can be stopped at peripheral
level (Peripheral clock gating register 2 (CLK_PCKENRZ2) during low power mode.
Obviously, fyasTER MUst be driven by a crystal oscillator for CAN high speed
applications.

2. Or, by selecting fcanexT (CLKS bit set) as CAN clock. In this case, the clock cannot be
stopped by the peripheral clock gating register.

If the clock security system feature is enabled in the CLK controller (Refer to the description
of the CSSEN bit in the Clock security system register (CLK_CSSR) on page 79), there is a
way to put CAN automatically into the recessive state when a main clock failure occurs, so
that the CAN network does not get stuck by the device. However to ensure this, the PGO I/O
pin must be configured in pull-up mode prior to using the beCAN. In this way, when a failure
occurs and the I/O alternate function is disabled, the line is pulled-up instead of floating.

373/430

Controller area network (beCAN)

RMO0016

23.10 beCAN low power modes

Table 60. beCAN behavior in low power modes
Mode Description

No effect on beCAN, except that accesses to Tx/Rx mailboxes and filter values are not

WAIT possible (CPU clock is stopped).
beCAN interrupts cause the device to exit from WAIT mode.
No effect on beCAN.

SLOW Frequency of the external clock (if selected) must be less than fcp. See CLKS bit in
CAN bit timing register 2 (CAN_BTRZ2) on page 385.

HALT/ beCAN is halted.

Active HALT A beCAN Rx interrupt causes the device to exit from HALT/Active HALT modes (in
fact, any falling edge driven externally on the Rx pin will wake-up the microcontroller.

Note: If a CAN frame is received in WAIT, HALT or Active HALT modes, the microcontroller will be

woken-up but the CAN frame will be lost.

374/430

RMO0016

Controller area network (beCAN)

23.11

23.11.1

beCAN registers

CAN master control register (CAN_MCR)
Address offset: 0x00

Reset value: 0x02

TTCM

ABOM AWUM NART RFLM TXFP SLEEP INRQ

rw

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

TTCM Time Triggered Communication Mode
0: Time Triggered Communication mode disabled.
1: Time Triggered Communication mode enabled

Note: For more information on Time Triggered Communication mode, please refer to Section 23.4.4:
Time triggered communication mode.

ABOM Automatic Bus-Off Management
This bit controls the behaviour of the CAN hardware on leaving the Bus-Off state.
0: The Bus-Off state is left on software request.
Refer to Section 23.6.5: Error management, Bus-Off recovery.
1: The Bus-Off state is left automatically by hardware once 128 x 11 recessive bits have been
monitored.

Note: For detailed information on the Bus-Off state please refer to Section 23.6.5: Error management.

AWUM Automatic wakeup Mode
This bit controls the behaviour of the CAN hardware on message reception during sleep mode.
0: The sleep mode is left on software request by clearing the SLEEP bit in the CAN_MCR register.

1: The sleep mode is left automatically by hardware on CAN message detection. The SLEEP bit of
the CAN_MCR register and the SLAK bit of the CAN_MSR register are cleared by hardware.

NART No Automatic Retransmission
0: The CAN hardware will automatically retransmit the message until it has been successfully
transmitted according to the CAN standard.
1: A message will be transmitted only once, independently of the transmission result (successful,
error or arbitration lost).

RFLM Receive FIFO Locked Mode

0: Receive FIFO not locked on overrun. Once a receive FIFO is full the next incoming message will
overwrite the previous one.

1: Receive FIFO locked against overrun. Once a receive FIFO is full the next incoming message will
be discarded.

TXFP Transmit FIFO Priority
This bit controls the transmission order when several mailboxes are pending at the same time.
0: Priority driven by the identifier of the message
1: Priority driven by the request order (chronologically)

375/430

Controller area network (beCAN) RM0016

23.11.

Bit 1 SLEEP Sleep Mode Request

This bit is set by software to request the CAN hardware to enter the sleep mode. Sleep mode will be
entered as soon as the current CAN activity (transmission or reception of a CAN frame) has been
completed.

This bit is cleared by software to exit sleep mode.

This bit is cleared by hardware when the AWUM bit is set and a SOF bit is detected on the CAN Rx
signal.

Bit 0 INRAQ Initialization Request
The software clears this bit to switch the hardware into normal mode. Once 11 consecutive
recessive bits have been monitored on the Rx signal the CAN hardware is synchronized and ready
for transmission and reception. Hardware signals this event by clearing the INAK bit in the
CAN_MSR register.
Software sets this bit to request the CAN hardware to enter initialization mode. Once software has
set the INRQ bit, the CAN hardware waits until the current CAN activity (transmission or reception) is
completed before entering the initialization mode. Hardware signals this event by setting the INAK
bit in the CAN_MSR register.

2 CAN master status register (CAN_MSR)

Address offset: 0x01
Reset value: 0x002

RX X WKUI ERRI SLAK INAK
Reserved

r r rc_wi rc_wi r r

Bits 7.6 Reserved, read as 0.

376/430

Bit 5 RX Receive
1: The CAN hardware is currently receiver.

Bit 4 TX Transmit
1: The CAN hardware is currently transmitter.

Bit 3 WKUI Wakeup Interrupt

This bit is set by hardware to signal that a SOF bit has been detected while the CAN hardware was
in sleep mode. Setting this bit generates a status change interrupt if the WKUIE bit in the CAN_IER
register is set.

This bit is cleared by software writing 1.

Bit 2 ERRI Error Interrupt

This bit is set by hardware when a bit of the CAN_ESR has been set on error detection and the
corresponding interrupt in the CAN_EIER is enabled. Setting this bit generates a status change
interrupt if the ERRIE bit in the CAN_EIER register is set.

This bit is cleared by software writing 1.

Bit 1 SLAK Sleep Acknowledge
This bit is set by hardware and indicates to the software that the CAN hardware is now in sleep
mode. This bit acknowledges the sleep mode request from the software (set SLEEP bit in
CAN_MCR register).
This bit is cleared by hardware when the CAN hardware has left sleep mode. Sleep mode is left
when the SLEEP bit in the CAN_MCR register is cleared. Please refer to the AWUM bit of the
CAN_MCR register description for detailed information for clearing SLEEP bit.

574

RMO0016

Controller area network (beCAN)

Bit 0

23.11.3

INAK Initialization Acknowledge

This bit is set by hardware and indicates to the software that the CAN hardware is now in
initialization mode. This bit acknowledges the initialization request from the software (set INRQ bit in
CAN_MCR register).

This bit is cleared by hardware when the CAN hardware has left the initialization mode and is now
synchronized on the CAN bus. To be synchronized the hardware has to monitor a sequence of 11
consecutive recessive bits on the CAN RX signal.

CAN transmit status register (CAN_TSR)
Address offset: 0x02

Reset value: 0x00

Reserved

TXOK2 TXOK1 TXOKO RQCP2 RQCP1 RQCPO

Reserved

rc_wi rc_wi rc_wi

Bit 7
Bit 6

Bit 5

Bit 4

Bit 3
Bit 2

Bit 1

Bit 0

Reserved, read as 0.

TXOK2 Transmission OK for mailbox 2
This bit is set by hardware when the transmission request on mailbox 2 has been completed
successfully. Please refer to Figure 132.

This bit is cleared by hardware when mailbox 2 is requested for transmission or when the software
clears the RQCP2 bit.

TXOK1 Transmission OK for mailbox 1
This bit is set by hardware when the transmission request on mailbox 1 has been completed
successfully. Please refer to Figure 132.

This bit is cleared by hardware when mailbox 1 is requested for transmission or when the software
clears the RQCP1 bit.

TXOKO Transmission OK for mailbox O

This bit is set by hardware when the transmission request on mailbox 0 has been completed
successfully. Please refer to Figure 132.

This bit is cleared by hardware when mailbox 1 is requested for transmission or when the software
clears the RQCPO bit.

Reserved, read as 0.

RQCP2 Request Completed for Mailbox 2

This bit is set by hardware to signal that the last request for mailbox 2 has been completed. The
request could be a transmit or an abort request.
This bit is cleared by software writing 1.

RQCP1 Request Completed for Mailbox 1

This bit is set by hardware to signal that the last request for mailbox 1 has been completed. The
request could be a transmit or an abort request.
This bit is cleared by software writing 1.

RQCPO0 Request Completed for Mailbox 0

This bit is set by hardware to signal that the last request for mailbox 0 has been completed. The
request could be a transmit or an abort request.
This bit is cleared by software writing 1.

377/430

Controller area network (beCAN) RM0016
23.11.4 CAN transmit priority register (CAN_TPR)
Address offset: 0x03
Reset value: 0x1C
7 6 5 4 3 2 1 0
Low2 LOWA1 LOWO TME2 TMET1 TMEO CODET CODEO
r r r r r r r r
Bit 7 LOW2 Lowest Priority Flag for Mailbox 2
This bit is set by hardware when more than one mailbox is pending for transmission and mailbox 2
has the lowest priority.
Note: It is set to zero when only one mailbox is pending.
Bit 6 LOW1 Lowest Priority Flag for Mailbox 1
This bit is set by hardware when more than one mailbox is pending for transmission and mailbox 1
has the lowest priority.
Note: It is set to zero when only one mailbox is pending.
Bit 5 LOWO Lowest Priority Flag for Mailbox 0
This bit is set by hardware when more than one mailbox is pending for transmission and mailbox O
has the lowest priority.
Note: It is set to zero when only one mailbox is pending.
Bit 4 TME2 Transmit Mailbox 2 Empty
This bit is set by hardware when no transmit request is pending for mailbox 2.
Note: This bit is reserved, forced to 0 by hardware in ST7 beCAN compatibility mode (TXMZ2E bit = 0
in CAN_DGR register).
Bit 3 TME1 Transmit Mailbox 1 Empty
This bit is set by hardware when no transmit request is pending for mailbox 1.
Bit2 TMEO Transmit Mailbox 0 Empty
This bit is set by hardware when no transmit request is pending for mailbox 0.
Bits 1:0 CODE[1:0] Mailbox Code

378/430

When at least one transmit mailbox is free, this field contains the number of the next free transmit
mailbox.

When all transmit mailboxes are pending, this field contains the number of the transmit mailbox with
the lowest priority.

Note: CODET1 is always 0 in ST7 beCAN compatibility mode (TXMZ2E bit = 0 in CAN_DGR register).

RMO0016

Controller area network (beCAN)

23.11.5 CAN receive FIFO register (CAN_RFR)
Address offset: 0x04
Reset value: 0x00
7 5 4 3 2 1 0
RFOM FOVR FULL FMPI[1:0]
Reserved Reserved
rs rc_wi rc_wi r r

Bit 7:6 Reserved, read as 0.

Bit 5 RFOM Release FIFO Output Mailbox

Set by software to release the output mailbox of the FIFO. The output mailbox can only be released
when at least one message is pending in the FIFO. Setting this bit when the FIFO is empty has no
effect. If more than one message is pending in the FIFO, the software has to release the output

mailbox to access the next message.

Cleared by hardware when the output mailbox has been released.

Bit4 FOVR FIFO Overrun

This bit is set by hardware when a new message has been received and passed the filter while the

FIFO was full.
This bit is cleared by software writing “1°.

Bit 3 FULL FIFO Full
Set by hardware when three messages are stored in the FIFO.

This bit can be cleared by software writing ‘1’ or by releasing the FIFO by means of RFOM.

Bit 2 Reserved, read as 0.

Bits 1:0 FMP[1:0] FIFO Message Pending

These bits indicate how many messages are pending in the receive FIFO.

FMP is increased each time the hardware stores a new message in to the FIFO. FMP is decreased
each time the FIFO output mailbox has been released by hardware (RFOM bit has been cleared

after prior setting by software).

23.11.6 CAN interrupt enable register (CAN_IER)
Address offset: 0x05

Reset value: 0x00

7 6 5 4 3 2 1 0
WKUIE FOVIE FFIE FMPIE TMEIE
Reserved
w rw rw rw rw
Bit 7 WKUIE Wakeup Interrupt Enable
0: No interrupt when WKUI is set.
1: Interrupt generated when WKUI bit is set.
Bit 6:4 Reserved, read as 0.
Bit 3 FOVIE FIFO Overrun Interrupt Enable
0: No interrupt when FOVR bit is set.
1: Interrupt generated when FOVR bit is set.
Ays 379/430

Controller area network (beCAN) RM0016
Bit 2 FFIE FIFO Full Interrupt Enable
0: No interrupt when FULL bit is set.
1: Interrupt generated when FULL bit is set.
Bit 1 FMPIE FIFO Message Pending Interrupt Enable
0: No interrupt on FMP[1:0] bits transition from 0b0O to 0b01.
1: Interrupt generated on FMP[1:0] bits transition from 0b00 to 0b01.
Bit 0 TMEIE Transmit Mailbox Empty Interrupt Enable
0: No interrupt when RQCPXx bit is set.
1: Interrupt generated when RQCPx bit is set.
23.11.7 CAN diagnostic register (CAN_DGR)
Address offset: 0x06
Reset value: 0x0C
7 6 5 4 3 2 1 0
TXM2E RX SAMP SILM LBKM
Reserved
rw r r rw rw
Bit 7:5 Reserved, read as 0.
Bit 4 TXMZ2E TX Mailbox 2 enable
0: Force compatibility with ST7 beCAN (2 TX Mailboxes) - reset value
1: Enables the third TX Mailbox (Mailbox number 2)
Bit 3 RX CAN Rx Signal
Monitors the actual value of the CAN_RX Pin.
Bit2 SAMP Last sample point
The value of the last sample point.
Bit 1 SILM Silent mode
0: Normal operation
1: Silent mode
Bit 0 LBKM Loop back mode
0: Loop back mode disabled
1: Loop back mode enabled
380/430 KYI

RM0016 Controller area network (beCAN)

23.11.8 CAN page select register (CAN_PSR)
Address offset: 0x07

Reset value: 0x00

7 6 5 4 3 2 1 0
PS[2:0]
Reserved
rw rw w

Bits 7:3 Reserved, read as 0.

Bits 2:0 PS[2:0] Page select
This register is used to select the register page.
000: Tx Mailbox 0
001: Tx Mailbox 1
010: Acceptance Filter 0:1
011: Acceptance Filter 2:3
100: Acceptance Filter 4:5
101: Tx Mailbox 2
110: Configuration/Diagnostic
111: Receive FIFO
Refer to Figure 145 for more details.

381/430

Controller area network (beCAN) RM0016
23.11.9 CAN error status register (CAN_ESR)
Address offset: See Table 63.
Reset value: 0000 0000 (00h)
7 6 5 4 3 2 1 0
LEC[2:0] BOFF EPVF EWGF
Reserved Reserved
rw rw rw r r r
Bit7 Reserved, read as 0.

Bit 6:4 LEC[2:0] Last error code
This field holds a code which indicates the type of the last error detected on the CAN bus. If a

message has been transferred (reception or transmission) without error, this field will be cleared to
‘0’. The code 7 is unused and may be written by the CPU to check for update.

