
January 2009 Rev 4 1/430

RM0016
Reference manual

STM8S microcontroller family

Introduction
This reference manual provides complete information for application developers on how to
use the STM8S microcontroller memory and peripherals.

The STM8S is a family of microcontrollers with different memory sizes, packages and
peripherals.

■ The STM8S is designed for general purpose applications. For ordering information, pin
description, mechanical and electrical device characteristics, please refer to the STM8S
Performance line and Access line datasheets.

■ For information on programming, erasing and protection of the internal Flash memory
please refer to the STM8S Flash Programming Manual (PM0051) and the STM8 SWIM
communication protocol and debug module User Manual (UM0470)

■ For information on the STM8 core, please refer to the STM8 CPU Programming Manual
(PM0051)

www.st.com

http://www.st.com

Contents RM0016

2/430

Contents

1 Central processing unit (CPU) . 22

1.1 Introduction . 22

1.2 CPU registers . 22

1.2.1 Description of CPU registers . 22

1.2.2 STM8 CPU register map . 26

1.3 Global configuration register (CFG_GCR) . 26

1.3.1 Activation level . 26

1.3.2 SWIM disable . 26

1.3.3 Description of global configuration register (CFG_GCR) 27

1.3.4 Global configuration register map and reset values 27

2 Boot ROM . 28

3 Memory and register map . 29

3.1 Register description abbreviations . 29

4 Flash program memory and data EEPROM (FLASH) 30

4.1 Introduction . 30

4.2 Glossary . 30

4.3 FLASH main features . 30

4.4 Memory organization . 31

4.4.1 User boot area (UBC) . 34

4.4.2 Data EEPROM (DATA) . 37

4.4.3 Main program area . 37

4.4.4 Option bytes . 38

4.5 Memory protection . 38

4.5.1 Readout protection . 38

4.5.2 Memory access security system (MASS) . 38

4.5.3 Enabling write access to option bytes . 40

4.6 Memory programming . 40

4.7 Read-while-write (RWW) . 40

4.7.1 Byte programming . 40

4.7.2 Word programming . 41

RM0016 Contents

 3/430

4.7.3 Block programming . 41

4.7.4 Option byte programming . 43

4.8 ICP and IAP . 43

4.9 FLASH registers . 45

4.9.1 Flash control register 1 (FLASH_CR1) . 45

4.9.2 Flash control register 2 (FLASH_CR2) . 46

4.9.3 Flash complementary control register 2 (FLASH_NCR2) 47

4.9.4 Flash protection register (FLASH_FPR) . 48

4.9.5 Flash protection register (FLASH_NFPR) . 49

4.9.6 Flash program memory unprotecting key register (FLASH_PUKR) . . . 50

4.9.7 Data EEPROM unprotection key register (FLASH_DUKR) 50

4.9.8 Flash Status register (FLASH_IAPSR) . 51

4.9.9 Flash register map and reset values . 52

5 Single wire interface module (SWIM) and debug module (DM) 53

5.1 Introduction . 53

5.2 Main features . 53

5.3 SWIM modes . 53

6 Power supply . 54

7 Reset (RST) . 55

7.1 Reset circuit description . 55

7.2 Internal reset sources . 55

7.2.1 Power-on reset (POR) and brown-out reset (BOR) 56

7.2.2 Watchdog reset . 56

7.2.3 Software reset . 56

7.2.4 SWIM reset . 56

7.2.5 Illegal opcode reset . 57

7.2.6 EMS reset . 57

7.3 RST register description . 58

7.3.1 Reset status register (RST_SR) . 58

7.4 RST register map . 59

8 Clock control (CLK) . 60

8.1 Master clock sources . 61

Contents RM0016

4/430

8.1.1 HSE . 62

8.1.2 HSI . 63

8.1.3 LSI . 64

8.2 Master clock switching . 64

8.2.1 System startup . 64

8.2.2 Master clock switching procedures . 64

8.3 Low speed clock selection . 67

8.4 CPU clock divider . 67

8.5 Peripheral clock gating (PCG) . 68

8.6 Clock security system (CSS) . 69

8.7 Clock-out capability (CCO) . 70

8.8 CLK interrupts . 70

8.9 CLK register description . 71

8.9.1 Internal clock register (CLK_ICKR) . 71

8.9.2 External clock register (CLK_ECKR) . 73

8.9.3 Clock master status register (CLK_CMSR) . 74

8.9.4 Clock master switch register (CLK_SWR) . 74

8.9.5 Switch control register (CLK_SWCR) . 75

8.9.6 Clock divider register (CLK_CKDIVR) . 76

8.9.7 Peripheral clock gating register 1 (CLK_PCKENR1) 77

8.9.8 Peripheral clock gating register 2 (CLK_PCKENR2) 78

8.9.9 Clock security system register (CLK_CSSR) . 79

8.9.10 Configurable clock output register (CLK_CCOR) 80

8.9.11 CAN external clock control register (CLK_CANCCR) 81

8.9.12 HSI clock calibration trimming register (CLK_HSITRIMR) 82

8.9.13 SWIM clock control register (CLK_SWIMCCR) 83

8.10 CLK register map . 84

9 Power management . 85

9.1 General considerations . 85

9.2 Clock management for low consumption . 86

9.2.1 Slowing down the system clock . 86

9.2.2 Peripheral clock gating . 86

9.3 Low power modes . 87

9.3.1 Wait mode . 87

9.3.2 Halt mode . 87

RM0016 Contents

 5/430

9.3.3 Active Halt modes . 88

9.4 Additional analog power controls . 89

9.4.1 Fast Flash wakeup from Halt mode . 89

9.4.2 Very low Flash consumption in Active Halt mode 89

10 Interrupt controller (ITC) . 90

10.1 ITC introduction . 90

10.2 Interrupt masking and processing flow . 90

10.2.1 Servicing pending interrupts . 91

10.2.2 Interrupt sources . 92

10.3 Interrupts and low power modes . 93

10.4 Activation level/low power mode control . 93

10.5 Concurrent and nested interrupt management . 94

10.5.1 Concurrent interrupt management mode . 94

10.5.2 Nested interrupt management mode . 95

10.6 External interrupts . 97

10.7 Interrupt instructions . 98

10.8 Interrupt mapping . 98

10.9 ITC registers . 100

10.9.1 CPU Condition Code register interrupt bits (CCR) 100

10.9.2 Software priority register x (ITC_SPRx) . 101

10.9.3 External interrupt control register 1 (EXTI_CR1) 102

10.9.4 External interrupt control register 1 (EXTI_CR2) 103

10.9.5 ITC register map and reset values . 104

11 General purpose I/O ports (GPIO) . 105

11.1 Introduction . 105

11.2 GPIO main features . 105

11.3 Port configuration and usage . 107

11.3.1 Input modes . 107

11.3.2 Output modes . 108

11.4 Reset configuration . 108

11.5 Unused I/O pins . 108

11.6 Low power modes . 108

11.7 Input mode details . 108

Contents RM0016

6/430

11.7.1 Alternate function Input . 108

11.7.2 Interrupt capability . 108

11.7.3 Analog channels . 109

11.7.4 Schmitt trigger . 109

11.8 Output mode details . 109

11.8.1 Alternate function output . 109

11.8.2 Slope control . 109

11.9 GPIO registers . 110

11.9.1 Port x output data register (Px_ODR) . 110

11.9.2 Port x pin input register (Px_IDR) . 110

11.9.3 Port x data direction register (Px_DDR) . 111

11.9.4 Port x control register 1 (Px_CR1) . 111

11.9.5 Port x control register 2 (Px_CR2) . 112

11.9.6 GPIO register map and reset values . 112

12 Auto-wakeup (AWU) . 113

12.1 Introduction . 113

12.2 AWU functional description . 114

12.2.1 AWU operation . 114