Bit 3

Bit 2 BOFF Bus-off flag

This bit is set by hardware when it enters the bus-off state. The bus-off state is entered on
CAN_TECR overrun, TEC greater than 255, refer to Section 23.6.5 on page 369.

000: No Error

001: Stuff Error

010: Form Error

011: Acknowledgment Error
100: Bit recessive Error
101: Bit dominant Error
110: CRC Error

111: Set by software

Reserved, read as 0.

Bit 1 EPVF Error passive flag
This bit is set by hardware when the Error Passive limit has been reached (Receive Error Counter or

Transmit Error Counter greater than 127).

Bit 0 EWGF Error warning flag
This bit is set by hardware when the warning limit has been reached. Receive Error Counter or

382/430

Transmit Error Counter greater than 96.

RMO0016

Controller area network (beCAN)

23.11.10

CAN error interrupt enable register (CAN_EIER)
Address offset: See Table 63.
Reset value: 0000 0000 (00h)

6

5

ERRIE

Reserved

LECIE

Reserved

BOFIE

EPVIE

EWGIE

rw

Bit 7

Bit 6:5
Bit 4

Bit 3
Bit 2

Bit 1

Bit0

23.11.11

ERRIE Error interrupt enable

0: No interrupt is generated when an error condition is pending in the CAN_ESR (ERRI bit in
CAN_MSR is set).

1: An interrupt is generated when an error condition is pending in the CAN_ESR (ERRI bit in
CAN_MSR is set).

Refer to Figure 142 for more details.

Reserved, read as 0.

LECIE Last error code interrupt enable
0: ERRI bit is not set when the error code in LEC[2:0] is set by hardware on error detection.
1: ERRI bit is set when the error code in LEC[2:0] is set by hardware on error detection.

Reserved, read as 0.

BOFIE Bus-Off interrupt enable

0: ERRI bit is not set when BOFF is set.
1: ERRI bit is set when BOFF is set.

EPVIE Error passive interrupt enable

0: ERRI bit is not set set when EPVF is set.
1: ERRI bit is set when EPVF is set.

EWGIE Error warning interrupt enable
0: ERRI bit is not set when EWGF is set.

1: ERRI bit is set when EWGF is set.
CAN transmit error counter register (CAN_TECR)
Address offset: See Table 63.

Reset value: 0000 0000 (00h)
6 5 4 3 2 1 0

TEC[7:0]

Bits 7:0

TEC[7:0] Transmit error counter

In case of an error during transmission, this counter is incremented by 8 depending on the error
condition as defined by the CAN standard. After every successful transmission the counter is
decremented by 1 or reset to 0 if the CAN controller exited from bus-off to error active state. When
the counter value exceeds 127, the CAN controller enters the error passive state. When the counter
value exceeds 255, the CAN controller enters the bus-off state.

383/430

Controller area network (beCAN) RM0016

23.11.12 CAN receive error counter register (CAN_RECR)

Address offset: See Table 63.

Reset value: 0000 0000 (00h)
7 6 5 4 3 2 1 0

RECI[7:0]

Bits 7:0 REC[7:0] Receive error counter

This is is the Receive Error Counter implementing part of the fault confinement mechanism of the
CAN protocol. In case of an error during reception, this counter is incremented by 1 or by 8
depending on the error condition as defined by the CAN standard. After every successful reception
the counter is decremented by 1 or reset to 120 if its value was higher than 128. When the counter
value exceeds 127, the CAN controller enters the error passive state.

23.11.13 CAN bit timing register 1 (CAN_BTR1)

Address offset: See Table 63.
Reset value: 0100 0000 (40h)

6

5

SUW[1:0]

BRP[5:0]

rw

This register can only be accessed by the software when the CAN hardware is in
initialization mode.

Bits 7:6 SJWI[1:0] Resynchronization jump width
These bits define the maximum number of time quanta the CAN hardware is allowed to lengthen or
shorten a bit to perform the resynchronization. Resynchronization Jump Width = (SJW+1).

Bits 5:0 BRP[5:0] Baud rate prescaler
These bits define the length of a time quantum.
tq = (BRP+1)/fCAN
where foan = feanexT or fMasTER (refer to CLKS bit configuration in the CAN_BTR2 register)
For more information on bit timing, please refer to Section 23.6.6: Bit timing.

384/430 Ky_’

RM0016 Controller area network (beCAN)

23.11.14 CAN bit timing register 2 (CAN_BTR2)
Address offset: See Table 63.

Reset value: 0x23

7 6 5 4 3 2 1 0
CLKS BS2[2:0] BS1[3:0]
rw rw rw rw rw rw rw rw

This register can only be accessed by the software when the CAN hardware is in
initialization mode.

Bit 7 CLKS Clock input selection

0: CPU clock selected (fcan = fmasTER)
1: External clock selected (fcan= fcanexT)

Note:
Bits 6:4 BS2[2:0] Bit Segment 2
These bits define the number of time quanta in Bit Segment 2.
Bit Segment 2 = (BS2+1)
Bits 3:0 BS1[3:0] Bit Segment 1
These bits define the number of time quanta in Bit Segment 1

Bit Segment 1 = (BS1+1)
For more information on bit timing, please refer to Section 23.6.6: Bit timing.

Ky_l 385/430

Controller area network (beCAN) RM0016

23.11.15 Mailbox registers

This chapter describes the registers of the transmit and receive mailboxes. Refer to
Section 23.6.4: Message storage for detailed register mapping.
Transmit and receive mailboxes have the same registers except:

— CAN_MCSR register in a transmit mailbox is replaced by CAN_MFMIR register in
a receive mailbox.

— A receive mailbox is always write protected.

— Atransmit mailbox is write enabled only while empty (the corresponding TME bit in
the CAN_TPR register is set).

CAN message control/status register (CAN_MCSR)
Address offset: See Table 58. and Table 59.

Reset value: 0x00

7 6 5 4 3 2 1 0
TERR ALST TXOK RQCP ABRQ TXRQ
Reserved
r r r rc_wi rs rs
Note: This register is implemented only in transmit mailboxes. In receive mailboxes, the

CAN_MFMIR register is mapped at this location.

Bits 7:6 Reserved, read as 0.

Bit 5 TERR Transmission error
This bit is updated by hardware after each transmission attempt.
0: The previous transmission was successful
1: The previous transmission failed due to an error

Bit 4 ALST Arbitration lost
This bit is updated by hardware after each transmission attempt.
0: The previous transmission was successful
1: The previous transmission failed due to an arbitration lost

Bit 3 TXOK Transmission OK
The hardware updates this bit after each transmission attempt.

0: The previous transmission failed
1: The previous transmission was successful

Note: This bit has the same value as the corresponding TXOKXx bit in the CAN_TSR register.

Bit2 RQCP Request completed
Set by hardware when the last request (transmit or abort) has been performed.
Cleared by software writing a “1” or by hardware on transmission request.

Note: This bit has the same value as the corresponding RQCPx bit of the CAN_TSR register.
Clearing this bit clears all the status bits (TXOK, ALST and TERR) in the CAN_MCSR register
and the corresponding RQCPx and TXOKXx bits in the CAN_TSR register.

Bit 1 ABRQ Abort request for mailbox
Set by software to abort the transmission request for the corresponding mailbox.
Cleared by hardware when the mailbox becomes empty.
Setting this bit has no effect when the mailbox is not pending for transmission.

386/430 Kﬁ

RMO0016

Controller area network (beCAN)

Bit 0

TXRQ Transmit mailbox request
Set by software to request the transmission for the corresponding mailbox.
Cleared by hardware when the mailbox becomes empty.

CAN mailbox filter match index register (CAN_MFMIR)
Address offset: See Table 58. and Table 59.

Reset value: undefined

FMI[7:0]

Note:

Bits 7:0

This register is implemented only in receive mailboxes. In transmit mailboxes, the
CAN_MCSR register is mapped at this location.

FMI[7:0] Filter match index

This register contains the index of the filter the message stored in the mailbox passed through. For
more details on identifier filtering please refer to Section 23.6.3: Identifier filtering - Filter Match
Index paragraph.

CAN mailbox identifier register 1 (CAN_MIDR1)
Address offset: See Table 58. and Table 59.

Reset value: undefined

6 5 4 3 2 1 0

Reserved

IDE RTR STID[10:6] / EXID[28:24]

w rw

Bit 7
Bit 6

Bit 5

Bits 4.0

Reserved, read as 0.

IDE Extended identifier
This bit defines the identifier type of message in the mailbox.
0: Standard identifier.
1: Extended identifier.

RTR Remote transmission request
0: Data frame
1: Remote frame
STID[10:6] Standard identifier
5 most significant bits of the standard part of the identifier.
or
EXID[28:24] Extended identifier
5 most significant bits of the “Base” part of extended identifier.

387/430

Controller area network (beCAN)

RMO0016

CAN mailbox identifier register 2 (CAN_MIDR2)
Address offset: See Table 58. and Table 59.

Reset value: undefined

5

4

STID[5:0] / EXID[23:18]

w

w

rw

Bits 7:2

Bits 1:0

STID[5:0] Standard Identifier
6 least significant bits of the standard part of the identifier.
or
EXID[23:18] Extended Identifier
6 least significant bits of the “Base” part of extended identifier.

EXID[17:16] Extended Identifier

2 most significant bits of the “Extended” part of the extended identifier.

CAN mailbox identifier register 3 (CAN_MIDR3)
Address offset: See Table 58. and Table 59.

Reset value: undefined

EXID[15:8]

rw

Bits 7:0

EXID[15:8] Extended identifier
Bit 15 to 8 of the “Extended” part of the extended identifier.

CAN mailbox identifier register 4 (CAN_MIDR4)
Address offset: See Table 58. and Table 59.

Reset value: undefined

EXID[7:0]

rw

Bits 7:0

388/430

EXID[7:0] Extended identifier

8 least significant bits of the “Extended” part of the extended identifier.

RMO0016

Controller area network (beCAN)

CAN mailbox data length control register (CAN_MDLCR)
Address offset: See Table 58. and Table 59.

Reset value: undefined

7 6 5 4 3 2 1 0
TGT DLC[3:0]
Reserved
rw rw w rw rw
Bit 7 TGT Transmit global time
This bit is active only when the hardware is in the Time Trigger Communication mode, TTCM bit in
the CAN_MCR register is set.
0: CAN_MTSRH and CAN_MTSRL registers are not sent.
1: CAN_MTSRH and CAN_MTSRL registers are sent in the last two data bytes of the message.
Bits 6:4 Reserved, read as 0.
Bits 3:0 DLCI[3:0] Data length code
This field defines the number of data bytes in a data frame or a remote frame request.
CAN mailbox data register x (CAN_MDAR) (x=1 .. 8)
Address offset: See Table 58. and Table 59.
Reset value: undefined
7 6 5 4 3 2 1 0
DATA[7:0]
w rw rw rw rw rw rw rw
Bits 7:0 DATA[7:0] Data
A data byte of the message. A message can contain from 0 to 8 data bytes.
Note: These bits are write protected when the mailbox is not in empty state.
CAN mailbox time stamp register low (CAN_MTSRL)
Address offset: See Table 58. and Table 59.
Reset value: undefined
7 6 5 4 3 2 1 0
TIME[7:0]
r r r r r r r r
Bits 7:0 TIME[7:0] Message time stamp low
This field contains the low byte of the 16-bit timer value captured at the SOF detection.
Ays 389/430

Controller area network (beCAN)

RMO0016

CAN mailbox time stamp register high (CAN_MTSRH)
Address offset: See Table 58. and Table 59.

Reset value: undefined

TIME[15:8]

Bits 7:0

23.11.16

TIME[15:8] Message time stamp high

This field contains the high byte of the 16-bit timer value captured at the SOF detection.

CAN filter registers

CAN filter mode register 1 (CAN_FMR1)
Address offset: See Table 63.

Reset value: 0x00

FMH3

FML3 FMH2 FML2 FMH1 FML1 FMHO

FMLO

w

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

390/430

FMH3 Filter 3 mode high
Mode of the high identifier/mask registers of Filter 3.
0: High registers are in mask mode
1: High registers are in identifier list mode

FML3 Filter 3 mode low
Mode of the low identifier/mask registers of Filter 3.
0: Low registers are in mask mode
1: Low registers are in identifier list mode

FMH2 Filter 2 mode high
Mode of the high identifier/mask registers of Filter 2.
0: High registers are in mask mode
1: High registers are in identifier list mode

FML2 Filter 2 mode low
Mode of the low identifier/mask registers of Filter 2.
0: Low registers are in mask mode
1: Low registers are in identifier list mode

FMH1 Filter 1 mode high
Mode of the high identifier/mask registers of Filter 1.

0: High registers are in mask mode
1: High registers are in identifier list mode

RMO0016

Controller area network (beCAN)

Bits 2 FML1 Filter 1 mode low
Mode of the low identifier/mask registers of filter 1.
0: Low registers are in mask mode
1: Low registers are in identifier list mode

Bit 1 FMHO Filter 0 mode high
Mode of the high identifier/mask registers of filter 0.
0: High registers are in mask mode
1: High registers are in identifier list mode

Bit 0 FMLO Filter 0 mode low
Mode of the low identifier/mask registers of filter 0.
0: Low registers are in mask mode
1: Low registers are in identifier list mode

CAN filter mode register 2 (CAN_FMR2)
Address offset: See Table 63.

Reset value: 0x00

FMH5 FML5 FMH4

FML4

Reserved

rw

Bits 7:4 Reserved, read as 0.

Bit 3 FMHS5 Filter 5 mode high
Mode of the high identifier/mask registers of Filter 5.
0: High registers are in mask mode
1: High registers are in identifier list mode

Bits 2 FML5 Filter 5 mode low
Mode of the low identifier/mask registers of filter 5.
0: Low registers are in mask mode
1: Low registers are in identifier list mode

Bit 1 FMH4 Filter 4 mode high
Mode of the high identifier/mask registers of filter 4.
0: High registers are in mask mode
1: High registers are in identifier list mode

Bit 0 FML4 Filter 4 mode low
Mode of the low identifier/mask registers of filter 4.
0: Low registers are in mask mode
1: Low registers are in identifier list mode

391/430

Controller area network (beCAN)

RMO0016

CAN filter configuration register 1 (CAN_FCR1)
Address offset: See Table 63.

Reset value: 0x00

Reserved

FSC11 FSC10 FACT1 FSCO01 FSCO00 FACTO

Reserved
w

Bit 7
Bits 6:5

Bit 4

Bit 3
Bits 2:1

Bit 0

Reserved, read as 0.

FSC1[1:0] Filter scale configuration
These bits define the scale configuration of Filter 1.

FACT1 Filter Active

The software sets this bit to activate Filter 1. To modify the Filter 1 registers (CAN_F1Rx), the FACT1
bit must be cleared.

0: Filter 1 is not active

1: Filter 1 is active

Reserved, read as 0.

FSCO0[1:0] Filter scale configuration
These bits define the scale configuration of Filter 0.

FACTO Filter active

The software sets this bit to activate Filter 0. To modify the Filter O registers (CAN_FORXx), the FACTO
bit must be cleared.

0: Filter 0 is not active

1: Filter O is active

CAN filter configuration register 2 (CAN_FCR2)
Address offset: See Table 63.

Reset value: 0x00

Reserved

FSC31 FSC30 FACT3 FSC21 FSC20 FACT2

Reserved

rw

Bit 7
Bits 6:5

Bit 4

Bit 3

392/430

Reserved, read as 0.

FSC3[1:0] Filter scale configuration
These bits define the scale configuration of Filter 3.

FACTS3 Filter active

The software sets this bit to activate Filter 3. To modify the Filter 3 registers (CAN_F3Rx) the FACT3
bit must be cleared.

0: Filter 3 is not active

1: Filter 3 is active

Reserved, read as 0.

RMO0016

Controller area network (beCAN)

Bits 2:1

Bit 0

FSC2[1:0] Filter scale configuration
These bits define the scale configuration of Filter 2.

FACT2 Filter active

The software sets this bit to activate Filter 2. To modify the Filter 2 registers (CAN_F2Rx), the FACT2

bit must be cleared.
0: Filter 2 is not active
1: Filter 2 is active

CAN filter configuration register 3 (CAN_FCR3)
Address offset: See Table 63.

Reset value: 0x00

Reserved

FSC51 FSC50 FACT5 FSC41

FSC40

FACT4

Reserved

rw

Bit 7
Bits 6:5

Bit 4

Bit 3
Bits 2:1

Bit 0

Reserved, read as 0.

FSC5[1:0] Filter scale configuration
These bits define the scale configuration of Filter 5.

FACTS5 Filter active

The software sets this bit to activate Filter 5. To modify the Filter 5 registers (CAN_F5Rx) the FACT5

bit must be cleared.
0: Filter 5 is not active
1: Filter 5 is active

Reserved, read as 0.

FSC4[1:0] Filter scale configuration
These bits define the scale configuration of Filter 4.

FACT4 Filter active

The software sets this bit to activate Filter 4. To modify the Filter 4 registers (CAN_F4Rx), the FACT4

bit must be cleared.
0: Filter 4 is not active
1: Filter 4 is active

393/430

Controller area network (beCAN) RM0016

CAN filter bank i register x (CAN_FiRx) (i=0..5,x=1..8)
Address offset: See Figure 145.

Reset value: undefined

FB(7:0]

Bits 7:0 FB[7:0]: Filter bits

394/430

® Identifier
Each bit of the register specifies the level of the corresponding bit of the expected identifier.
0: Dominant bit is expected
1: Recessive bit is expected
® Mask
Each bit of the register specifies whether the bit of the associated identifier register must match with
the corresponding bit of the expected identifier or not.
0: Don’t care, the bit is not used for the comparison
1: Must match, the bit of the incoming identifier must have the same level has specified in the
corresponding identifier register of the filter.

Note: Each filter i is composed of 8 registers, CAN_FiR1..8. Depending on the scale and mode
configuration of the filter the function of each register can differ. For the filter mapping, functions
description and mask registers association, refer to Section Figure 23.6.3: Identifier filtering.

A Mask/Identifier register in mask mode has the same bit mapping as in identifier list mode.
Note: To modify these registers, the corresponding FACT bit in the CAN_FCRXx register must
be cleared.

RMO0016

Controller area network (beCAN)

23.12

CAN register map

Figure 144. CAN register mapping

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07

CAN MASTER CONTROL REGISTER CAN_MCR
CAN MASTER STATUS REGISTER CAN_MSR
CAN TRANSMIT STATUS REGISTER CAN_TSR
CAN TRANSMIT PRIORITY REGISTER CAN_TPR
CAN RECEIVE FIFO REGISTER CAN_RFR
CAN INTERRUPT ENABLE REGISTER CAN_IER
CAN DIAGNOSTIC REGISTER CAN_DGR
CAN PAGE SELECTION REGISTER CAN_PSR

PAGED REGISTER 0

PAGED REGISTER 1

PAGED REGISTER 2

PAGED REGISTER 3

PAGED REGISTER 4

PAGED REGISTER 5

PAGED REGISTER 6

PAGED REGISTER 7

PAGED REGISTER 8

PAGED REGISTER 9

PAGED REGISTER 10

PAGED REGISTER 11

PAGED REGISTER 12

PAGED REGISTER 13

PAGED REGISTER 14

PAGED REGISTER 15

395/430

Controller area network (beCAN) RM0016
23.12.1 Page mapping for CAN
Figure 145. CAN page mapping
PAGE 0 PAGE 1 PAGE 2 PAGE 3 PAGE 4
0x00 CAN_MCSR CAN_MCSR CAN_FOR1 CAN_F2R1 CAN_F4R1
0x01 CAN_MDLCR CAN_MDLCR CAN_FOR2 CAN_F2R2 CAN_F4R2
0x02 CAN_MIDR1 CAN_MIDR1 CAN_FOR3 CAN_F2R3 CAN_F4R3
0x03 CAN_MIDR2 CAN_MIDR2 CAN_FOR4 CAN_F2R4 CAN_F4R4
0x04 CAN_MIDR3 CAN_MIDR3 CAN_FOR5 CAN_F2R5 CAN_F4R5
0x05 CAN_MIDR4 CAN_MIDR4 CAN_FOR6 CAN_F2R6 CAN_F4R6
0x06| CAN_MDARH1 CAN_MDAR1 CAN_FOR7 CAN_F2R7 CAN_F4R7
0x07 CAN_MDAR2 CAN_MDAR5 CAN_FOR8 CAN_F2R8 CAN_F4R8
0x08| CAN_MDAR3 CAN_MDAR6 CAN_F1R1 CAN_F3R1 CAN_F5R1
0x09 CAN_MDAR4 CAN_MDAR4 CAN_F1R2 CAN_F3R2 CAN_F5R2
0Xx0A| CAN_MDARS5 CAN_MDAR5 CAN_F1R3 CAN_F3R3 CAN_F5R3
0x0B| CAN_MDARSG CAN_MDAR6 CAN_F1R4 CAN_F3R4 CAN_F5R4
0x0C| CAN_MDAR7 CAN_MDAR7 CAN_F1R5 CAN_F3R5 CAN_F5R5
0x0OD| CAN_MDARS CAN_MDARS CAN_F1R6 CAN_F3R6 CAN_F5R6
OxOE[CAN_MTSRL CAN_MTSRL CAN_F1R7 CAN_F3R7 CAN_F5R7
OxOF [CAN_MTSRH CAN_MTSRH CAN_F1R8 CAN_F3R8 CAN_F5R8
Tx Mailbox 0 Tx Mailbox 1 Acceptance Filter 0:1 Acceptance Filter 2:3 Acceptance Filter 4:5
PAGE 5 PAGE 6 PAGE 7
0x00 CAN_MCSR CAN_ESR CAN_MFMIR
0x01 CAN_MDLCR CAN_EIER CAN_MDLCR
0x02 CAN_MIDR1 CAN_TECR CAN_MIDR1
0x03 CAN_MIDR2 CAN_RECR CAN_MIDR2
0x04 CAN_MIDR3 CAN_BTR1 CAN_MIDR3
0x05 CAN_MIDR4 CAN_BTR2 GAN_MIDR4
0x08 | cAN_MDAR1 Reserved CAN_MDAR1
007 | cAN_MDAR? Reserved CAN_MDAR?2
0x08 CAN_MDARS3 CAN_FMR1 CAN_MDAR3
0x09 CAN_MDAR4 CAN_FMR2 CAN_MDAR4
0x0A CAN_MDARS CAN_FCR1 CAN_MDARS5
0x0B | CAN_MDAR6 CAN_FCR?2 CAN_MDARS
0x0C | CAN_MDAR? CAN_FCR3 CAN_MDAR7
0x0D | CAN_MDARS Reserved CAN_MDARS
Ox0E | CAN_MTSRL Reserved CAN_MTSRL
Ox0F | CAN_MTSRH Reserved CAN_MTSRH
-I(—|)f('?43&2?:21 Configuration/Diagnostic Receive FIFO
in CAN_DGR register)
396/430 Ky_’

RM0016 Controller area network (beCAN)
Table 61. beCAN control and status page - register map and reset values
Address .
Register name 7 6 5 4 3 2 1 0
Offset
0x00 CAN_MCR TTCM | ABOM | AWUM NART RFLM TXFP | SLEEP | INRQ
Reset Value 0 0 0 0 0 0 1 0
x0T CAN_MSR RX TX WKUI ERRI SLAK INAK
Reset Value 0 0 0 0 0 0 1 0
OX02 CAN_TSR TXOK2 | TXOK1 | TXOKO RQCP2 | RQCP1 | RQCPO
Reset Value 0 0 0 0 0 0 0 0
0x03 CAN_TPR LOW2 LOW1 LOWO TME2 TMEH1 TMEO | CODE1 | CODEO
Reset Value 0 0 0 1 1 1 0 0
0x04 CAN_RFR RFOM FOVR FULL FMP1 FMPO
Reset Value 0 0 0 0 0 0 0 0
OX05 CAN_IER WKUIE 0 0 0 FOVIE FFIE FMPIE | TMEIE
Reset Value 0 0 0 0 0
OX06 CAN_DGR TXM2E RX SAMP SILM LBKM
Reset Value 0 0 0 0 1 1 0 0
CAN_PSR PS2 PS1 PSO
0x07
Reset Value 0 0 0 0 0 0 0 0
Table 62. beCAN mailbox pages - register map and reset values
Address i
Register name 7 6 5 4 3 2 1 0
Offset
0x00 CAN_MFMIR FMI7 FMI6 FMI5 FMI4 FMI3 FMI2 FMI1 FMIO
Receive | Reset Value X X X X X X X X
0x00 CAN_MCSR TERR ALST TXOK | RQCP | ABRQ | TXRQ
Transmit | Reset Value 0 0 0 0 0 0 0 0
0x01 CAN_MDLCR TGT DLC3 DLC2 DLC1 DLCO
Reset Value X X X X X X X X
CAN_MIDR1 IDE RTR |STID10/| STID9/ | STID8/ | STID7 / | STID6 /
0x02 EXID28 | EXID27 | EXID26 | EXID25 | EXID24
Reset Value X X X X X X X X
CAN_MIDR2 STID5/ | STID4/ | STID3/ | STID2/ | STID1/ | STIDO/ | EXID17 | EXID16
0x03 EXID23 | EXID22 | EXID21 | EXID20 | EXID19 | EXID18
Reset Value X X X X X X X X
0x04 CAN_MIDR3 EXID15 | EXID14 | EXID13 | EXID12 | EXID11 | EXID10 | EXID9 | EXID8
Reset Value X X X X X X X X
OXO5 CAN_MIDR4 EXID7 | EXID6 | EXID5 | EXID4 | EXID3 | EXID2 | EXID1 | EXIDO
Reset Value X X X X X X X X
0x06:0D CAN_MDAR1:8 MDAR7 | MDAR6 | MDAR5 | MDAR4 | MDAR3 | MDAR2 | MDAR1 | MDARO
) Reset Value X X X X X X X X
IYI 397/430

Controller area network (beCAN) RM0016
Table 62. beCAN mailbox pages - register map and reset values (continued)
Address .
Register name 7 6 5 4 3 2 1 0
Offset
OXOE CAN_MTSRL TIME7 | TIME6 | TIME5 | TIME4 | TIME3 | TIME2 | TIME1 | TIMEO
Reset Value X X X X X X X X
OXOF CAN_MTSRH TIME15 | TIME14 | TIME13 | TIME12 | TIME11 | TIME10 | TIMES | TIME8
Reset Value X X X X X X X X
Table 63. beCAN filter configuration page - register map and reset values
Address .
Register name 7 6 5 4 3 2 1 0
Offset
0x00 CAN_ESR 0 LEC2 LECH LECO 0 BOFF EPVF | EWGF
Reset Value 0 0 0 0 0 0
CAN_EIER ERRIE LECIE BOFIE | EPVIE | EWGIE
00T | Reset Value 0 0 0 0 0 0 0 0
0x02 CAN_TECR TEC7 TEC6 TEC5 TEC4 TEC3 TEC2 TECA TECO
Reset Value 0 0 0 0 0 0 0 0
0x03 CAN_RECR REC7 REC6 REC5 REC4 REC3 REC2 REC1 RECO
Reset Value 0 0 0 0 0 0 0 0
0x04 CAN_BTR1 SJWA1 SJWO0 BRP5 BRP4 BRP3 BRP2 BRP1 BRPO
Reset Value 0 1 0 0 0 0 0 0
0x05 CAN_BTR2 CLKS BS22 BS21 BS20 BS13 BS12 BS11 BS10
Reset Value 0 0 1 0 0 0 1 1
0x06 Reserved X X X X X X X X
0x07 Reserved X X X X X X X X
0x08 CAN_FMR1 FMH3 FML3 FMH2 FML2 FMH1 FMLA1 FMHO FMLO
Reset Value 0 0 0 0 0 0 0 0
CAN_FMR2 FMH5 FML5 FMH4 FML4
009 | Reset Value 0 0 0 0 0 0 0 0
OXOA CAN_FCR1 0 FSC11 | FSC10 | FACT1 0 FSCO01 | FSC00 | FACTO
Reset Value 0 0 0 0 0 0
0XOB CAN_FCR2 0 FSC31 | FSC30 | FACT3 0 FSC21 | FSC20 | FACT2
Reset Value 0 0 0 0 0 0
0x0C CAN_FCR3 0 FSC51 | FSC50 | FACT5S 0 FSC41 | FSC40 | FACT4
Reset Value 0 0 0 0 0 0
398/430 KY_I

RMO0016

Analog/digital converter (ADC)

24

241

24.2

24.3

Analog/digital converter (ADC)

Introduction

ADC1 and ADC2 are 10-bit successive approximation Analog to Digital Converters. They
have up to 16 multiplexed input channels (the exact number of channels is indicated in the
datasheet pin description). A/D Conversion of the various channels can be performed in
single, and continuous modes.

ADC1 has extended features for scan mode, buffered continuous mode and analog
watchdog. Refer to the datasheet for information about availability ADC1 and ADC2 in
specific product types.

ADC main features

These features are available in ADC1 and ADC2.