12.2.2 Time base selection . 115

12.2.3 LSI clock frequency measurement . 116

12.3 AWU registers . 117

12.3.1 Control/status register (AWU_CSR) . 117

12.3.2 Asynchronous prescaler register (AWU_APR) 118

12.3.3 Timebase selection register (AWU_TBR) . 119

12.3.4 AWU register map and reset values . 119

13 Beeper (BEEP) . 120

13.1 Introduction . 120

13.2 BEEP functional description . 121

13.2.1 Beeper operation . 121

13.2.2 Beeper calibration . 121

13.3 BEEP registers . 122

13.3.1 Beep control/status register (BEEP_CSR) . 122

13.3.2 BEEP register map and reset values . 122

RM0016 Contents

 7/430

14 Independent watchdog (IWDG) . 123

14.1 Introduction . 123

14.2 IWDG functional description . 123

14.3 IWDG registers . 125

14.3.1 Key register (IWDG_KR) . 125

14.3.2 Prescaler register (IWDG_PR) . 125

14.3.3 Reload register (IWDG_RLR) . 126

14.3.4 IWDG register map and reset values . 126

15 Window watchdog (WWDG) . 127

15.1 Introduction . 127

15.2 WWDG main features . 127

15.3 WWDG functional description . 127

15.4 Using Halt mode with the WWDG . 129

15.5 How to program the watchdog timeout . 129

15.6 WWDG low power modes . 130

15.7 Hardware watchdog option . 131

15.8 Using Halt mode with the WWDG (WWDGHALT option) 131

15.9 WWDG interrupts . 131

15.10 WWDG registers . 131

15.10.1 Control register (WWDG_CR) . 131

15.10.2 Window register (WWDG_WR) . 132

15.11 Window watchdog register map and reset values 132

16 Timer overview . 133

16.1 Timer feature comparison . 134

16.2 Glossary of timer signal names . 135

17 16-bit advanced control timer (TIM1) . 137

17.1 Introduction . 137

17.2 TIM1 main features . 138

17.3 TIM1 time base unit . 140

17.3.1 Reading and writing to the 16-bit counter . 141

17.3.2 Write sequence for 16-bit TIM1_ARR register 141

17.3.3 Prescaler . 141

Contents RM0016

8/430

17.3.4 Up-counting mode . 142

17.3.5 Down-counting mode . 144

17.3.6 Center-aligned mode (up/down counting) . 146

17.3.7 Repetition down-counter . 148

17.4 TIM1 clock/trigger controller . 150

17.4.1 Prescaler clock (CK_PSC) . 150

17.4.2 Internal clock source (fMASTER) . 150

17.4.3 External clock source mode 1 . 151

17.4.4 External clock source mode 2 . 152

17.4.5 Trigger synchronization . 153

17.4.6 Synchronization from TIM5/TIM6 timers . 157

17.5 TIM1 capture/compare channels . 163

17.5.1 Write sequence for 16-bit TIM1_CCRi registers 164

17.5.2 Input stage . 164

17.5.3 Input capture mode . 165

17.5.4 Output stage . 168

17.5.5 Forced output mode . 169

17.5.6 Output compare mode . 169

17.5.7 PWM mode . 171

17.5.8 Using the break function . 178

17.5.9 Clearing the OCiREF signal on an external event 180

17.5.10 Encoder interface mode . 180

17.6 TIM1 interrupts . 183

17.7 TIM1 registers . 184

17.7.1 Control register 1 (TIM1_CR1) . 184

17.7.2 Control register 2 (TIM1_CR2) . 185

17.7.3 Slave mode control register (TIM1_SMCR) . 187

17.7.4 External trigger register (TIM1_ETR) . 188

17.7.5 Interrupt enable register (TIM1_IER) . 190

17.7.6 Status register 1 (TIM1_SR1) . 191

17.7.7 Status register 2 (TIM1_SR2) . 192

17.7.8 Event generation register (TIM1_EGR) . 193

17.7.9 Capture/compare mode register 1 (TIM1_CCMR1) 195

17.7.10 Capture/compare mode register 2 (TIM1_CCMR2) 198

17.7.11 Capture/compare mode register 3 (TIM1_CCMR3) 199

17.7.12 Capture/compare mode register 4 (TIM1_CCMR4) 201

17.7.13 Capture/compare enable register 1 (TIM1_CCER1) 202

RM0016 Contents

 9/430

17.7.14 Capture/compare enable register 2 (TIM1_CCER2) 205

17.7.15 Counter high (TIM1_CNTRH) . 205

17.7.16 Counter low (TIM1_CNTRL) . 206

17.7.17 Prescaler high (TIM1_PSCRH) . 206

17.7.18 Prescaler low (TIM1_PSCRL) . 206

17.7.19 Auto-reload register high (TIM1_ARRH) . 207

17.7.20 Auto-reload register low (TIM1_ARRL) . 207

17.7.21 Repetition counter register (TIM1_RCR) . 207

17.7.22 Capture/compare register 1 high (TIM1_CCR1H) 208

17.7.23 Capture/compare register 1 low (TIM1_CCR1L) 208

17.7.24 Capture/compare register 2 high (TIM1_CCR2H) 209

17.7.25 Capture/compare register 2 low (TIM1_CCR2L) 209

17.7.26 Capture/compare register 3 high (TIM1_CCR3H) 210

17.7.27 Capture/compare register 3 low (TIM1_CCR3L) 210

17.7.28 Capture/compare register 4 high (TIM1_CCR4H) 211

17.7.29 Capture/compare register 4 low (TIM1_CCR4L) 211

17.7.30 Break register (TIM1_BKR) . 212

17.7.31 Dead-time register (TIM1_DTR) . 214

17.7.32 Output idle state register (TIM1_OISR) . 215

17.7.33 TIM1 register map and reset values . 215

18 16-bit general purpose timers (TIM2, TIM3, TIM5) 218

18.1 Introduction . 218

18.2 TIM2/TIM3 main features . 218

18.3 TIM5 main features . 219

18.4 TIM2/TIM3/TIM5 functional description . 219

18.4.1 Time base unit . 220

18.4.2 Clock/trigger controller . 221

18.4.3 Capture/compare channels . 222

18.5 TIM2/TIM3/TIM5 interrupts . 223

18.6 TIM2/TIM3/TIM5 registers . 224

18.6.1 Control register 1 (TIMx_CR1) . 224

18.6.2 Control register 2 (TIM5_CR2) . 225

18.6.3 Slave mode control register (TIM5_SMCR) . 226

18.6.4 Interrupt enable register (TIMx_IER) . 227

18.6.5 Status register 1 (TIMx_SR1) . 227

Contents RM0016

10/430

18.6.6 Status register 2 (TIMx_SR2) . 228

18.6.7 Event generation register (TIMx_EGR) . 229

18.6.8 Capture/compare mode register 1 (TIMx_CCMR1) 230

18.6.9 Capture/compare mode register 2 (TIMx_CCMR2) 232

18.6.10 Capture/compare mode register 3 (TIMx_CCMR3) 234

18.6.11 Capture/compare enable register 1 (TIMx_CCER1) 235

18.6.12 Capture/compare enable register 2 (TIMx_CCER2) 236

18.6.13 Counter high (TIMx_CNTRH) . 236

18.6.14 Counter low (TIMx_CNTRL) . 236

18.6.15 Prescaler register (TIMx_PSCR) . 237

18.6.16 Auto-reload register high (TIMx_ARRH) . 237

18.6.17 Auto-reload register low (TIMx_ARRL) . 237

18.6.18 Capture/compare register 1 high (TIMx_CCR1H) 238

18.6.19 Capture/compare register 1 low (TIMx_CCR1L) 238

18.6.20 Capture/compare register 2 high (TIMx_CCR2H) 239

18.6.21 Capture/compare register 2 low (TIMx_CCR2L) 239

18.6.22 Capture/compare register 3 high (TIMx_CCR3H) 240

18.6.23 Capture/compare register 3 low (TIMx_CCR3L) 240

18.6.24 TIM2/TIM3/TIM5 register map and reset values 241

19 8-bit basic timer (TIM4, TIM6) . 245

19.1 Introduction . 245

19.2 TIM4 main features . 246

19.3 TIM6 main features . 246

19.4 TIM4/TIM6 interrupts . 246

19.5 TIM4/TIM6 clock selection . 246

19.6 TIM4/TIM6 registers . 247

19.6.1 Control register 1 (TIMx_CR1) . 247

19.6.2 Control register 2 (TIM6_CR2) . 248

19.6.3 Slave mode control register (TIM6_SMCR) . 249

19.6.4 Interrupt enable register (TIMx_IER) . 250

19.6.5 Status register 1 (TIMx_SR1) . 250

19.6.6 Event generation register (TIMx_EGR) . 251