10-bit resolution

Single and continuous conversion modes

Programmable prescaler: fyyaster divided by 2 to 18

External trigger option using external interrupt (ADC_ETR) or timer trigger (TRGO)
Analog zooming (in devices with Vggp pins)

Interrupt generation at End of Conversion

Data alignment with in-built data coherency

ADC input range: Vgga < VN < Vppa

ADC extended features

These features are available in ADCA1.

e Buffered continuous conversion mode(")

® Scan mode for single and continuous conversion
® Analog watchdog with upper and lower thresholds
® Interrupt generation at analog watchdog event

The block diagrams of ADC1 and ADC2 are shown in Figure 146 and Figure 147

1. Data buffer size is product dependent (10 x 10 bits or 8 x 10 bits). Plese refer to the datasheet.

399/430

Analog/digital converter (ADC) RMO0016

Figure 146. ADC1 block diagram

10 \ \ Analog Watchdog Event | MEqG EOCIE
{ / . AWD AWDIE
End of Conversion | fiags Masks D ADC Interrupt to ITC

v

v

AWEN Enable bits (10 channels)| ANALOG
AWS status bits (10 channels) | wATCHDOG

[High Threshold (10-bits) |
| Low Threshold (10-bits) |

— DATA BUFFER >
(10 x 10 bits) or (8 x 10 bits)

Vbba E
Vssa [}
DATA REGISTER
(1 x 10-bit9) E—
ANALOG P
MUX g
b
[
o
3
AINO —- - <
ANALOG TODIGITAL |
AINT —= i: = ‘ADC Prescaler q_fMASTEF{
CONVERTER = | 2.8

AIN9 — [} L I
GPIO
Ports ADON Start conversion (software)

CONT Single/continuous mode
ADC_ETR [SPSEL Channel select
- SCAN Scan mode

DBUF Buffered mode

Internal TRGO trigger from TIM1

400/430

RMO0016

Analog/digital converter (ADC)

Figure 147. ADC2 block diagram

80/64—p|n VREF+
devices
only VRer- []
EQOC Interrupt to CPU
—>
Vbpa E
Vssa [1
DATA REGISTER
(1 x 10-bits) ::> 2
ANALOG ﬁ
MUX 5
ks
73
4
3
AINO — — <
ANALOG TO DIGITAL f
ANT L <ADC Prescaler fMASTER
. CONVERTER 12,13, 14, .18
AIN15 — [GPIO
Ports 3
CH[2:0] Channel select
ADC_ETR [} CONT Single/Continuous LI
ADON Power on /Start conversion
Internal TRGO trigger from TIM1
401/430

Analog/digital converter (ADC) RMO0016

24.4

24.5

24.5.1

24.5.2

24.5.3

402/430

ADC pins
Table 64. ADC pins
Name Signal type Remarks
Vv Input, Analog Analog power supply. This input is bonded to Vpp in
DDA supply devices that have no external Vppa pin.
v Input, Analog Ground for analog power supply. This input is bonded to
SSA supply ground Vsg in devices that have no external Vggp pin.
The lower/negative reference voltage for the ADC,
Vv Input, Analog ranging from Vggp to (Vgga + 500 mV).
REF- Reference negative | This input is bonded to VSSA in devices that have no
external VREF- pin (packages with 48 pins or less)
The higher/positive reference voltage for the ADC,
Vv Input, Analog ranging from 2.75 V to Vppa. This input is bonded to Vppa
REF+ Reference positive | in devices that have no external VREF+ pin (packages with
48 pins or less)
. . . Up to 16 analog input channels, which are converted by
AIN[15:0] Analog input signals the ADC one at a time.
ADC_ETR Digital input signals | External trigger.

ADC functional description

ADC on-off control

The ADC can be powered-on by setting the ADON bit in the ADC_CR1 register. When the
ADON bit is set for the first time, it wakes up the ADC from power down mode. To start
conversion, set the ADON bit in the ADC_CRH1 register with a second write instruction.

At the end of conversion, the ADC remains powered on and you have to set the ADON bit
only once to start the next conversion.

If the ADC is not used for a long time, it is recommended to switch it to power down mode to
decrease power consumption. This is done by clearing the ADON bit.

When the ADC is powered on, the output stage of the selected channel is disabled,
therefore it is recommended to select the channel first before powering-on the ADC.

ADC clock

The clock supplied to the ADC can by a prescaled fyaster clock. The prescaling factor of
the clock depends on the SPSEL[2:0] bits in the ADC_CRH1 register.

Channel selection

There are up to 16 external input channels. The number of external channels depends on
the MCU package size.

If the channel selection is changed during a conversion, the current conversion is reset and
a new start pulse is sent to the ADC.

574

RMO0016

Analog/digital converter (ADC)

24.5.4

Note:

Conversion modes

The ADC supports five conversion modes: single mode, continuous mode, buffered
continuous mode, single scan mode, continuous scan mode.

Single mode

In Single conversion mode, the ADC does one conversion on the channel selected by the
CHI3:0] bits in the ADC_CSR register. This mode is started by setting the ADON bit in the
ADC_CR1 register, while the CONT bit is 0.

Once the conversion is complete, the converted data are stored in the ADC_DR register, the
EOC (End of Conversion) flag is set and an interrupt is generated if the EOCIE bit is set.

Continuous and buffered continuous modes

In continuous conversion mode, the ADC starts another conversion as soon as it finishes
one. This mode is started by setting the ADON bit in the ADC_CR1 register, while the CONT
bit is set.

e If buffering is not enabled (DBUF bit = 0 in the ADC_CRS3 register), the converted data
is stored in the ADC_DR register and the EOC (End of Conversion) flag is set. An
interrupt is generated if the EOCIE bit is set. Then a new conversion starts
automatically.

e If buffering is enabled (DBUF bit =1) the data buffer is filled with the results of 8 or 10
consecutive conversions performed on a single channel. When the buffer is full, the
EOC (End of Conversion) flag is set and an interrupt is generated if the EOCIE bit is
set. Then a new set of 8 or 10 conversions starts automatically. The OVR flag is set if
one of the data buffer registers is overwritten before it has been read (see
Section 24.5.5).

To stop continuous conversion, reset the CONT bit to stop conversion or reset the ADON bit
to power off the ADC.

Single scan mode

This mode is used to convert a sequence of analog channels from AINO to AINn where ‘n’ is
the channel number defined by the CH[3:0] bits in the ADC_CSR register. During the scan
conversion sequence the CH[3:0] bits are updated by hardware and contain the channel
number currently being converted.

Single scan mode is started by setting the ADON bit while the SCAN bit is set and the
CONT bit is cleared.

When using scan mode, it is not possible to use channels AINO to AINn in output mode
because the output stage of each channel is disabled when it is selected by the ADC
multiplexer.

A single conversion is performed for each channel starting with AINO and the data is stored
in the data buffer registers ADC_DBxR. When the last channel (channel ‘n’) has been
converted, the EOC (End of Conversion) flag is set and an interrupt is generated if the
EOCIE bit is set.

The converted values for each channel can be read from the data buffer registers. The OVR
flag is set if one of the data buffer registers is overwritten before it has been read (see
Section 24.5.5).

403/430

Analog/digital converter (ADC) RMO0016

Caution:

24.5.5

Note:

24.5.6

404/430

Do not clear the SCAN bit while the conversion sequence is in progress. Single scan mode
can be stopped immediately by clearing the ADON bit.

To start a new SCAN conversion, clear the EOC bit and set the ADON bit in the ADC_CR1
register.

Continuous scan mode

This mode is like single scan mode except that each time the last channel has been
converted, a new scan conversion from channel 0 to channel n starts automatically. The
OVR flag is set if one of the data buffer registers is overwritten before it has been read (see
Section 24.5.5).

Continuous scan mode is started by setting the ADON bit while the SCAN and CONT bits
are set.

Do not clear the SCAN bit while scan conversion is in progress.

Continuous scan mode can be stopped immediately by clearing the ADON bit. Alternatively
if the CONT bit is cleared while conversion is ongoing, conversion stops the next time the
last channel has been converted.

In scan mode, do not use a bit manipulation instruction (BRES) to clear the EOC flag. This is
because this performs a read-modify-write on the whole ADC_CSR register, reading the
current channel number from the CH[3:0] register and writing it back, which changes the last
channel number for the scan sequence.

The correct way to clear the EOC flag in continuous scan mode is to load a byte in the
ADC_CSR register from a RAM variable, clearing the EOC flag and reloading the last
channel number for the scan sequence

Overrun flag

The OVR error flag is set by hardware in buffered continuous mode, single scan or
continuous scan modes. It indicates that one of the ten data buffer registers was overwritten
by a new converted value before the previous value was read. In this case, it is
recommended to start a new conversion.

Setting the ADON bit automatically clears the OVR flag.

Analog watchdog

The analog watchdog is enabled for single conversion and non-buffered continuous
conversion modes by setting the AWDEN bit in the ADC_CSR register.

The AWD analog watchdog flag is set if the analog voltage converted by the ADC is below a
low threshold or above a high threshold as shown in Figure 148. These thresholds are
programmed in the ADC_HTR and ADC_LTR 10-bit registers. An interrupt can be enabled
by setting the AWDIE bit in the ADC_CSR register.

For Scan mode, the analog watchdog can be enabled on selected channels using the
AWENX bits in the ADC_AWCRH and ADC_AWCRL registers. The watchdog status for
each channel is obtained by reading the AWSx bits in the ADC_AWSRH and ADC_AWSRL
registers. If any of the AWS flags are set, this also sets the AWD flag. Depending on the
AWDIE interrupt enable bit, an interrupt is generated at the end of the SCAN sequence. The
interrupt routine should then clear the AWS flag and the global AWD flag in the ADC_CSR
register.

574

RMO0016

Analog/digital converter (ADC)

Note:

24.5.7

Note:

24.5.8

1

For Buffered continuous mode, the analog watchdog can be enabled on selected buffers,
and is managed as described for scan mode, with the difference the buffers contain the
results of continuous conversions performed on a single channel.

Refer to Section 24.7 for more details on interrupts.
To optimize analog watchdog interrupt latency in scan or buffered continuous mode, it
recommended to use the last channels in the conversion sequence.

Figure 148. Analog watchdog guarded area

Analog voltage A

High threshold HTR

Guarded area
Low threshold LTR

Conversion on external trigger

Conversion can be triggered by an rising edge event on the ADC_ETR pin or a TRGO event
from a timer. Refer to the datasheet for details on the timer trigger, as this is product depend-
ent). If the EXTTRIG control bit is set then either of the external events can be used to trigger
a conversion. The EXTSEL[1:0] bits are used to select the two possible sources of events
that can trigger conversion.

To use external trigger mode:
1. The ADC is in off state (ADON=0) and EOC bit is cleared.
2. Select trigger source (EXTSEL [1:0]).

3. Set external trigger mode EXTTRIG=1 using a BSET instruction in order not to change
other bits in the register.

4. If the trigger source is in high state, this switches on the ADC. For this reason, test if
ADC is switched off (ADON=0), then switch on ADC (ADON=1).

5. Wait for the stabilisation time (tgag)- If an external trigger occurs before tgTpp elapses,
the result will not be accurate.

6. Conversion starts when an external trigger event occurs.

If timer trigger mode is selected (timer event as trigger source, not external pin) it is
recommended to start the timer only when the ADC is completely set - and stop the timer
before the ADC is switched off.

External trigger mode must be disabled (EXTTRIG=0) before executing a HALT instruction.

Analog zooming

Analog zooming is supported in devices with external reference voltage pins (Vggr, and
Vger.)- In analog zooming, the reference voltage is chosen to allow increased resolution in a
reduced voltage range. Refer to the datasheet for details on the allowed reference voltage
range.

405/430

Analog/digital converter (ADC) RMO0016

24.5.9 Timing diagram

As shown in Figure 149, after ADC power on, the ADC needs a stabilization time tgtag
(equivalent to one conversion time tcony) before it starts converting accurately. For
subsequent conversions there is no stabilization delay and ADON needs to be set only
once. The ADC conversion time takes 14 clock cycles. After conversion the EOC flag is set
and the 10-bit ADC Data register contains the result of the conversion.

Figure 149. Timing diagram in single mode (CONT =0)

mmf EpEpipEpEpuply

Software sats ADON bit 1st time |

| | Software sets ADON bit 2n|d time
|) | |
JI I |
I
ADON : |
I
I

I

I

I

| ADC Conversion
ADC '

I tsTaB | Conversion Time (tcony) :

- »ld ((

|‘ 7;‘))
EOC ! ,

I

Software resets EOC bit

Figure 150. Timing diagram in continuous mode (CONT=1)

fmmﬂmmmg

1

I

i

I
Software sets ADON bit 1st time | Software resets ADON or CONT bit

;oﬂware sets ADON bit 2nd time ;
I
|
I
I
I
|
|

ADON—!

ADC (e
tcony I tcony !
—»
|
EOC ! ((
)) J))

I
I
I
|
l 1st Conversion 2nd Conversion nth ADC Conversion
I
I
|
I
I
I
|
1

I
I
I
I
i
| tstaB
i
I
I
I
T
1

iﬂware resets EOC bit

406/430 Ky_’

RMO0016 Analog/digital converter (ADC)
24.6 ADC low power modes
Table 65. Low power modes
Mode Description
WAIT No effect on ADC
In devices with extended features, the ADC is automatically switched off
HALT/ before entering HALT/Active HALT mode. After waking up from HALT/Fast
Fast Active HALT/ Active HALT or Slow Active HALT mode, the ADON bit must be set by
Slow Active HALT software to power on the ADC, and a delay of 7 ys is needed before starting
a new conversion.
The ADC does not have the capability to wake the device from Active Halt or Halt Mode.
24.7 ADC interrupts
The ADC interrupt control bits are summarized in Table 66, Table 67 and Table 68
Table 66. ADC Interrupts in single and non-buffered continuous mode (ADC1 and ADC?2)
Enable bits Status flags
< Exit | Exit
E w w from | from
o 2 8 AWSx AWDG EOC Wait | Halt
ALK
Flag is set if the channel .
0 0 crosses the Flag is set at the.end of No No
each conversion.
programmed thresholds.
Flag is set if the channel | Flag is set at the end of
0 1 crosses the each conversionand an | Yes No
programmedthresholds. | interrupt is generated.
Flag is set if the channel
crosses the
, programmed thresholds. .
Don't | 4 0 Don't care An interrupt is Flageellis E::toit\:rzigzd o' ves | No
care generated but :
continuous conversion
is not stopped.
Flag is set if the channel
crosses the
programmed thresholds. | Flag is set at the end of
1 1 An interrupt is each conversionand an | Yes no
generated but interrupt is generated.
continuous conversion
is not stopped.
IYI 407/430

Analog/digital converter (ADC) RMO0016
Table 67. ADC interrupts in buffered continuous mode (ADC1)
Enable bits Status flags
Exit | Exit
3 w w from | from
u;J § 3 AWSxX AWD EOC Wait | Halt
< < w
Don’t The flag is set at the end
0 care 0 0 of BSIZE conversions No No
0 The flag is set at the end
0 Don’t 1 0 of BSIZE.converswl)ns Yes No
care and an interrupt is
generated.
The flag is set at the end
1 0 0 of BSIZE conversions if No No
at least one of the
AWSKx bits is set
The flag is set and an | The flag is set at the end
interrupt is generated at | of BSIZE conversions
the end of BSIZE (Data Buffer Full)
1 1 0 conversions if at least Yes No
one of the AWSKx bits is
Flag is set if conversion set. Contlnyous
on buffer ”x” crosses the conversion is not
thresholds programmed stopped.
inthe ADC_HTR and | The flagis set at the end | The flag is set at the end
ADC_LTR registers | of BSIZE conversions if | of BSIZE conversions
1 0 1 . : Yes No
at least one of the and an interrupt is
AWSKx bits is set generated.
The flag is set
immediately as soon as .
one of the AWSx bits is The flag is set at th? end
. . of BSIZE conversions
1 1 1 set. In interrupt is .) Yes No
and an interrupt is
generated and anerated
continuous conversion 9 '
is stopped.
Note: BSIZE = Data buffer size (8 or 10 depending on the product).
408/430 17

RMO0016

Analog/digital converter (ADC)

Table 68. ADC interrupts in scan mode (ADC1)
Control bits Status bits
Exit | Exit
3 w w from | from
u;J § 3 AWSxX AWD EOC Wait | Halt
< < w
0 Don’t 0 0 0 The flag is set at the end No No
care of the scan sequence
The flag is set at the end
0 Don’t 1 0 0 of the scan sequence Yes No
care and an interrupt is
generated.
The flag is set at the end
of the scan sequence if | The flag is set at the end
1 0 0 No No
at least one of the of the scan sequence
AWSKx bits is set
The flag is set and an
interrupt is generated at
the end of the SCAN | The flagis setto 1 at the
1 1 0) . . sequence if at least one end of the scan Yes | No
Flag is set if conversion | of the AWSx bits is set. sequence
on channel "x” crosses | SCAN conversion is not
the thresholds stopped.
programmed in the
ADC_HTR and The flag is setatthe end | The flag is setto 1 at the
1 0 1 ADC_LTR registers of the scan sequence if end of the scan Yes No
at least one of the sequence and an
AWSKX bits is set interrupt is generated.
The flag is set
immediately as soon as | The flag is set at the end
one of the AWSx bits is | of the scan sequence
1 1 1 Yes No
set. In interrupt is and an interrupt is
generated and scan generated.
conversion is stopped.
17 409/430

Analog/digital converter (ADC) RMO0016

24.8

24.9

410/430

Data alignment

ALIGN bit in the ADC_CR2 register selects the alignment of data stored after conversion.
Data can be aligned in the following ways.

Right Alignment: 8 Least Significant bits are written in the ADC_DL register, then the
remaining Most Significant bits are written in the ADC_DH register. The Least Significant
Byte must be read first followed by the Most Significant Byte.

Figure 151. Right alignment of data

D9 D8

ADC_DRH

D7 D6 D5 D4 D3 D2 D1 DO

ADC_DRL

Left Alignment: 8 Most Significant bits are written in the ADC_DH register, then the
remaining Least Significant bits are written in the ADC_DL register. The Most Significant
Byte must be read first followed by the Least Significant Byte.

Figure 152. Left alignment of data

D9 D8 D7 D6 D5 D4 D3 D2

ADC_DRH

D1 DO

ADC_DRL

Reading the conversion result

When reading the ADC conversion result, its important to know that the ADC data registers
must be read in two consecutive instructions and in a specific order depending on the
selected data alignment.

For data coherency, an internal locking mechanism is implemented, and one data register
register is not updated with the conversion result until the other one is read. For this reason,
reading registers in the wrong order returns an incorrect result.

The register reading order depends on the data alignment setting (see Section 24.8)

For correct results:

® In left alignment mode, read the MSB register (ADC_DRH) first, then the LSB register
(ADC_DRL)

® Inright alignment mode, read the LSB register (ADC_DRL) first, then the MSB register
(ADC_DRH). In this case you can use the LDW instruction that has the same reading
order.

RMO0016 Analog/digital converter (ADC)

24.10 Schmitt trigger disable registers

The ADC_TDRH and ADC_TDRL registers are used to disable the Schmitt triggers available
in the AIN analog input pins. Disabling the Schmitt trigger lowers the power consumption in
the 1/Os.

24.11 ADC registers

24.11.1 ADC data buffer register x high (ADC_DBxRH) (x=0..7 or 0..9)

Address offset: 0x00 + 2 * channel number

Reset value: 0x00

DBHI[7:0]

r r r r r r r r

Note: Data buffer registers are not available for ADC2. The data buffer size is device dependent
and is specifed in the corresponding datasheet.

Bits 7:0 DBH[7:0] Data bits high

These bits are set/reset by hardware and are read only. When the ADC is in
buffered continuous or scan mode, they contain the high part of the converted
data. The data is in right-aligned or left-aligned format depending on the ALIGN
bit.

Left Data Alignment
These bits contain the 8 MSB bits of the converted data.The MSB must be read
first before reading the LSB (see Section 24.9: Reading the conversion result
and Figure 152.)

Right Data Alignment
These bits contain the (ADC data width - 8) MSB bits of the converted data.
Remaining bits are tied to zero.
See Figure 151.

Ky_l 411/430

Analog/digital converter (ADC) RMO0016

24.11.2 ADC data buffer register x low (ADC_DBXxRL) (x=or 0..7 or 0..9)

Address offset: 0x01 + 2 * channel number

Reset value: 0x00

DL[7:0]

Note: Data buffer registers are not available for ADC2. The data buffer size is device dependent
and is specifed in the corresponding datasheet.

Bits 7:0 DL[7:0] Data bits low

These bits are set/reset by hardware and are read only. When the ADC is in
buffered continuous or scan mode, they contain the low part of the A/D
conversion result, in right-aligned or left-aligned format depending on the
ALIGN bit.

® Left Data Alignment
These bits contain the (ADC data width - 8) LSB bits of the converted data,
remaining bits of the register are tied to zero.

See Figure 152.

® Right Data Alignment
These bits contain the 8 LSB bits of the converted data. The LSB must be read
first before reading the MSB (see Section 24.9: Reading the conversion result
and Figure 151.)

412/430 Ky_’

RMO0016

Analog/digital converter (ADC)

24.11.3 ADC control/status register (ADC_CSR)
Address offset: 0x00

Reset value: 0x00

EOC

AWD

EOCIE AWDIE CH[3:0]

rc_w0

Bit 7

Bit 6

Bit 5

Bit 4

Bits 3:0

EOC: End of conversion
This bit is set by hardware at the end of conversion. It is cleared by software by
writing ‘0.
0: Conversion is not complete
1: Conversion complete

AWD: Analog Watchdog flag

0: No analog watchdog event

1: An analog watchdog event occurred. In buffered continuous or scan mode
you can read the ADC_AWSR register to determine the data buffer register
related to the event. An interrupt request is generated if AWDIE=1.

Note: This bit is not available for ADC2

EOCIE: Interrupt enable for EOC

This bit is set and cleared by software. It enables the interrupt for End of
Conversion.

0: EOC interrupt disabled
1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set.

AWDIE: Analog watchdog interrupt enable

0: AWD interrupt disabled.
1: AWD interrupt enabled

Note: This bit is not available for ADC2

CH[3:0]: Channel selection bits

These bits are set and cleared by software. They select the input channel to be
converted.

0000: Channel AINO
0001: Channel AIN1

1111: Channel AIN15

413/430

Analog/digital converter (ADC) RMO0016

24.11.4 ADC configuration register 1 (ADC_CR1)
Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0
SPSEL[2:0] CONT ADON
Reserved Reserved
rw rw rw rw rw
Bit 7 Reserved, always read as 0.
Bits 6:4 SPSEL[2:0]: Prescaler selection
These control bits are written by software to select the prescaler division factor.
000: fapc = fwasTER2
001: fapc = fwasTER/3
010: fapc = fwasTeR/4
011: fapc = fmasTER/®
100: fapc = fmasTER/8
101: fADC = fMASTER“ 0
110: fADC = fMASTER/12
111: fADC = fMASTER“ 8
See Section 24.5.2 on page 402.
Note: Itis recommended to change the SPSEL bits when ADC is in power down.
This is because internally there can be a glitch in the clock during this
change. Otherwise the user is required to ignore the 1st converted result if
the change is done when ADC is not in power down.
Bits 3:2 Reserved, always read as 0.
Bit 1 CONT: Continuous conversion
This bit is set and cleared by software. If set, conversion takes place
continuously till this bit is reset by software.
0: Single conversion mode
1: Continuous conversion mode
Bit 0 ADON: A/D Converter on/off
This bit is set and reset by software. This bit must be written to wake up the
ADC from power down mode and to trigger the start of conversion. If this bit
holds a value of 0 and a 1 is written to it then it wakes the ADC from power
down mode. Conversion starts when this bit holds a value of 1 and a 1 is written
to it. As soon as the ADC is powered on, the output stage of the selected
channel is disabled.
0: Disable ADC conversion/calibration and go to power down mode.
1: Enable ADC and to start conversion
Note: If any other bit in this register apart from ADON is changed at the same
time, then conversion is not triggered. This is to prevent triggering an
erroneous conversion.
414/430 Kﬁ

RMO0016

Analog/digital converter (ADC)

24.11.5 ADC configuration register 2 (ADC_CR2)
Address offset: 0x02
Reset value: 0x00
7 6 5 4 3 2 1 0
EXTTRIG EXTSEL[1:0] ALIGN SCAN
Reserved Reserved Reserved
rw rw rw rw rw
Bit 7 Reserved, must be kept cleared.
Bit 6 EXTTRIG: External trigger enable
This bit is set and cleared by software. It is used to enable an external trigger to
trigger a conversion.
0: Conversion on external event disabled
1: Conversion on external event enabled
Note: To avoid a spurious trigger event, use the BSET instruction to set
EXTTRIG without changing other bits in the register.
Bits 5:4 EXTSEL[1:0]: External event selection

Bit 3

Bit 2
Bit 1

Bit 0

The two bits are written by software. They select one of four types of event used
to trigger the start of ADC conversion.

00: Internal TIM1 TRGO event

01: External interrupt on ADC_ETR pin

10: Reserved

11: Reserved

ALIGN: Data alignment
This bit is set and cleared by software.
0: Left alignment (8 MSB bits are written in the ADC_DRH register then the
remaining LSB bits in the ADC_DRL register). Reading order should be MSB
first and then LSB.
1: Right alignment (8 LSB bits are written in the ADC_DRL register then the
remaining MSB bits in the ADC_DH register). Reading order should be LSB first
and then MSB.

Reserved, must be kept cleared.

SCAN: Scan mode enable
This bit is set and cleared by software.
0: Scan mode disabled
1: Scan mode enabled

Note: This bit is not available for ADC2

Reserved, must be kept cleared.

415/430

Analog/digital converter (ADC) RMO0016

24.11.6 ADC configuration register 3 (ADC_CR3)
Address offset: 0x03

Reset value: 0x00

7 6 5 4 3 2 1 0
DBUF OVR
Reserved
w rc_w0
Note: This register is not available for ADC2.

Bit 7 DBUF: Data buffer enable

This bit is set and cleared by software. It is used together with the CONT bit
enable buffered continuous mode (DBUF=1, CONT=1). When DBUF is set,
converted values are stored in the ADC_DBxRH and ADC_DBxRL registers
instead of the ADC_DRH and ADC_DRL registers.

0: Data buffer disabled

1: Data buffer enabled

Bit 6 OVR: Overrun flag

This bit is set by hardware and cleared by software.
0: No overrun

1: An overrun was detected in the data buffer registers.
Refer to Section 24.5.5 on page 404 for more details.

Bits 5:0 Reserved, must be kept cleared.

416/430 Ky_’

RMO0016 Analog/digital converter (ADC)

24.11.7 ADC data register high (ADC_DRH)
Address offset: 0x04

Reset value: undefined

DH[7:0]

Bits 7:0 DH[7:0] Data bits high

These bits are set/reset by hardware and are read only. When the ADC is in
single or non-buffered continuous mode, they contain the high part of the
converted data, in right-aligned or left-aligned format depending on the ALIGN
bit.

® Left Data Alignment
These bits contain the 8 MSB bits of the converted data. The MSB must be read
first before reading the LSB (see Section 24.9: Reading the conversion result
and Figure 152.)

® Right Data Alignment
These bits contain the (ADC data width - 8) MSB bits of the converted data.
Remaining bits are tied to zero.

See Figure 151.

24.11.8 ADC data register low (ADC_DRL)
Address offset: 0x05

Reset value: undefined

DL[7:0]

Bits 7:0 DL[7:0] Data bits low

These bits are set/reset by hardware and are read only. When the ADC is in
single or non-buffered continuous mode, they contain the low part of the A/D
conversion result, in right-aligned or left-aligned format depending on the
ALIGN bit.

® Left Data Alignment
These bits contain the (ADC data width - 8) LSB bits of the converted data,
remaining bits of the register are tied to zero.
See Figure 152.

® Right Data Alignment
These bits contain the 8 LSB bits of the converted data. The LSB must be read
first before reading the MSB (see Section 24.9: Reading the conversion result
and Figure 151.)

Ky_l 417/430

Analog/digital converter (ADC) RMO0016

24.11.9 ADC Schmitt trigger disable register high (ADC_TDRH)
Address offset: 0x06

Reset value: 0x00

TD[15:8]

Bits 7:0 TD[15:8] Schmitt trigger disable high

These bits are set and cleared by software. When a TDx bit is set, it disables
the I/O port input Schmitt trigger of the corresponding ADC input channel x
even if this channel is not being converted. This is needed to lower the static
power consumption of the I/O port.

0: Schmitt trigger enabled
1: Schmitt trigger disabled

24.11.10 ADC Schmitt trigger disable register low (ADC_TDRL)
Address offset: 0x07

Reset value: 0x00

TD[7:0]

Bits 7:0 TDI[7:0] Schmitt trigger disable low

These bits are set and cleared by software. When a TDx bit is set, it disables
the I/O port input Schmitt trigger of the corresponding ADC input channel x
even if this channel is not being converted. This is needed to lower the static
power consumption of the I/O port.

0: Schmitt trigger enabled

1: Schmitt trigger disabled

418/430 Kﬁ

RMO0016 Analog/digital converter (ADC)
24.11.11 ADC high threshold register high (ADC_HTRH)
Address offset: 0x08
Reset value: 0x03
7 6 5 4 3 2 1 0
HT[9:8]
Reserved
rw w
Note: This register is not available for ADC2.
Bits 7:2 Reserved, must be kept cleared.
Bits 1:0 HT[9:8] Analog Watchdog High Voltage threshold MSB
These bits are set and cleared by software. They define the MSB of the high
threshold (Vrggp) for the Analog Watchdog.
24.11.12 ADC high threshold register low (ADC_HTRL)
Address offset: 0x09
Reset value: OxFF
7 6 5 4 3 2 1 0
HT[7:0]
rw rw w rw rw w rw rw
Note: This register is not available for ADC2.
Bits 7:0 HT[7:0] Analog watchdog high voltage threshold LSB
These bits are set and cleared by software. They define the LSB of the high
threshold (Vggpn) for the Analog Watchdog.
24.11.13 ADC low threshold register high (ADC_LTRH)
Address offset: 0x0A
Reset value: 0x00
7 6 5 4 3 2 1 0
LT[9:8]
Reserved
rw rw
Note: This register is not available for ADC2.