19.6.7 Counter (TIMx_CNTR) . 251

19.6.8 Prescaler register (TIMx_PSCR) . 251

19.6.9 Auto-reload register (TIMx_ARR) . 252

RM0016 Contents

 11/430

19.6.10 TIM4/TIM6 register map and reset values . 253

20 Serial peripheral interface (SPI) . 254

20.1 Introduction . 254

20.2 SPI main features . 254

20.3 SPI functional description . 255

20.3.1 General description . 255

20.3.2 SPI slave mode . 258

20.3.3 SPI master mode . 259

20.3.4 Simplex communication . 260

20.3.5 Status flags . 261

20.3.6 CRC calculation . 261

20.3.7 Error flags . 262

20.3.8 Disabling the SPI . 263

20.3.9 SPI low power modes . 263

20.3.10 SPI interrupts . 265

20.4 SPI registers . 266

20.4.1 SPI control register 1 (SPI_CR1) . 266

20.4.2 SPI control register 2 (SPI_CR2) . 267

20.4.3 SPI interrupt control register (SPI_ICR) . 268

20.4.4 SPI status register (SPI_SR) . 269

20.4.5 SPI data register (SPI_DR) . 270

20.4.6 SPI CRC polynomial register (SPI_CRCPR) . 270

20.4.7 SPI Rx CRC register (SPI_RXCRCR) . 270

20.4.8 SPI Tx CRC register (SPI_TXCRCR) . 271

20.5 SPI register map and reset values . 271

21 Inter-integrated circuit (I2C) Interface . 272

21.1 Introduction . 272

21.2 I2C main features . 272

21.3 I2C general description . 273

21.4 I2C functional description . 275

21.4.1 I2C slave mode . 275

21.4.2 I2C master mode . 278

21.4.3 Error conditions . 282

21.4.4 SDA/SCL line control . 283

Contents RM0016

12/430

21.5 I2C low power modes . 283

21.6 I2C interrupts . 284

21.7 I2C registers . 286

21.7.1 Control register 1 (I2C_CR1) . 286

21.7.2 Control register 2 (I2C_CR2) . 287

21.7.3 Frequency register (I2C_FREQR) . 288

21.7.4 Own address register LSB (I2C_OARL) . 288

21.7.5 Own address register MSB (I2C_OARH) . 289

21.7.6 Data register (I2C_DR) . 289

21.7.7 Status register 1 (I2C_SR1) . 290

21.7.8 Status register 2 (I2C_SR2) . 292

21.7.9 Status register 3 (I2C_SR3) . 293

21.7.10 Interrupt register (I2C_ITR) . 294

21.7.11 Clock control register low (I2C_CCRL) . 295

21.7.12 Clock control register high (I2C_CCRH) . 296

21.7.13 TRISE register (I2C_TRISER) . 297

21.7.14 I2C register map and reset values . 298

22 Universal asynchronous receiver transmitter (UART) 299

22.1 Introduction . 299

22.2 UART main features . 300

22.3 UART functional description . 301

22.3.1 UART character description . 305

22.3.2 Transmitter . 306

22.3.3 Receiver . 308

22.3.4 High precision baud rate generator . 312

22.3.5 Parity control . 313

22.3.6 Multi-processor communication . 314

22.3.7 LIN (local interconnection network) mode . 315

22.3.8 UART synchronous communication . 316

22.3.9 Single wire half duplex communication . 318

22.3.10 Smartcard . 318

22.3.11 IrDA SIR ENDEC block . 320

22.4 LIN mode functional description . 323

22.4.1 Master mode . 323

22.4.2 Slave mode with automatic resynchronization disabled 327

RM0016 Contents

 13/430

22.4.3 Slave mode with automatic resynchronization enabled 330

22.4.4 LIN mode selection . 335

22.5 UART low power modes . 335

22.6 UART interrupts . 336

22.7 UART registers . 337

22.7.1 Status register (UART_SR) . 337

22.7.2 Data register (UART_DR) . 339

22.7.3 Baud rate register 1 (UART_BRR1) . 339

22.7.4 Baud rate register 2 (UART_BRR2) . 340

22.7.5 Control register 1 (UART_CR1) . 340

22.7.6 Control register 2 (UART_CR2) . 341

22.7.7 Control register 3 (UART_CR3) . 343

22.7.8 Control register 4 (UART_CR4) . 344

22.7.9 Control register 5 (UART_CR5) . 345

22.7.10 Control register 6 (UART_CR6) . 346

22.7.11 Guard time register (UART_GTR) . 347

22.7.12 Prescaler register (UART_PSCR) . 348

22.7.13 UART register map and reset values . 349

23 Controller area network (beCAN) . 351

23.1 Introduction . 351

23.2 beCAN main features . 351

23.3 beCAN general description . 351

23.3.1 CAN 2.0B active core . 352

23.3.2 Control, status and configuration registers . 352

23.3.3 Tx mailboxes . 352

23.3.4 Acceptance filters . 353

23.4 Operating modes . 354

23.4.1 Initialization mode . 354

23.4.2 Normal mode . 354

23.4.3 Sleep mode (low power) . 354

23.4.4 Time triggered communication mode . 355

23.5 Test modes . 355

23.5.1 Silent mode . 355

23.5.2 Loop back mode . 356

23.5.3 Loop back combined with silent mode . 356

Contents RM0016

14/430

23.6 Functional description . 357

23.6.1 Transmission handling . 357

23.6.2 Reception handling . 359

23.6.3 Identifier filtering . 360

23.6.4 Message storage . 367

23.6.5 Error management . 369

23.6.6 Bit timing . 370

23.7 Interrupts . 372

23.8 Register access protection . 373

23.9 Clock system . 373

23.10 beCAN low power modes . 374

23.11 beCAN registers . 375

23.11.1 CAN master control register (CAN_MCR) . 375

23.11.2 CAN master status register (CAN_MSR) . 376

23.11.3 CAN transmit status register (CAN_TSR) . 377

23.11.4 CAN transmit priority register (CAN_TPR) . 378

23.11.5 CAN receive FIFO register (CAN_RFR) . 379

23.11.6 CAN interrupt enable register (CAN_IER) . 379

23.11.7 CAN diagnostic register (CAN_DGR) . 380

23.11.8 CAN page select register (CAN_PSR) . 381

23.11.9 CAN error status register (CAN_ESR) . 382

23.11.10 CAN error interrupt enable register (CAN_EIER) 383

23.11.11 CAN transmit error counter register (CAN_TECR) 383

23.11.12 CAN receive error counter register (CAN_RECR) 384

23.11.13 CAN bit timing register 1 (CAN_BTR1) . 384

23.11.14 CAN bit timing register 2 (CAN_BTR2) . 385

23.11.15 Mailbox registers . 386

23.11.16 CAN filter registers . 390

23.12 CAN register map . 395

23.12.1 Page mapping for CAN . 396

24 Analog/digital converter (ADC) . 399

24.1 Introduction . 399

24.2 ADC main features . 399

24.3 ADC extended features . 399

24.4 ADC pins . 402

RM0016 Contents

 15/430

24.5 ADC functional description . 402

24.5.1 ADC on-off control . 402

24.5.2 ADC clock . 402

24.5.3 Channel selection . 402

24.5.4 Conversion modes . 403

24.5.5 Overrun flag . 404

24.5.6 Analog watchdog . 404

24.5.7 Conversion on external trigger . 405

24.5.8 Analog zooming . 405

24.5.9 Timing diagram . 406

24.6 ADC low power modes . 407

24.7 ADC interrupts . 407

24.8 Data alignment . 410

24.9 Reading the conversion result . 410

24.10 Schmitt trigger disable registers . 411

24.11 ADC registers . 411

24.11.1 ADC data buffer register x high (ADC_DBxRH) (x=0..7 or 0..9) 411

24.11.2 ADC data buffer register x low (ADC_DBxRL) (x=or 0..7 or 0..9) 412

24.11.3 ADC control/status register (ADC_CSR) . 413

24.11.4 ADC configuration register 1 (ADC_CR1) . 414

24.11.5 ADC configuration register 2 (ADC_CR2) . 415

24.11.6 ADC configuration register 3 (ADC_CR3) . 416

24.11.7 ADC data register high (ADC_DRH) . 417