Bits 7:2 Reserved, must be kept cleared.

419/430

Analog/digital converter (ADC) RMO0016

Bits 1:0 LT[9:8] Analog watchdog low voltage threshold MSB
These bits are set and cleared by software. They define the MSB of the low

Threshold (Vggg) for the Analog Watchdog.

24.11.14 ADC low threshold register low (ADC_LTRL)
Address offset: 0x0B

Reset value: 0x00

LT[7:0]

rw

Note: This register is not available for ADC2.

Bits 7:0 LT[7:0] Analog watchdog low voltage threshold LSB
These bits are set and cleared by software. They define the LSB of the low

threshold (VgggL) for the Analog Watchdog.

24.11.15 ADC watchdog status register high (ADC_AWSRH)

Address offset: 0x0C

Reset value: 0x00

7 6
AWSI[9:8]

Reserved
rc_w0

rc_w0

Note: This register is not available for ADC2.

Bits 7:2 Reserved, must be kept cleared.

Bits 1:0 AWS[9:8] Analog watchdog status flags 9:8
These bits are set by hardware and cleared by software.
In buffered continuous mode (DBUF=1, CONT=1) AWS flags behave

as described in Table 67.
— Inscan mode (SCAN=1) AWS flags behave as described in Table 68.

0: No analog watchdog event in data buffer register x.
1: Analog watchdog event occurred in data buffer register x.

420/430

RMO0016 Analog/digital converter (ADC)

24.11.16 ADC watchdog status register low (ADC_AWSRL)
Address offset: 0x0D

Reset value: 0x00

7 6 5 4 3 2 1 0
AWS[7:0]
rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0
Note: This register is not available for ADC2.

Bits 7:0 AWS[7:0] Analog watchdog status flags 7:0
These bits are set by hardware and cleared by software.

— In buffered continuous mode (DBUF=1, CONT=1) AWS flags behave
as described in Table 67.
— Inscan mode (SCAN=1) AWS flags behave as described in Table 68.
0: No analog watchdog event in data buffer register x.
1: Analog watchdog event occurred in data buffer register x.

24.11.17 ADC watchdog control register high (ADC_AWCRH)
Address offset: Ox0E

Reset value: 0x00
7 6 5 4 3 2 1 0

AWENJ[9:8]
Reserved

Note: This register is not available for ADC2.

Bits 7:2 Reserved, must be kept cleared.

Bits 1:0 AWENI[9:8] Analog watchdog enable bits 9:8
These bits are set and cleared by software.
In buffered continuous mode (DBUF=1, CONT=1) and in scan mode (SCAN=1)
the AWENX bits enable the analog watchdog function for each of the 10 data
buffer registers.
0: Analog watchdog disabled in data buffer register x.
1: Analog watchdog enabled in data buffer register x.

Ky_l 421/430

Analog/digital converter (ADC) RMO0016

24.11.18 ADC watchdog control register low (ADC_AWCRL)

Address offset: OxOF

Reset value: 0x00

AWEN([7:0]

Note:

422/430

This register is not available for ADC2.

Bits 7:0 AWENI[7:0] Analog watchdog enable bits 7:0
These bits are set and cleared by software.
In buffered continuous mode (DBUF=1, CONT=1) and in scan mode (SCAN=1)

the AWENX bits enable the analog watchdog function for each of the 10 data
buffer registers.

0: Analog watchdog disabled in data buffer register x.
1: Analog watchdog enabled in data buffer register x.

RMO0016 Analog/digital converter (ADC)
24.12 ADC register map and reset values
Table 69. ADC1 register map and reset values
Address Register name 7 6 5 4 3 2 1 0
offset
ox00 |ADC1 _DBORH - - - - - - DATA9 | DATA8
Reset value 0 0 0 0 0 0 0 0
0x01 ADC1_DBORL DATA7 DATA6 DATA5 DATA4 DATA3 | DATA2 | DATA1 | DATAO
Reset value 0 0 0 0 0 0 0 0
OXOE ADC1 _DB7RH - - - - - - DATA9 | DATAS8
Reset value 0 0 0 0 0 0 0 0
0xOFh ADC1_DB7RL DATA7 DATA6 DATA5 DATA4 DATA3 | DATA2 | DATA1 | DATAO
Reset value 0 0 0 0 0 0 0 0
0x10 ADC1 _DB8RH(" . . . - . - DATA9 | DATAS
Reset value 0 0 0 0 0 0 0 0
0x11 ADC1_DB8 RL(M DATA7 DATA6 DATA5 DATA4 DATA3 | DATA2 | DATA1 | DATAO
Reset value 0 0 0 0 0 0 0 0
oxi2 ADC1 _DB9RH(" . . . - . - DATA9 | DATAS
Reset value 0 0 0 0 0 0 0 0
0x13h ADC1_DB9 RL(M DATA7 DATA6 DATA5 DATA4 DATA3 | DATA2 | DATA1 | DATAO
Reset value 0 0 0 0 0 0 0 0
0x00 ADC1 _CSR EOC AWD EOCIE AWDIE CH3 CH2 CH1 CHO
Reset value 0 0 0 0 0 0 0 0
0x01 ADC1_CR1 - SPSEL2 SPSEL1 SPSELO - - CONT | ADON
Reset value 0 0 0 0 0 0 0 0
0x02 ADC1_CR2 - EXTTRIG | EXTSEL1 | EXTSELO | ALIGN - SCAN -
Reset value 0 0 0 0 0 0 0 0
0x03 ADC1_CR3 DBUF OVR - - - - - -
Reset value 0 0 0 0 0 0 0 0
0x04 ADC1_DRH - - - - - - DATA9 | DATAS8
Reset value X X X X X X X X
0x05 ADC1_DRL DATA7 DATA6 DATA5 DATA4 DATA3 | DATA2 | DATA1 | DATAO
Reset value X X X X X X X X
0X06 ADC1_TDRH®@ TD15 TD14 TD13 TD12 TD11 | TD10 | TD9 D8
Reset value 0 0 0 0 0 0 0 0
0x07 ADC1_TDRL TD7 TD6 TD5 TD4 TD3 TD2 TDA1 TDO
Reset value 0 0 0 0 0 0 0 0
IYI 423/430

Analog/digital converter (ADC) RMO0016
Table 69. ADC1 register map and reset values (continued)
Address Register name 7 6 5 4 3 2 1 0
offset
ADC1 _HTRH - - - - - - HT9 | HT8
0x08
Reset value 0 0 0 0 0 0 1 1
Ox09 ADC1_HTRL HT7 HT6 HT5 HT4 HT3 HT2 HTA HTO
Reset value 1 1 1 1 1 1 1 1
OXOA ADC1 _LTRH - - - - - - LT9 LT8
Reset value 0 0 0 0 0 0 0 0
0xOB ADC1_LTRL LT7 LT6 LT5 LT4 LT3 LT2 LTH1 LTO
Reset value 0 0 0 0 0 0 0 0
oxoc | APC _AWSRH® - - - - - - AWS9 | AWS8
Reset value 0 0 0 0 0 0 0 0
0xOD ADC1_AWSRL AWS7 AWS6 AWS5 AWS4 AWS3 | AWS2 | AWS1 | AWSO
Reset value 0 0 0 0 0 0 0 0
oxoE | ADC _AWCRH® - - - - - - AWEN9 | AWENS
Reset value 0 0 0 0 0 0 0 0
OXOF ADC1_AWCRL AWEN7 | AWEN6 AWEN5 | AWEN4 |AWENS | AWEN2 | AWEN1 | AWENO
Reset value 0 0 0 0 0 0 0 0
1. This register is reserved in devices with buffer size 8 x 10 bits.
2. This register is reserved in devices without ADC channels 8 and 9.
Table 70. ADC2 register map and reset values
Address Register name 7 6 5 4 3 2 1 0
offset
OX00 ADC2 _CSR EOC AWD EOCIE AWDIE CH3 CH2 CH1 CHO
Reset value 0 0 0 0 0 0 0 0
0x01 ADC2_CR1 - SPSEL2 | SPSEL1 | SPSELO - - CONT | ADON
Reset value 0 0 0 0 0 0 0 0
Ox02 ADC2_CR2 - EXTTRIG | EXTSEL1 | EXTSELO | ALIGN - - -
Reset value 0 0 0 0 0 0 0 0
0x03 ADC2_CR3 DBUF OVR - - - - - -
Reset value 0 0 0 0 0 0 0 0
Ox04 ADC2_DRH - - - - - - DATA9 | DATA8
Reset value 0 0 0 0 0 0 0 0
OX05 ADC2_DRL DATA7 DATAG6 DATA5 DATA4 DATA3 | DATA2 | DATA1 | DATAO
Reset value 0 0 0 0 0 0 0 0
OX06 ADC2_TDRH TD15 TD14 TD13 TD12 TD11 TD10 TD9 TD8
Reset value 0 0 0 0 0 0 0 0
OxO7 ADC2_TDRL TD7 TD6 TD5 TD4 TD3 TD2 TD1 TDO
Reset value 0 0 0 0 0 0 0 0
424/430 KY_I

RMO0016 Revision history

25 Revision history

Table 71. Document revision history

Date Revision Changes

27-May-2008 1 Initial release.

Updated Section 2: Memory and register map on page 27
introduced high, medium and low density categories; modified end
address for option bytes; updated RAM, data EEPROM and Flash
program memory densities.

Updated Figure 11: Reset circuit on page 55

Update min reset pulse from 300 to 500 ns in Section 7.1: Reset
circuit description on page 55

Updated Table 5: Memory access versus programming method on

13-Aug-2008 2 page 44.
Reorganised Section 16 on page 133 to Section 19 on page 245

Renamed USART and LINUART to UART1, UART2 and UART3
combined in new Section 22 on page 299.

Updated CAN filter and external clock description in Section 23 on
page 351.

Renamed ADC to ADC1 and ADC2 in Section 24 on page 399
Updated Continuous scan mode on page 404

Updated Conversion on external trigger on page 405

Ky_l 425/430

Revision history

RMO0016

Table 71. Document revision history (continued)

Date

Revision

Changes

22-Sep-2008

Updated Section 4: Flash program memory and data EEPROM
(FLASH).

Changed name of SWUAH bit to REGAH in Section 8.9.1: Internal
clock register (CLK_ICKR) on page 71.

Modified Section 11.8.2: Slope control on page 109.

Added description of TIM5, TIM6 in Section 16: Timer overview,
Section 18: 16-bit general purpose timers (TIM2, TIM3, TIM5) and
Section 19: 8-bit basic timer (TIM4, TIM6).

Updated Section 24.5.6: Analog watchdog.

15-Jan-2009

Removed memory and register map (information transferred to
datasheets)

Register absolute addresses replaced by offsets. (refer now to
register map in datasheet for the base addresses).

Added Note 3 related to TLI interrupt in Section 10.2.1 on page 91.
Added TLI in Section 10.5: Concurrent and nested interrupt
management.

Updated Flash program density to 32 - 128 Kbytes for high density
STMB8S devices in Section 4: Flash program memory and data
EEPROM (FLASH).

Updated size of STM8S option byte area in Section 4.4: Memory
organization and Figure 3, Figure 4, and Figure 5.

Updated maximum value of UBC in Figure 8.Added information on
DATA area programming on devices with and without RWW
capability in Section 4.7.1: Byte programming and Section 4.7.3:
Block programming.

Added HVOFF in: Fast block programming, : Fast block
programming, and Section 4.9.8: Flash Status register
(FLASH_IAPSR). Updated bitfield access types in Section 4.9.8:
Flash Status register (FLASH_IAPSR) on page 51.

Table 5: Memory access versus programming method: removed NMI
and TRAP vectors, modified access for option bytes in ICP/SWIM
mode/ROP enabled, and UBC ROP disabled.

Updated Table 26: Watchdog timeout period (with 64 kHz counter
clock) on page 124

Updated Table 26: Approximate timeout duration on page 129
Table 27: Window watchdog timing diagram on page 130

Updated Note 7 on page 291

426/430

Index RM0016
Index
A CAN_MIDR4coiiiianani.. 388
ADG AWCRH 4oy CANLMSR ... 376

CAN_MTSRH ... 390
ADC_AWCRL ...\, 422

CAN_MTSRL 389
ADC_AWSRHc..coooouin.n. 420

CANLPSR ... 381
ADC_AWSRL\eoiiiai., 421

CAN_RECR ...\ 384
ADC_CRT'tiiiiiaiiaain, 414

CANLRFR ...t 379
ADC_CR2ccoovuiiiiinannnn. 415

CANLTECR ...\ 383
ADC_CR3ouiiiiiiiaannnn, 416

CANLTPR ... 378
ADC_CSR ..., 413

CANLTSR ... 377
ADC_DBXRHovieiiann.. 411

CFG_GCR ..., 27
ADC_DBXRLeviiiniaannn.. 412

CLK_CANCCRcuvieniaanin.n. 81
ADC_DRH ..., 417

CLK_CCOR ...\, 80
ADC DRLvoiiiiaiaaiin, 417

CLK_CKDIVR ..., 76
ADC_HTRH ...\, 419

CLK_OMSR ...\, 74
ADC_HTRL ...\t 419

CLK_CSSR ..., 79
ADC_LTRHooiiiiiiiiiiaaiinn, 419

CLK_ECKR'veiieeiieaiiaaninn 73
ADC_LTRL ...\, 420

CLK_HSITRIMR 82-83
ADC_TDRH ...\, 418

CLK_ICKR ...t 71
ADC_TDRL ...\, 418

CLK_PCKENRTcuvieniannn.n. 77
AWU_APR ... 118

CLK_PCKENR2c..coo.... 78
AWU_CSRT ...\, 117
WU TBR 119 CLKLSWCR 75

SIET CLKSWR ...t 74

B E
BEEP.CSR o 1220 EXTILOR1 ..o 102

EXTILCR2 . teieieeeeien 103
C
o7\ 1) 384 F
CAN_BTR2 ..., 385 LiaSH ORI . 45-46, 51
CANLDGR ...\, 380 [aci NCR2 7
CANLESR ...\t 382 SRS
CAN_FCRT ..\ttt 392
CAN_FCR2ooiiiiiinnn, 392 |
CAN_FCRS ... 893 12C_CCRH .vviiiiiii 296
CAN_FIRX ... 894 12C_CCRL ..o 295
CAN_EMRT ..o 390 12C CR1 ..t 286
CAN_FMR2 ... 891 126 CR2 ...t 287
CANLIER ..., 879,383 12C DR ..ttt 289
CANLMCR ... 375 12C_FREQRcciiiii... 288
CAN_MCSRoovvieiie 386 12CITR ...\ 294
CANLMDAR ..., 389 12C_OARH ...ttt 289
CANMDLCRooovinnnnns 389 12C_OARL ...t 288
CAN_MEMIR ..., 87 2C_SRT ...t 290
CAN_MIDR1cooovinnnnns 387 12C_SR2 ...t 292
CANMIDR2cooennnns 388 12C_SR3iiiiiii 293
CAN_MIDR3ccoooviinnnns 388 2C_TRISERc0vvviireainn... 297
427/430 [S7]