24.11.8 ADC data register low (ADC_DRL) . 417

24.11.9 ADC Schmitt trigger disable register high (ADC_TDRH) 418

24.11.10 ADC Schmitt trigger disable register low (ADC_TDRL) 418

24.11.11 ADC high threshold register high (ADC_HTRH) 419

24.11.12 ADC high threshold register low (ADC_HTRL) 419

24.11.13 ADC low threshold register high (ADC_LTRH) 419

24.11.14 ADC low threshold register low (ADC_LTRL) 420

24.11.15 ADC watchdog status register high (ADC_AWSRH) 420

24.11.16 ADC watchdog status register low (ADC_AWSRL) 421

24.11.17 ADC watchdog control register high (ADC_AWCRH) 421

24.11.18 ADC watchdog control register low (ADC_AWCRL) 422

24.12 ADC register map and reset values . 423

Contents RM0016

16/430

25 Revision history . 425

RM0016 List of tables

 17/430

List of tables

Table 1. Interrupt levels . 25
Table 2. CPU register map . 26
Table 3. CFG_GCR register map . 27
Table 4. Block size . 43
Table 5. Memory access versus programming method . 44
Table 6. Flash register map and reset values. 52
Table 7. RST register map . 59
Table 8. CLK interrupt requests . 70
Table 9. Peripheral clock gating bits . 77
Table 10. Peripheral clock gating bits . 78
Table 11. CLK register map and reset values . 84
Table 12. Low power mode management . 87
Table 13. Software priority levels . 91
Table 14. Vector address map versus software priority bits . 95
Table 15. Dedicated interrupt instruction set . 98
Table 16. Interrupt mapping . 98
Table 17. Interrupt register map . 104
Table 18. I/O port configuration summary . 107
Table 19. Effect of low power modes on GPIO ports . 108
Table 20. Recommended and non-recommended configurations for analog input 109
Table 21. GPIO register map . 112
Table 22. AWUTB[3:0] selection. 115
Table 23. Example where fLS=128 kHz and target time is 78.5 ms . 115
Table 24. AWU register map . 119
Table 25. BEEP register map . 122
Table 26. Watchdog timeout period (with 64 kHz counter clock) . 124
Table 27. IWDG register map . 126
Table 28. Effect of low power modes on WWDG . 130
Table 29. WWDG register map and reset values . 132
Table 30. Timer characteristics. 133
Table 31. Timer feature comparison. 134
Table 32. Glossary of internal timer signals . 135
Table 33. Counting direction versus encoder signals . 181
Table 34. Output control for complementary OCi and OCiN channels with break feature 204
Table 35. TIM1 register map. 215
Table 36. TIM2 register map. 241
Table 37. TIM3 register map. 242
Table 38. TIM5 register map. 243
Table 39. TIM4 register map. 253
Table 40. TIM6 register map. 253
Table 41. SPI behavior in low power modes . 263
Table 42. SPI interrupt requests . 265
Table 43. SPI register map and reset values . 271
Table 44. I2C Interface behavior in low power modes . 283
Table 45. I2C Interrupt requests . 284
Table 46. I2C register map . 298
Table 47. UART configurations. 299
Table 48. Noise detection from sampled data . 311

List of tables RM0016

18/430

Table 49. Baud rate programming and error calculation . 313
Table 50. Frame formats . 313
Table 51. LIN mode selection . 335
Table 52. UART interface behavior in low power modes . 335
Table 53. UART interrupt requests . 336
Table 54. UART1 register map . 349
Table 55. UART2 register map . 349
Table 56. UART3 register map . 350
Table 57. Example of filter numbering . 365
Table 58. Transmit mailbox mapping . 367
Table 59. Receive mailbox mapping. 368
Table 60. beCAN behavior in low power modes. 374
Table 61. beCAN control and status page - register map and reset values 397
Table 62. beCAN mailbox pages - register map and reset values . 397
Table 63. beCAN filter configuration page - register map and reset values 398
Table 65. Low power modes. 407
Table 66. ADC Interrupts in single and non-buffered continuous mode (ADC1 and ADC2). 407
Table 67. ADC interrupts in buffered continuous mode (ADC1) . 408
Table 68. ADC interrupts in scan mode (ADC1) . 409
Table 69. ADC1 register map and reset values . 423
Table 70. ADC2 register map and reset values . 424
Table 71. Document revision history . 425

RM0016 List of figures

 19/430

List of figures

Figure 1. Programming model . 23
Figure 2. Stacking order. 24
Figure 3. Flash memory and data EEPROM organization on low density STM8S 32
Figure 4. Flash memory and data EEPROM organization on medium density STM8S. 33
Figure 5. Flash memory and data EEPROM organization high density STM8S 34
Figure 6. UBC area size definition on low density STM8S devices . 35
Figure 7. UBC area size definition on medium density STM8S . 36
Figure 8. UBC area size definition on high density STM8S . 37
Figure 9. SWIM pin connection . 53
Figure 10. Power supply overview . 54
Figure 11. Reset circuit . 55
Figure 12. VDD/VDDIO voltage detection: POR/BOR threshold . 56
Figure 13. Clock tree . 61
Figure 14. HSE clock sources . 62
Figure 15. Clock switching flowchart (automatic mode example) . 66
Figure 16. Clock switching flowchart (manual mode example) . 67
Figure 17. Interrupt processing flowchart . 91
Figure 18. Priority decision process . 92
Figure 19. Concurrent interrupt management . 94
Figure 20. Nested interrupt management . 96
Figure 21. GPIO block diagram . 106
Figure 22. AWU block diagram . 113
Figure 23. Beep block diagram . 120
Figure 24. Independent watchdog block diagram . 123
Figure 25. Watchdog block diagram . 128
Figure 26. Approximate timeout duration. 129
Figure 27. Window watchdog timing diagram . 130
Figure 28. TIM1 general block diagram . 139
Figure 29. Time base unit . 140
Figure 30. 16-bit read sequence for the counter (TIM1_CNTR) . 141
Figure 31. Counter in up-counting mode . 142
Figure 32. Counter update when ARPE=0 (ARR not preloaded) with prescaler = 2 143
Figure 33. Counter update event when ARPE=1 (TIM1_ARR preloaded). 144
Figure 34. Counter in down-counting mode. 144
Figure 35. Counter update when ARPE=0 (ARR not preloaded) with prescaler = 2 145
Figure 36. Counter update when ARPE=1 (ARR preloaded), with prescaler = 1 146
Figure 37. Counter in center-aligned mode . 146
Figure 38. Counter timing diagram, CK_PSC divided by 1, TIM1_ARR=06h, ARPE=1 147
Figure 39. Update rate examples depending on mode and TIM1_RCR register settings 149
Figure 40. Clock/trigger controller block diagram . 150
Figure 41. Control circuit in normal mode, fMASTER divided by 1 . 151
Figure 42. TI2 external clock connection example. 151
Figure 43. Control circuit in external clock mode 1 . 152
Figure 44. External trigger input block . 152
Figure 45. Control circuit in external clock mode 2 . 153
Figure 46. Control circuit in trigger mode. 154
Figure 47. Control circuit in trigger reset mode . 154
Figure 48. Control circuit in trigger gated mode. 155

List of figures RM0016

20/430

Figure 49. Control circuit in external clock mode 2 + trigger mode . 156
Figure 50. Timer chaining system implementation example . 157
Figure 51. Trigger/master mode selection blocks . 157
Figure 52. Master/Slave timer example . 158
Figure 53. Gating Timer B with OC1REF of Timer A . 159
Figure 54. Gating Timer B with the counter enable signal of Timer A (CNT_EN) 160
Figure 55. Triggering Timer B with update event of Timer A (TIMERA-UEV) 161
Figure 56. Triggering Timer B with counter enable CNT_EN of Timer A . 161
Figure 57. Triggering Timer A and B with Timer A TI1 input . 162
Figure 58. Capture/compare channel 1 main circuit . 163
Figure 59. 16-bit read sequence for the TIM1_CCRi register in capture mode 164
Figure 60. Channel input stage block diagram . 164
Figure 61. Input stage of TIM 1 channel 1 . 165
Figure 62. PWM input signal measurement . 166
Figure 63. PWM input signal measurement example . 168
Figure 64. Channel output stage block diagram . 168
Figure 65. Detailed output stage of channel with complementary output (channel 1) 169
Figure 66. Output compare mode, toggle on OC1. 170
Figure 67. Edge-aligned counting mode PWM mode 1 waveforms (ARR=8) 172
Figure 68. Center-aligned PWM waveforms (ARR=8) . 173
Figure 69. Example of one pulse mode . 174
Figure 70. Complementary output with dead-time insertion . 176
Figure 71. Dead-time waveforms with delay greater than the negative pulse 176
Figure 72. Dead-time waveforms with delay greater than the positive pulse. 176
Figure 73. 6-step generation, commutation event (COM) example (OSSR=1) 177
Figure 74. Behavior of outputs in response to a break (channel without complementary output) . . . 179
Figure 75. Behavior of outputs in response to a break (TIM1 complementary outputs) 179
Figure 76. ETR activation . 180
Figure 77. Example of counter operation in encoder interface mode . 182
Figure 78. Example of encoder interface mode with IC1 polarity inverted. 182
Figure 79. TIM2/TIM3 block diagram . 219
Figure 80. TIM5 block diagram . 220
Figure 81. Time base unit . 220
Figure 82. Input stage block diagram. 222
Figure 83. Input stage of TIM 2 channel 1 . 222
Figure 84. Output stage . 223
Figure 85. Output stage of channel 1. 223
Figure 86. TIM4 block diagram . 245
Figure 87. TIM6 block diagram . 245
Figure 88. SPI block diagram. 255
Figure 89. Single master/ single slave application. 256
Figure 90. Hardware/software slave select management . 256
Figure 91. Data clock timing diagram . 258
Figure 92. I2C bus protocol . 273
Figure 93. I2C block diagram. 274
Figure 94. Transfer sequence diagram for slave transmitter . 276
Figure 95. Transfer sequence diagram for slave receiver . 277
Figure 96. Transfer sequence diagram for master transmitter. 280
Figure 97. Transfer sequence diagram for master receiver . 281
Figure 98. I2C interrupt mapping diagram . 285
Figure 99. UART1 block diagram. 302
Figure 100. UART2 block diagram. 303

RM0016 List of figures

 21/430

Figure 101. UART3 block diagram. 304
Figure 102. Word length programming . 305
Figure 103. Configurable stop bits . 307
Figure 104. Data sampling for noise detection . 310
Figure 105. How to code UART_DIV in the BRR registers . 312
Figure 106. Mute mode using Idle line detection . 314
Figure 107. Mute mode using Address mark detection . 315
Figure 108. UART example of synchronous transmission . 317
Figure 109. UART data clock timing diagram (M=0) . 317
Figure 110. UART data clock timing diagram (M=1) . 317
Figure 111. RX data setup/hold time . 318
Figure 112. ISO 7816-3 asynchronous protocol . 319
Figure 113. Parity error detection using 1.5 stop bits . 320
Figure 114. IrDA SIR ENDEC- block diagram . 322
Figure 115. IrDA data modulation (3/16) - normal mode . 322
Figure 116. Break detection in LIN mode (11-bit break length - LBDL bit is set) 325
Figure 117. Break detection in LIN mode vs Framing error detection . 325
Figure 118. LIN identifier field parity bits . 328
Figure 119. LIN identifier field parity check . 328
Figure 120. LIN header reception time-out . 329
Figure 121. LIN synch field measurement . 330
Figure 122. UARTDIV read / write operations when LDUM = 0. 331
Figure 123. UARTDIV read / write operations when LDUM = 1. 332
Figure 124. Bit sampling in reception mode. 335
Figure 125. UART interrupt mapping diagram . 336
Figure 126. CAN network topology . 352
Figure 127. beCAN block diagram. 353
Figure 128. beCAN operating modes . 353
Figure 129. beCAN in silent mode . 356
Figure 130. beCAN in loop back mode . 356
Figure 131. beCAN in combined mode . 357
Figure 132. Transmit mailbox states . 358
Figure 133. Receive FIFO states . 359
Figure 134. 32-bit filter bank configuration (FSCx bits = 0b11 in CAN_FCRx register) 362
Figure 135. 16-bit filter bank configuration (FSCx bits = 0b10 in CAN_FCRx register) 363
Figure 136. 16/8-bit filter bank configuration (FSCx bits = 0b01 in CAN_FCRx register) 363
Figure 137. 8-bit filter bank configuration (FSCx bits = 0b00 in CAN_FCRx register) 364
Figure 138. Filter banks configured as in the example in Table 57. . 366
Figure 139. CAN error state diagram. 369
Figure 140. Bit timing . 370
Figure 141. CAN frames . 371
Figure 142. Event flags and interrupt generation. 372
Figure 143. Clock interface . 373
Figure 144. CAN register mapping . 395
Figure 145. CAN page mapping . 396
Figure 146. ADC1 block diagram. 400
Figure 147. ADC2 block diagram. 401
Figure 148. Analog watchdog guarded area . 405
Figure 149. Timing diagram in single mode (CONT =0) . 406
Figure 150. Timing diagram in continuous mode (CONT=1) . 406
Figure 151. Right alignment of data . 410
Figure 152. Left alignment of data . 410

Central processing unit (CPU) RM0016

22/430

1 Central processing unit (CPU)

1.1 Introduction
The CPU has an 8-bit architecture. Six internal registers allow efficient data manipulations.
The CPU is able to execute 80 basic instructions. It features 20 addressing modes and can
address 6 internal registers. For the complete description of the instruction set, refer to the
STM8 microcontroller family programming manual (PM0044).