RMO0016 Index
ITC_SPRX v ovoeee e 101 TIMLETR oo 188
IWDG KR ..o 125 TIMAIER oo 190
IWDG PR ..o 125 TIMI OISR ..o 215
IWDG _RLR ..o 126 TIMI_PSCRH ..o 206
TIMA_PSCRL ..o 206
p TIMI_RCR o vooe o 207
TIMI_SMCR .« ovooe e 187
Px_CR1 ... 111 TIM1_SR1 ..o 191
Px_ CR2 112 TIM1 SR2 ... 192
Px DDR ... 111 TIMA_ ARR .. .ot 252
Px_ IDR 110 TIM4A_ CNTR ..o 251
Px ODRc 110 TIMA CRT ..ot 247
TIMA CR2 ..o 248
R TIMA_EGR ..o oo 251
TIMA_IER oo 250
RST SR ..o 58 TIM4 PSCR ... >
TIMA_SMCR ..\ oooe e 249
S TIMA SRT oo 250
TIMX_ARRH oo 237
gi:—ggg""""::::::::::::::::::::ggg TIMX_ARRL .. oo oo 237
SPirGRoPR 1L 270 TMCOERT ..o 235
SPI DR 570 TIMX_CCER2 236
iR e TIMX_COMRT ..., 230
aPl RXCROR 570 TIMX_COMR2 ..., 232
QPSR p6s TIMX_COMR3 234
ol TxCROR 571 TIMX_CCRIH 238
SIAVRVR e TIMX_CCRIL « o oo 238
TIMX_CCR2H ..o 239
T TIMX_CCR2L . . oo 239
TIMI_ARRH ... 207 TIMX CCRSH ... 240
TIMI_ARRL ... 207 TIM CCRSBL ... 240
TIMI_BKR vttt 212 TIMXONTRH ... 236
TIMI_GCERT .. 202 TIMX CNTRL ... 236
TIMI_GCER2\, 205 MM CRT ... 224
T|M1_CCMR1 195 TlMX_CR2 225
T|M1_CCMR2 198 TlMX_EGR 229
T|M1_CCMR3 199 TlMX_lER 227
TIMI_CCMR4 ..., 201 TIMXPSCR ... 237
TIMI_CCRIH ... 208 IMX.SMCRooonnn 226
TIMI_GCRAL . 208 TMXSRT ... 227
TIMI_GCR2H . ..o 209 TIMX.SR2 ... 228
TIMI_CCR2L .. ovooee e 209
TIMI_ CCR3H ..o oo 210 U
TIMI_CCR3L .. ovooeeee e 210
TIMI_CCRAH - . . oo oo 211 3?2?222; """"""""""""" gig
TIMA_CCRAL ..o 211 JaRT OR1 340
TIMI_CNTRH oo 205 nmroma 241
TIMA_CNTRL oo 206 S e
TIMI_CRT o oo 184 UART.CR3 ... 343
TIMI CR2 oo 15 UART.CR4 ... 344
TIMIDTR © oo 014 UART.CRS .o 345
TIMI EGR oo 193 UART.CRE ... 346
Ky_l 428/430

Index

RMO0016

UART_DR 339
UART_GTR ... e 347
UART_SR 337
w

WWDG_CR i, 131
WWDG_WR i 132

429/430

RMO0016

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved
STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

430/430 Ky_’

	Contents
	List of tables
	List of figures
	1 Central processing unit (CPU)
	1.1 Introduction
	1.2 CPU registers
	1.2.1 Description of CPU registers
	Accumulator (A)
	Index registers (X and Y)
	Program counter (PC)
	Stack pointer (SP)
	Condition code register (CC)

	1.2.2 STM8 CPU register map

	1.3 Global configuration register (CFG_GCR)
	1.3.1 Activation level
	1.3.2 SWIM disable
	1.3.3 Description of global configuration register (CFG_GCR)
	1.3.4 Global configuration register map and reset values

	2 Boot ROM
	3 Memory and register map
	3.1 Register description abbreviations

	4 Flash program memory and data EEPROM (FLASH)
	4.1 Introduction
	4.2 Glossary
	4.3 FLASH main features
	4.4 Memory organization
	4.4.1 User boot area (UBC)
	4.4.2 Data EEPROM (DATA)
	4.4.3 Main program area
	4.4.4 Option bytes

	4.5 Memory protection
	4.5.1 Readout protection
	4.5.2 Memory access security system (MASS)
	Enabling write access to the main program memory
	Enabling write access to the DATA area

	4.5.3 Enabling write access to option bytes

	4.6 Memory programming
	4.7 Read-while-write (RWW)
	4.7.1 Byte programming
	Automatic fast byte programming

	4.7.2 Word programming
	4.7.3 Block programming
	Standard block programming
	Fast block programming
	Block erasing

	4.7.4 Option byte programming

	4.8 ICP and IAP
	4.9 FLASH registers
	4.9.1 Flash control register 1 (FLASH_CR1)
	4.9.2 Flash control register 2 (FLASH_CR2)
	4.9.3 Flash complementary control register 2 (FLASH_NCR2)
	4.9.4 Flash protection register (FLASH_FPR)
	4.9.5 Flash protection register (FLASH_NFPR)
	4.9.6 Flash program memory unprotecting key register (FLASH_PUKR)
	4.9.7 Data EEPROM unprotection key register (FLASH_DUKR)
	4.9.8 Flash Status register (FLASH_IAPSR)
	4.9.9 Flash register map and reset values

	5 Single wire interface module (SWIM) and debug module (DM)
	5.1 Introduction
	5.2 Main features
	5.3 SWIM modes

	6 Power supply
	7 Reset (RST)
	7.1 Reset circuit description
	7.2 Internal reset sources
	7.2.1 Power-on reset (POR) and brown-out reset (BOR)
	7.2.2 Watchdog reset
	7.2.3 Software reset
	7.2.4 SWIM reset
	7.2.5 Illegal opcode reset
	7.2.6 EMS reset

	7.3 RST register description
	7.3.1 Reset status register (RST_SR)

	7.4 RST register map

	8 Clock control (CLK)
	8.1 Master clock sources
	8.1.1 HSE
	External crystal/ceramic resonator (HSE crystal)

	8.1.2 HSI
	Fast wakeup feature
	If the FHWU bit in the Internal clock register (CLK_ICKR) is set, this automatically selects the HSI clock as master clock after MCU wakeup from Halt or Active Halt (see Low Power chapter).
	Calibration

	8.1.3 LSI
	Calibration

	8.2 Master clock switching
	8.2.1 System startup
	8.2.2 Master clock switching procedures
	Automatic switching
	Manual switching

	8.3 Low speed clock selection
	8.4 CPU clock divider
	8.5 Peripheral clock gating (PCG)
	8.6 Clock security system (CSS)
	8.7 Clock-out capability (CCO)
	8.8 CLK interrupts
	8.9 CLK register description
	8.9.1 Internal clock register (CLK_ICKR)
	8.9.2 External clock register (CLK_ECKR)
	8.9.3 Clock master status register (CLK_CMSR)
	8.9.4 Clock master switch register (CLK_SWR)
	8.9.5 Switch control register (CLK_SWCR)
	8.9.6 Clock divider register (CLK_CKDIVR)
	8.9.7 Peripheral clock gating register 1 (CLK_PCKENR1)
	8.9.8 Peripheral clock gating register 2 (CLK_PCKENR2)
	8.9.9 Clock security system register (CLK_CSSR)
	8.9.10 Configurable clock output register (CLK_CCOR)
	8.9.11 CAN external clock control register (CLK_CANCCR)
	8.9.12 HSI clock calibration trimming register (CLK_HSITRIMR)
	8.9.13 SWIM clock control register (CLK_SWIMCCR)

	8.10 CLK register map

	9 Power management
	9.1 General considerations
	9.2 Clock management for low consumption
	9.2.1 Slowing down the system clock
	9.2.2 Peripheral clock gating

	9.3 Low power modes
	9.3.1 Wait mode
	9.3.2 Halt mode
	Fast clock wakeup

	9.3.3 Active Halt modes
	Main voltage regulator (MVR) auto power-off
	Fast clock wakeup

	9.4 Additional analog power controls
	9.4.1 Fast Flash wakeup from Halt mode
	9.4.2 Very low Flash consumption in Active Halt mode

	10 Interrupt controller (ITC)
	10.1 ITC introduction
	10.2 Interrupt masking and processing flow
	10.2.1 Servicing pending interrupts
	10.2.2 Interrupt sources
	Non-maskable interrupt sources
	Maskable interrupt sources

	10.3 Interrupts and low power modes
	10.4 Activation level/low power mode control
	10.5 Concurrent and nested interrupt management
	10.5.1 Concurrent interrupt management mode
	10.5.2 Nested interrupt management mode

	10.6 External interrupts
	10.7 Interrupt instructions
	10.8 Interrupt mapping
	10.9 ITC registers
	10.9.1 CPU Condition Code register interrupt bits (CCR)
	10.9.2 Software priority register x (ITC_SPRx)
	10.9.3 External interrupt control register 1 (EXTI_CR1)
	10.9.4 External interrupt control register 1 (EXTI_CR2)
	10.9.5 ITC register map and reset values

	11 General purpose I/O ports (GPIO)
	11.1 Introduction
	11.2 GPIO main features
	11.3 Port configuration and usage
	11.3.1 Input modes
	11.3.2 Output modes

	11.4 Reset configuration
	11.5 Unused I/O pins
	11.6 Low power modes
	11.7 Input mode details
	11.7.1 Alternate function Input
	11.7.2 Interrupt capability
	Interrupt masking

	11.7.3 Analog channels
	11.7.4 Schmitt trigger

	11.8 Output mode details
	11.8.1 Alternate function output
	11.8.2 Slope control

	11.9 GPIO registers
	11.9.1 Port x output data register (Px_ODR)
	11.9.2 Port x pin input register (Px_IDR)
	11.9.3 Port x data direction register (Px_DDR)
	11.9.4 Port x control register 1 (Px_CR1)
	11.9.5 Port x control register 2 (Px_CR2)
	11.9.6 GPIO register map and reset values

	12 Auto-wakeup (AWU)
	12.1 Introduction
	12.2 AWU functional description
	12.2.1 AWU operation
	Idle mode

	12.2.2 Time base selection
	12.2.3 LSI clock frequency measurement

	12.3 AWU registers
	12.3.1 Control/status register (AWU_CSR)
	12.3.2 Asynchronous prescaler register (AWU_APR)
	12.3.3 Timebase selection register (AWU_TBR)
	12.3.4 AWU register map and reset values

	13 Beeper (BEEP)
	13.1 Introduction
	13.2 BEEP functional description
	13.2.1 Beeper operation
	13.2.2 Beeper calibration

	13.3 BEEP registers
	13.3.1 Beep control/status register (BEEP_CSR)
	13.3.2 BEEP register map and reset values

	14 Independent watchdog (IWDG)
	14.1 Introduction
	14.2 IWDG functional description
	Hardware watchdog feature
	Timeout period

	14.3 IWDG registers
	14.3.1 Key register (IWDG_KR)
	14.3.2 Prescaler register (IWDG_PR)
	14.3.3 Reload register (IWDG_RLR)
	14.3.4 IWDG register map and reset values

	15 Window watchdog (WWDG)
	15.1 Introduction
	15.2 WWDG main features
	15.3 WWDG functional description
	15.4 Using Halt mode with the WWDG
	15.5 How to program the watchdog timeout
	15.6 WWDG low power modes
	15.7 Hardware watchdog option
	15.8 Using Halt mode with the WWDG (WWDGHALT option)
	15.9 WWDG interrupts
	15.10 WWDG registers
	15.10.1 Control register (WWDG_CR)
	15.10.2 Window register (WWDG_WR)

	15.11 Window watchdog register map and reset values

	16 Timer overview
	16.1 Timer feature comparison
	16.2 Glossary of timer signal names

	17 16-bit advanced control timer (TIM1)
	17.1 Introduction
	17.2 TIM1 main features
	17.3 TIM1 time base unit
	17.3.1 Reading and writing to the 16-bit counter
	17.3.2 Write sequence for 16-bit TIM1_ARR register
	17.3.3 Prescaler
	17.3.4 Up-counting mode
	17.3.5 Down-counting mode
	17.3.6 Center-aligned mode (up/down counting)
	17.3.7 Repetition down-counter

	17.4 TIM1 clock/trigger controller
	17.4.1 Prescaler clock (CK_PSC)
	17.4.2 Internal clock source (fMASTER)
	17.4.3 External clock source mode 1
	17.4.4 External clock source mode 2
	17.4.5 Trigger synchronization
	Trigger standard mode
	Trigger reset mode
	Trigger gated mode
	Combining trigger modes with external clock mode 2

	17.4.6 Synchronization from TIM5/TIM6 timers
	Using one timer as prescaler for another timer
	Using one timer to enable another timer
	Using one timer to start another timer
	Starting 2 timers synchronously in response to an external trigger

	17.5 TIM1 capture/compare channels
	17.5.1 Write sequence for 16-bit TIM1_CCRi registers
	17.5.2 Input stage
	17.5.3 Input capture mode
	PWM input signal measurement

	17.5.4 Output stage
	17.5.5 Forced output mode
	17.5.6 Output compare mode
	17.5.7 PWM mode
	PWM edge-aligned mode
	PWM center-aligned mode
	One pulse mode
	Complementary outputs and dead-time insertion
	Re-directing OCiREF to OCi or OCiN
	6-step PWM generation for motor control

	17.5.8 Using the break function
	17.5.9 Clearing the OCiREF signal on an external event
	17.5.10 Encoder interface mode

	17.6 TIM1 interrupts
	17.7 TIM1 registers
	17.7.1 Control register 1 (TIM1_CR1)
	17.7.2 Control register 2 (TIM1_CR2)
	17.7.3 Slave mode control register (TIM1_SMCR)
	17.7.4 External trigger register (TIM1_ETR)
	17.7.5 Interrupt enable register (TIM1_IER)
	17.7.6 Status register 1 (TIM1_SR1)
	17.7.7 Status register 2 (TIM1_SR2)
	17.7.8 Event generation register (TIM1_EGR)
	17.7.9 Capture/compare mode register 1 (TIM1_CCMR1)
	17.7.10 Capture/compare mode register 2 (TIM1_CCMR2)
	17.7.11 Capture/compare mode register 3 (TIM1_CCMR3)
	17.7.12 Capture/compare mode register 4 (TIM1_CCMR4)
	17.7.13 Capture/compare enable register 1 (TIM1_CCER1)
	17.7.14 Capture/compare enable register 2 (TIM1_CCER2)
	17.7.15 Counter high (TIM1_CNTRH)
	17.7.16 Counter low (TIM1_CNTRL)
	17.7.17 Prescaler high (TIM1_PSCRH)
	17.7.18 Prescaler low (TIM1_PSCRL)
	17.7.19 Auto-reload register high (TIM1_ARRH)
	17.7.20 Auto-reload register low (TIM1_ARRL)
	17.7.21 Repetition counter register (TIM1_RCR)
	17.7.22 Capture/compare register 1 high (TIM1_CCR1H)
	17.7.23 Capture/compare register 1 low (TIM1_CCR1L)
	17.7.24 Capture/compare register 2 high (TIM1_CCR2H)
	17.7.25 Capture/compare register 2 low (TIM1_CCR2L)
	17.7.26 Capture/compare register 3 high (TIM1_CCR3H)
	17.7.27 Capture/compare register 3 low (TIM1_CCR3L)
	17.7.28 Capture/compare register 4 high (TIM1_CCR4H)
	17.7.29 Capture/compare register 4 low (TIM1_CCR4L)
	17.7.30 Break register (TIM1_BKR)
	17.7.31 Dead-time register (TIM1_DTR)
	17.7.32 Output idle state register (TIM1_OISR)
	17.7.33 TIM1 register map and reset values