1.2 CPU registers
The 6 CPU registers are shown in the programming model in Figure 1. Following an
interrupt, the registers are pushed onto the stack in the order shown in Figure 2. They are
popped from stack in the reverse order. The interrupt routine must therefore handle it, if
needed, through the POP and PUSH instructions.

1.2.1 Description of CPU registers

Accumulator (A)

The accumulator is an 8-bit general purpose register used to hold operands and the results
of the arithmetic and logic calculations as well as data manipulations.

Index registers (X and Y)

These are 16-bit registers used to create effective addresses. They may also be used as
temporary storage area for data manipulations and have an inherent use for some
instructions (multiplication/division). In most of the cases, the cross assembler generates a
PRECODE instruction (PRE) to indicate that the following instruction refers to the Y register.

Program counter (PC)

The program counter is a 24-bit register used to store the address of the next instruction to
be executed by the CPU. It is automatically refreshed after each processed instruction. As a
result, the STM8 core can access up to 16-Mbyte of memory.

RM0016 Central processing unit (CPU)

 23/430

Figure 1. Programming model

Stack pointer (SP)

The stack pointer is a 16-bit register. It contains the address of the next free location of the
stack. Depending on the product, the most significant bits can be forced to a preset value.

The stack is used to save the CPU context on subroutine calls or interrupts. The user can
also directly use it through the POP and PUSH instructions.

The stack pointer can be initialized by the startup function provided with the C compiler. For
applications written in C language, the initialization is then performed according to the
address specified in the linker file for C users. If you use your own linker file or startup file,
make sure the stack pointer is initialized properly (with the address given in the datasheet).
For applications written in assembler, you can use either the startup function provided by ST
or write your own by initializing the stack pointer with the correct address.

The stack pointer is decremented after data has been pushed onto the stack and
incremented after data is popped from the stack. It is up to the application to ensure that the
lower limit is not exceeded.

A subroutine call occupies two or three locations. An interrupt occupies nine locations to
store all the internal registers (except SP). For more details refer to Figure 2.

Note: The WFI/HALT instructions save the context in advance. If an interrupt occurs while the CPU
is in one of these modes, the latency is reduced.

07
A ACCUMULATOR

07815
SP STACK POINTERSH S

X INDEX

Y INDEX

07815
PC PROGRAM COUNTERPCH PCL

07
CC CODE CONDITIONV I1 H I0 N Z C

1623
PCE

07815
XH XL

07815
XH XL

0

Central processing unit (CPU) RM0016

24/430

Figure 2. Stacking order

Condition code register (CC)

The Condition Code register is an 8-bit register which indicates the result of the instruction
just executed as well as the state of the processor. The 7th bit (MSB) of this register is
reserved. These bits can be individually tested by a program and specified action taken as a
result of their state. The following paragraphs describe each bit.

● V: Overflow

When set, V indicates that an overflow occurred during the last signed arithmetic operation,
on the MSB result bit. See INC, INCW, DEC, DECW, NEG, NEGW, ADD, ADDW, ADC, SUB,
SUBW, SBC, CP, CPW instructions.

● I1: Interrupt mask level 1

The I1 flag works in conjunction with the I0 flag to define the current interruptability level as
shown in Table 1. These flags can be set and cleared by software through the RIM, SIM,
HALT, WFI, IRET, TRAP and POP instructions and are automatically set by hardware when
entering an interrupt service routine.

JUMP TO INTERRUPT ROUTINE GIVEN BY THE INTERRUPT VECTOR

INTERRUPT GENERATION (execute pipeline)

YH
YL

PCE

PCL

CC

STACK
(PUSH)

UNSTACK

IN
TER

R
U

PT

R
ETU

R
N

PCH

JUMP TO THE ADDRESS GIVEN BY PROGRAM COUNTER (Reload Pipeline)

IRET INSTRUCTION

(POP)

9 CPU CYCLES

9 CPU CYCLES
POP PCL
POP PCH
POP PCE

POP Y
POP X
POP A

POP CC

A
XH
XL

PUSH PCL
PUSH PCH
PUSH PCE

PUSH Y
PUSH X
PUSH A

PUSH CC

Complete instruction in execute stage (1-6 cycles latency)

RM0016 Central processing unit (CPU)

 25/430

● H: Half carry bit

The H bit is set to 1 when a carry occurs between the bits 3 and 4 of the ALU during an ADD
or ADC instruction. The H bit is useful in BCD arithmetic subroutines.

● I0: Interrupt mask level 0

See Flag I1

● N: Negative

When set to 1, this bit indicates that the result of the last arithmetic, logical or data
manipulation is negative (i.e. the most significant bit is a logic 1).

● Z: Zero

When set to 1, this bit indicates that the result of the last arithmetic, logical or data
manipulation is zero.

● C: Carry

When set, C indicates that a carry or borrow out of the ALU occurred during the last
arithmetic operation on the MSB operation result bit. This bit is also affected during bit test,
branch, shift, rotate and load instructions. See ADD, ADC, SUB, SBC instructions.

In division operation, C indicates if a trouble occurred during execution (quotient overflow or
zero division). See DIV instruction.

In bit test operations, C is the copy of the tested bit. See BTJF, BTJT instructions.
In shift and rotate operations, the carry is updated. See RRC, RLC, SRL, SLL, SRA
instructions.

This bit can be set, reset or complemented by software using SCF, RCF, CCF instructions.

Table 1. Interrupt levels

Interruptability Priority I1 I0

Interruptable Main Lowest

Highest

1 0

Interruptable Level 1 0 1

Interruptable Level 2 0 0

Non Interruptable 1 1

Central processing unit (CPU) RM0016

26/430

Example: Addition

$B5 + $94 = "C" + $49 = $149

1.2.2 STM8 CPU register map

The CPU registers are mapped in the STM8 address space as shown inTable 2. These
registers can only be accessed by the debug module but not by memory access intructions
executed in the core.

1.3 Global configuration register (CFG_GCR)

1.3.1 Activation level

The MCU activation level is configured by programming the AL bit in the CFG_GCR register.

For information on the use of this bit refer to Section 10.4: Activation level/low power mode
control on page 93.

1.3.2 SWIM disable

By default, after an MCU reset, the SWIM pin is configured to allow communication with an
external tool for debugging or Flash/EEPROM programming. This pin can be configured for

C 7 0

0 1 0 1 1 0 1 0 1

C 7 0

+ 0 1 0 0 1 0 1 0 0

C 7 0

= 1 0 1 0 0 1 0 0 1

Table 2. CPU register map

Address Register name 7 6 5 4 3 2 1 0

00 7F00h A MSB - - - - - - LSB

00 7F01h PCE MSB -
-

- - - - LSB

00 7F02h PCH MSB - - - - - - LSB

00 7F03h PCL MSB - - - - - - LSB

00 7F04h XH MSB - - - - - - LSB

00 7F05h XL MSB - - - - - - LSB

00 7F06h YH MSB - - - - - - LSB

00 7F07h YL MSB - - - - - - LSB

00 7F08h SPH MSB - - - - - - LSB

00 7F09h SPL MSB - - - - - - LSB

00 7F0Ah CC V 0 I1 H I0 N Z C

RM0016 Central processing unit (CPU)

 27/430

use as general purpose I/O by the application. This is done by setting the SWD bit in the
CFG_GCR register.

1.3.3 Description of global configuration register (CFG_GCR)

Address offset: 0x00

Reset value: 0x00

1.3.4 Global configuration register map and reset values

The CFG_GCR is mapped in the STM8 address space. Refer to the corresponding
datasheet for the base address.

7 6 5 4 3 2 1 0

Reserved
AL SWD

rw rw

Bits 7:2 Reserved, must be kept cleared.

Bit 1 AL: Activation level

This bit is set and cleared by software. It configures Main or Interrupt-only activation.
0: Main activation level. An IRET instruction will cause the context to be retrieved from the stack and
the main program will continue after the WFI instruction.
1: Interrupt-only activation level. An IRET instruction will cause the CPU to go back to WFI/Halt
mode without restoring the context.

Bit 0 SWD: SWIM disable
0: SWIM mode enabled
1: SWIM mode disabled

When SWIM mode is enabled, the SWIM pin cannot be used as general purpose I/O.

Table 3. CFG_GCR register map

Address
offset

Register name 7 6 5 4 3 2 1 0

0x00
CFG_GCR
Reset value

-
0

-
0

-
0

-
0

-
0

-
0

AL
0

SWD
0

Boot ROM RM0016

28/430

2 Boot ROM

The internal 2 Kbyte Boot ROM (available in some devices) contains the bootloader code.
Its main task is to download the application program to the internal Flash/EEPROM through
the SPI, CAN or UART interface and program the code, data, option bytes and interrupt
vectors in the internal Flash/EEPROM.

The boot loader starts executing after reset. Refer to the STM8 Bootloader user manual
(UM0560) for more details.

RM0016 Memory and register map

 29/430

3 Memory and register map

For details on memory map, I/O port hardware register map and CPU/SWIM/debug
module/interrupt controller registers, refer to the product datasheet.

3.1 Register description abbreviations
In the register descriptions of each chapter in this reference manual, the following
abbreviations are used:

read/write (rw) Software can read and write to these bits.

read-only (r) Software can only read these bits.

write only (w)
Software can only write to this bit. Reading the bit returns a meaningless
value.

read/write once (rwo)
Software can only write once to this bit and can also read it at any time. Only
a reset can return the bit to its reset value.

read/clear (rc_w1)
Software can read as well as clear this bit by writing 1. Writing ‘0’ has no
effect on the bit value.

read/clear (rc_w0)
Software can read as well as clear this bit by writing 0. Writing ‘1’ has no
effect on the bit value.

read/set (rs)
Software can read as well as set this bit. Writing ‘0’ has no effect on the bit
value.

Flash program memory and data EEPROM (FLASH) RM0016

30/430

4 Flash program memory and data EEPROM (FLASH)

4.1 Introduction
The embedded Flash Program memory and data EEPROM memories are controlled by a
common set of registers. Using these registers the application can program or erase
memory contents, set write protection, or configure specific low power modes. The
application can also program the device option bytes.

4.2 Glossary
● Block

A block is a set of bytes that can be programmed or erased in one single programming
operation. Operations that are performed at block level are fast and standard
programming and erasing. Refer to Table 4 for the details on block size.

● Page

A page is a set of blocks. STM8L devices feature boot code, proprietary code, and data
EEPROM areas which contents are protected by dedicated mechanisms. Their sizes
are programmable through dedicated option bytes by increments of one page.

4.3 FLASH main features
● STM8S EEPROM is divided into two memory array:

– Up to 128 Kbytes of Flash program memory. The density differs according to the
devices. Refer to Section 4.4: Memory organization for details.

– Up to 2 Kbytes of data EEPROM including option bytes. Data EEPROM density
differs according to the devices. Refer to Section 4.4: Memory organization for
details.

● Programming modes

– Byte programming and automatic fast byte programming (without erase operation)

– Word programming

– Block programming and fast block programming mode (without erase operation)

– Interrupt generation on end of program/erase operation and on illegal program
operation

● Read-while-write capability (RWW). This feature is not available on all STM8 devices.
Refer to the datasheets for details.

● In-application programming (IAP) and in-circuit programming (ICP) capabilities

● Protection features

– Memory readout protection (ROP)

– Program memory write protection with memory access security system (MASS
keys)

– Data memory write protection with memory access security system (MASS keys)

– Programmable write protected user boot code area (UBC)

● Memory state configurable to operating or Power-down in Halt and Active-halt modes

RM0016 Flash program memory and data EEPROM (FLASH)

 31/430

4.4 Memory organization
STM8S EEPROM is organized in 32-bit words (4 bytes per word).

The memory organization differs according to the devices:

● Low density STM8S devices

– 8 Kbytes of Flash Program Memory organized in 128 pages of 64 bytes each

– 640 bytes of Data EEPROM organized in 10 pages of 64 bytes each. The data
EEPROM includes one block of option bytes (64 bytes)

● Medium density STM8S devices

– From 16 to 32 Kbytes of Flash Program memory organized in up to 64 pages of
512 bytes each.

– 1 Kbytes of data EEPROM organized in 2 pages of 512 bytes each. The data
EEPROM includes one block of option bytes (128 bytes)

● High density STM8S devices

– From 32 to 128 Kbytesof Flash Program memory organized in up to 256 pages of
512 bytes each

– From 1 to 2 Kbytes of data EEPROM organized in up to 4 pages of 512 bytes
each. The data EEPROM includes one block of option bytes (128 bytes)

The page defines the granularity of the user boot code area as described in Section 4.4.1:
User boot area (UBC).

Figure 3, Figure 4, and Figure 5 show the Flash memory and data EEPROM organization
for STM8S devices.

Flash program memory and data EEPROM (FLASH) RM0016

32/430

Figure 3. Flash memory and data EEPROM organization on low density STM8S

ai15503

USER BOOT CODE (UBC)
(permanently write protected)

0x00 8000

MAIN PROGRAM
(write access possible for IAP
 and using MASS mechanism)

0x00 9FFF

Programmable size
from 2 pages (1 Kbytes)

up to 8 Kbytes
(1 page steps)

DATA MEMORY
(640 bytes)

8 Kbytes of
FLASH PROGRAM

MEMORY

Flash program
memory

Interrupt vectors (128 bytes)

OPTION BYTES (1 block)
0x00 483F

0x00 4000

DATA EEPROM

1 page = 1 block = 64 bytes

0x00 4800

0x00 427F

RM0016 Flash program memory and data EEPROM (FLASH)

 33/430

Figure 4. Flash memory and data EEPROM organization on medium density STM8S

ai15502

USER BOOT CODE (UBC)
(permanently write protected)

0x00 8000

MAIN PROGRAM
(write access possible for IAP
 and using MASS mechanism)

0x00 FFFF

Programmable size
from 2 pages (1 Kbytes)

up to 32 Kbytes
(1 page steps)

DATA MEMORY
(1 Kbytes)

16 to 32 Kbytes of
FLASH PROGRAM

MEMORY

Flash program
memory

Interrupt vectors (128 bytes)

OPTION BYTES (1 block)
0x00 487F

0x00 4000

DATA EEPROM

1 page = 512 bytes
1 block = 128 bytes

0x00 43FF
0x00 4800

Flash program memory and data EEPROM (FLASH) RM0016

34/430

Figure 5. Flash memory and data EEPROM organization high density STM8S

4.4.1 User boot area (UBC)

The user boot area (UBC) contains the reset and the interrupt vectors. It can be used to
store the IAP and communication routines. The UBC area has a second level of protection
to prevent unintentional erasing or modification during IAP programming. This means that it
is always write protected and the write protection cannot be unlocked using the MASS keys.

The size of the UBC area can be configured in ICP mode (using the SWIM interface)
through the UBC option byte. The UBC option byte specifies the number of pages allocated
for the UBC area starting from address 0x00 8000.

The size of the UBC area can be obtained by reading the UBC option byte.