	18 16-bit general purpose timers (TIM2, TIM3, TIM5)
	18.1 Introduction
	18.2 TIM2/TIM3 main features
	18.3 TIM5 main features
	18.4 TIM2/TIM3/TIM5 functional description
	18.4.1 Time base unit
	Prescaler
	Counter operation

	18.4.2 Clock/trigger controller
	18.4.3 Capture/compare channels
	Input stage
	Output stage

	18.5 TIM2/TIM3/TIM5 interrupts
	18.6 TIM2/TIM3/TIM5 registers
	18.6.1 Control register 1 (TIMx_CR1)
	18.6.2 Control register 2 (TIM5_CR2)
	18.6.3 Slave mode control register (TIM5_SMCR)
	18.6.4 Interrupt enable register (TIMx_IER)
	18.6.5 Status register 1 (TIMx_SR1)
	18.6.6 Status register 2 (TIMx_SR2)
	18.6.7 Event generation register (TIMx_EGR)
	18.6.8 Capture/compare mode register 1 (TIMx_CCMR1)
	18.6.9 Capture/compare mode register 2 (TIMx_CCMR2)
	18.6.10 Capture/compare mode register 3 (TIMx_CCMR3)
	18.6.11 Capture/compare enable register 1 (TIMx_CCER1)
	18.6.12 Capture/compare enable register 2 (TIMx_CCER2)
	18.6.13 Counter high (TIMx_CNTRH)
	18.6.14 Counter low (TIMx_CNTRL)
	18.6.15 Prescaler register (TIMx_PSCR)
	18.6.16 Auto-reload register high (TIMx_ARRH)
	18.6.17 Auto-reload register low (TIMx_ARRL)
	18.6.18 Capture/compare register 1 high (TIMx_CCR1H)
	18.6.19 Capture/compare register 1 low (TIMx_CCR1L)
	18.6.20 Capture/compare register 2 high (TIMx_CCR2H)
	18.6.21 Capture/compare register 2 low (TIMx_CCR2L)
	18.6.22 Capture/compare register 3 high (TIMx_CCR3H)
	18.6.23 Capture/compare register 3 low (TIMx_CCR3L)
	18.6.24 TIM2/TIM3/TIM5 register map and reset values

	19 8-bit basic timer (TIM4, TIM6)
	19.1 Introduction
	19.2 TIM4 main features
	19.3 TIM6 main features
	19.4 TIM4/TIM6 interrupts
	19.5 TIM4/TIM6 clock selection
	Prescaler

	19.6 TIM4/TIM6 registers
	19.6.1 Control register 1 (TIMx_CR1)
	19.6.2 Control register 2 (TIM6_CR2)
	19.6.3 Slave mode control register (TIM6_SMCR)
	19.6.4 Interrupt enable register (TIMx_IER)
	19.6.5 Status register 1 (TIMx_SR1)
	19.6.6 Event generation register (TIMx_EGR)
	19.6.7 Counter (TIMx_CNTR)
	19.6.8 Prescaler register (TIMx_PSCR)
	19.6.9 Auto-reload register (TIMx_ARR)
	19.6.10 TIM4/TIM6 register map and reset values

	20 Serial peripheral interface (SPI)
	20.1 Introduction
	20.2 SPI main features
	20.3 SPI functional description
	20.3.1 General description
	Slave select (NSS) pin management
	Clock phase and clock polarity
	Frame format

	20.3.2 SPI slave mode
	Procedure
	Transmit sequence

	20.3.3 SPI master mode
	Procedure
	Transmit sequence

	20.3.4 Simplex communication
	1 Clock and 1 bi-directional data wire
	1 Clock and 1 data wire (Rx-only or full duplex)
	Receive-only mode

	20.3.5 Status flags
	Busy flag
	Tx buffer empty flag (TXE)
	Rx buffer not empty (RXNE)

	20.3.6 CRC calculation
	20.3.7 Error flags
	Master mode fault (MODF)
	Overrun condition
	CRC error

	20.3.8 Disabling the SPI
	20.3.9 SPI low power modes
	Using the SPI to wake up the device from Halt mode
	- Full duplex and half duplex transmit-only modes
	- Half duplex receive-only mode

	20.3.10 SPI interrupts

	20.4 SPI registers
	20.4.1 SPI control register 1 (SPI_CR1)
	20.4.2 SPI control register 2 (SPI_CR2)
	20.4.3 SPI interrupt control register (SPI_ICR)
	20.4.4 SPI status register (SPI_SR)
	20.4.5 SPI data register (SPI_DR)
	20.4.6 SPI CRC polynomial register (SPI_CRCPR)
	20.4.7 SPI Rx CRC register (SPI_RXCRCR)
	20.4.8 SPI Tx CRC register (SPI_TXCRCR)

	20.5 SPI register map and reset values

	21 Inter-integrated circuit (I2C) Interface
	21.1 Introduction
	21.2 I2C main features
	21.3 I2C general description
	Mode selection

	21.4 I2C functional description
	21.4.1 I2C slave mode
	Slave transmitter
	Slave receiver
	Closing slave communication

	21.4.2 I2C master mode
	Start condition
	Slave address transmission
	Master transmitter
	Closing the communication
	Master receiver
	Closing the communication

	21.4.3 Error conditions
	Bus error (BERR)
	Acknowledge failure (AF)
	Arbitration lost (ARLO)
	Overrun/underrun error (OVR)

	21.4.4 SDA/SCL line control

	21.5 I2C low power modes
	21.6 I2C interrupts
	21.7 I2C registers
	21.7.1 Control register 1 (I2C_CR1)
	21.7.2 Control register 2 (I2C_CR2)
	21.7.3 Frequency register (I2C_FREQR)
	21.7.4 Own address register LSB (I2C_OARL)
	21.7.5 Own address register MSB (I2C_OARH)
	21.7.6 Data register (I2C_DR)
	21.7.7 Status register 1 (I2C_SR1)
	21.7.8 Status register 2 (I2C_SR2)
	21.7.9 Status register 3 (I2C_SR3)
	21.7.10 Interrupt register (I2C_ITR)
	21.7.11 Clock control register low (I2C_CCRL)
	21.7.12 Clock control register high (I2C_CCRH)
	21.7.13 TRISE register (I2C_TRISER)
	21.7.14 I2C register map and reset values

	22 Universal asynchronous receiver transmitter (UART)
	22.1 Introduction
	22.2 UART main features
	22.3 UART functional description
	22.3.1 UART character description
	22.3.2 Transmitter
	Character transmission
	Configurable stop bits
	Single byte communication
	Break character
	Idle character

	22.3.3 Receiver
	Character reception
	Break character
	Idle character
	Overrun error
	Noise error
	Framing error
	Configurable stop bits during reception:

	22.3.4 High precision baud rate generator
	22.3.5 Parity control
	22.3.6 Multi-processor communication
	Idle line detection (WAKE=0)
	Address mark detection (WAKE=1)

	22.3.7 LIN (local interconnection network) mode
	22.3.8 UART synchronous communication
	22.3.9 Single wire half duplex communication
	22.3.10 Smartcard
	22.3.11 IrDA SIR ENDEC block
	IrDA low-power mode

	22.4 LIN mode functional description
	22.4.1 Master mode
	UART initialization
	LIN header transmission
	LIN break and delimiter detection
	Response transmission (master is the publisher of the response)
	Response reception (master is the subscriber of the response)
	Discard Response (slave to slave communication)

	22.4.2 Slave mode with automatic resynchronization disabled
	UART initialization
	LIN Header reception
	Response transmission (slave is the publisher of the response)
	Response reception (slave is the subscriber of the response)
	Discard Response
	LIN header error detection
	LIN header time-out error
	Mute mode and errors

	22.4.3 Slave mode with automatic resynchronization enabled
	Automatic resynchronization
	LIN header error detection
	LIN header time-out error
	UART clock tolerance when synchronized
	UART clock tolerance when unsynchronized
	Clock deviation causes
	Error due to LIN synch measurement
	Error due to baud rate quantization
	Impact of clock deviation on maximum baud rate

	22.4.4 LIN mode selection

	22.5 UART low power modes
	22.6 UART interrupts
	22.7 UART registers
	22.7.1 Status register (UART_SR)
	22.7.2 Data register (UART_DR)
	22.7.3 Baud rate register 1 (UART_BRR1)
	22.7.4 Baud rate register 2 (UART_BRR2)
	22.7.5 Control register 1 (UART_CR1)
	22.7.6 Control register 2 (UART_CR2)
	22.7.7 Control register 3 (UART_CR3)
	22.7.8 Control register 4 (UART_CR4)
	22.7.9 Control register 5 (UART_CR5)
	22.7.10 Control register 6 (UART_CR6)
	22.7.11 Guard time register (UART_GTR)
	22.7.12 Prescaler register (UART_PSCR)
	22.7.13 UART register map and reset values

	23 Controller area network (beCAN)
	23.1 Introduction
	23.2 beCAN main features
	23.3 beCAN general description
	23.3.1 CAN 2.0B active core
	23.3.2 Control, status and configuration registers
	23.3.3 Tx mailboxes
	23.3.4 Acceptance filters

	23.4 Operating modes
	23.4.1 Initialization mode
	23.4.2 Normal mode
	23.4.3 Sleep mode (low power)
	23.4.4 Time triggered communication mode

	23.5 Test modes
	23.5.1 Silent mode
	23.5.2 Loop back mode
	23.5.3 Loop back combined with silent mode

	23.6 Functional description
	23.6.1 Transmission handling
	23.6.2 Reception handling
	23.6.3 Identifier filtering
	23.6.4 Message storage
	23.6.5 Error management
	23.6.6 Bit timing

	23.7 Interrupts
	23.8 Register access protection
	23.9 Clock system
	23.10 beCAN low power modes
	23.11 beCAN registers
	23.11.1 CAN master control register (CAN_MCR)
	23.11.2 CAN master status register (CAN_MSR)
	23.11.3 CAN transmit status register (CAN_TSR)
	23.11.4 CAN transmit priority register (CAN_TPR)
	23.11.5 CAN receive FIFO register (CAN_RFR)
	23.11.6 CAN interrupt enable register (CAN_IER)
	23.11.7 CAN diagnostic register (CAN_DGR)
	23.11.8 CAN page select register (CAN_PSR)
	23.11.9 CAN error status register (CAN_ESR)
	23.11.10 CAN error interrupt enable register (CAN_EIER)
	23.11.11 CAN transmit error counter register (CAN_TECR)
	23.11.12 CAN receive error counter register (CAN_RECR)
	23.11.13 CAN bit timing register 1 (CAN_BTR1)
	23.11.14 CAN bit timing register 2 (CAN_BTR2)
	23.11.15 Mailbox registers
	CAN message control/status register (CAN_MCSR)
	CAN mailbox filter match index register (CAN_MFMIR)
	CAN mailbox identifier register 1 (CAN_MIDR1)
	CAN mailbox identifier register 2 (CAN_MIDR2)
	CAN mailbox identifier register 3 (CAN_MIDR3)
	CAN mailbox identifier register 4 (CAN_MIDR4)
	CAN mailbox data length control register (CAN_MDLCR)
	CAN mailbox data register x (CAN_MDAR) (x= 1 .. 8)
	CAN mailbox time stamp register low (CAN_MTSRL)
	CAN mailbox time stamp register high (CAN_MTSRH)

	23.11.16 CAN filter registers
	CAN filter mode register 1 (CAN_FMR1)
	CAN filter mode register 2 (CAN_FMR2)
	CAN filter configuration register 1 (CAN_FCR1)
	CAN filter configuration register 2 (CAN_FCR2)
	CAN filter configuration register 3 (CAN_FCR3)
	CAN filter bank i register x (CAN_FiRx) (i = 0 .. 5, x = 1 .. 8)

	23.12 CAN register map
	23.12.1 Page mapping for CAN

	24 Analog/digital converter (ADC)
	24.1 Introduction
	24.2 ADC main features
	24.3 ADC extended features
	24.4 ADC pins
	24.5 ADC functional description
	24.5.1 ADC on-off control
	24.5.2 ADC clock
	24.5.3 Channel selection
	24.5.4 Conversion modes
	Single mode
	Continuous and buffered continuous modes
	Single scan mode
	Continuous scan mode

	24.5.5 Overrun flag
	24.5.6 Analog watchdog
	24.5.7 Conversion on external trigger
	24.5.8 Analog zooming
	24.5.9 Timing diagram

	24.6 ADC low power modes
	24.7 ADC interrupts
	24.8 Data alignment
	24.9 Reading the conversion result
	24.10 Schmitt trigger disable registers
	24.11 ADC registers
	24.11.1 ADC data buffer register x high (ADC_DBxRH) (x=0..7 or 0..9)
	24.11.2 ADC data buffer register x low (ADC_DBxRL) (x=or 0..7 or 0..9)
	24.11.3 ADC control/status register (ADC_CSR)
	24.11.4 ADC configuration register 1 (ADC_CR1)
	24.11.5 ADC configuration register 2 (ADC_CR2)
	24.11.6 ADC configuration register 3 (ADC_CR3)
	24.11.7 ADC data register high (ADC_DRH)
	24.11.8 ADC data register low (ADC_DRL)
	24.11.9 ADC Schmitt trigger disable register high (ADC_TDRH)
	24.11.10 ADC Schmitt trigger disable register low (ADC_TDRL)
	24.11.11 ADC high threshold register high (ADC_HTRH)
	24.11.12 ADC high threshold register low (ADC_HTRL)
	24.11.13 ADC low threshold register high (ADC_LTRH)
	24.11.14 ADC low threshold register low (ADC_LTRL)
	24.11.15 ADC watchdog status register high (ADC_AWSRH)
	24.11.16 ADC watchdog status register low (ADC_AWSRL)
	24.11.17 ADC watchdog control register high (ADC_AWCRH)
	24.11.18 ADC watchdog control register low (ADC_AWCRL)

	24.12 ADC register map and reset values

	25 Revision history
	Index