Refer to Figure 6, Figure 7 and Figure 8 for a description of the UBC area memory mapping
and to the option bytes section in the datasheet for more details on the UBC option byte.

ai15501b

USER BOOT CODE (UBC)
(permanently write protected)

0x00 8000

MAIN PROGRAM
(write access possible for IAP
 and using MASS mechanism)

0x02 7FFF

Programmable size
from 2 pages (1 Kbytes)
up to 64 or 128 Kbytes

(1 page steps)

DATA MEMORY
(1 to 2 Kbytes)

32 to 128 Kbytes of
Flash Program

Memory

Flash program
memory

Interrupt vectors (128 bytes)

OPTION BYTES (1 block)
0x00 487F

0x00 4000

DATA EEPROM

1 page = 512 bytes
1 block = 128 bytes

0x00 47FF

RM0016 Flash program memory and data EEPROM (FLASH)

 35/430

Figure 6. UBC area size definition on low density STM8S devices

1. UBC[7:0] = 0x00 means no user boot code area is defined. Refer to the datasheet for the description of the UBC
option byte.

2. The first 2 pages (128 bytes) contain the interrupt vectors.

0x00 9FFF

0x00 9FC0

0x00 9F80

0x00 9F40

0x00 9F00

0x00 8100

0x00 8080

0x00 8040

Page 127

Page 126

Page 125

Page 124

Page 3

Page 2

Page 1

Page 0
0x00 8000

U
B

C
[7

:0
] =

0x
01

64 bytes

64 bytes

64 bytes

64 bytes

64 bytes

64 bytes to 8 Kbytes

64
 b

yt
es

U
B

C
[7

:0
] =

0x
7E

8

K
by

te
s

user boot code area

U
B

C
[7

:0
] =

0x
02

12

8
by

te
s64 bytes

0x00 80C0

64 bytes

64 bytes
Interrupt vectors

Flash program memory and data EEPROM (FLASH) RM0016

36/430

Figure 7. UBC area size definition on medium density STM8S

1. UBC[7:0] =0x00 means no user boot code area is defined. Refer to the datasheet for the description of the UBC
option byte.

2. The first 2 pages (1 Kbytes) contain the interrupt vectors out of which only 128 bytes (32 IT vectors) are
used.

0x00 FFFF

0x00 FE00

0x00 FC00

0x00 FA00

0x00 F800

0x00 8800

0x00 8600

0x00 8400

0x00 8200

Page 63

Page 62

Page 61

Page 60

Page 3

Page 2

Page 1

Page 0
0x00 8000

U
B

C
[7

:0
] =

0x
01

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes

1K to 32 Kbytes

1
K

by
te

s

U
B

C
[7

:0
] =

0x
3E

32
 K

by
te

s

User boot code area

U
B

C
[7

:0
] =

0x
02

2

K
by

te
s

0x00 807F
Interrupt vector table

RM0016 Flash program memory and data EEPROM (FLASH)

 37/430

Figure 8. UBC area size definition on high density STM8S

1. UBC[7:0] = 0x00 means no user boot code area is defined. Refer to the datasheet for the description of the UBC
option byte.

2. The first 2 pages (1 Kbytes) contain the interrupt vectors out of which only 128 bytes (32 IT vectors) are
used.

4.4.2 Data EEPROM (DATA)

The data EEPROM area can be used to store application data. By default, the DATA area is
write protected to prevent unintentional modification when the main program is updated in
IAP mode. The write protection can be unlocked only using specific a MASS key sequence
(refer to Enabling write access to the DATA area).

Refer to Section 4.4: Memory organization for the size of the DATA area according to the
STM8S devices.

4.4.3 Main program area

 The main program is the part of the Flash program memory which is used to store the
application code (see Figure 3, Figure 4 and Figure 5).

0x02 7FFF

0x02 7E00

0x02 7C00

0x02 7A00

0x02 7800

0x00 8800

0x00 8600

0x00 8400

0x00 8200

Page 255

Page 254

Page 253

Page 252

Page 3

Page 2

Page 1

Page 0
0x00 8000

0x00 807F
Interrupt vector table

U
B

C
[7

:0
] =

0x
01

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes

1K to 128 Kbytes

1
K

by
te

s

U
B

C
[7

:0
] =

0x
F

E
12

8
K

by
te

s

User boot code area

U
B

C
[7

:0
] =

0x
02

2

K
by

te
s

Flash program memory and data EEPROM (FLASH) RM0016

38/430

4.4.4 Option bytes

The option bytes are used to configure device hardware features and memory protection.
They are located in a dedicated memory array of one block.

The option bytes can be modified both in ICP/SWIM and in IAP mode, with OPT bit of the
FLASH_CR2 register set to ‘1’ and the NOPT bit of the FLASH_NCR2 register set to ‘0’ (see
Section 4.9.2: Flash control register 2 (FLASH_CR2) and Section 4.9.3: Flash
complementary control register 2 (FLASH_NCR2)).

Refer to the option bytes section in the datasheet for more information on option bytes, and
to the STM8 SWIM protocol and debug module user manual (UM0470) for details on how to
program them.

4.5 Memory protection

4.5.1 Readout protection

Readout protection is selected by programming the ROP option byte to 0xAA. When readout
protection is enabled, reading or modifying the Flash program memory and DATA area in
ICP mode (using the SWIM interface) is forbidden, whatever the write protection settings.
Even if no protection can be considered as totally unbreakable, the readout feature provides
a very high level of protection for a general purpose microcontroller.

The readout protection can be disabled on the program memory, UBC,DATA areas, by
reprogramming the ROP option byte in ICP mode. In this case, the Flash program memory,
the DATA area and the option bytes are automatically erased and the device can be
reprogrammed.

Refer to Table 5: Memory access versus programming method for details on memory
access when readout protection is enabled or disabled.

4.5.2 Memory access security system (MASS)

After reset, the main program and DATA areas are protected against unintentional write
operations. They must be unlocked before attempting to modify their content. This unlock
mechanism is managed by the memory access security system (MASS).

The UBC area specified in the UBC option byte is always write protected (see Section 4.4.1:
User boot area (UBC)).

Once the memory has been modified, it is recommended to enable the write protection
again to protect the memory content against corruption.

Enabling write access to the main program memory

After a device reset, it is possible to disable the main program memory write protection by
writing consecutively two values called MASS keys to the FLASH_PUKR register (see
Section 4.9.6: Flash program memory unprotecting key register (FLASH_PUKR)). These
programmed keys are then compared to two hardware key values:

● First hardware key: 0b0101 0110 (0x56)

● Second hardware key: 0b1010 1110 (0xAE)

The following steps are required to disable write protection on the main program area:

RM0016 Flash program memory and data EEPROM (FLASH)

 39/430

1. Write the first 8-bit key into the FLASH_PUKR register. When this register is written for
the first time after a reset, the data bus content is not latched into the register, but
compared to the first hardware key value (0x56).

2. If the key available on the data bus is incorrect, then the FLASH_PUKR register
remains locked until the next reset. Any new write commands sent to this address will
be discarded.

3. If the first hardware key is correct, when the FLASH_PUKR register is written to for the
second time, the data bus content is still not latched into the register, but compared to
the second hardware key value (0xAE).

4. If the key available on the data bus is incorrect, then the write protection on program
memory remains locked until the next reset. Any new write commands sent to this
address will be discarded.

5. If the second hardware key is correct, the main program memory is write unprotected
and the PUL bit of the FLASH_IAPSR is set (see Section 4.9.8: Flash Status register
(FLASH_IAPSR) register.

Before starting programming, the application can verify that PUL bit is effectively set. The
application can choose at any time to disable again write access to the Flash program
memory by clearing the PUL bit.

Enabling write access to the DATA area

After a device reset, it is possible to disable the DATA area write protection by writing
consecutively two values called MASS keys to the FLASh_DUKR register (see
Section 4.9.9: Flash register map and reset values). These programmed keys are then
compared to two hardware key values:

● First hardware key: 0b1010 1110 (0xAE)

● Second hardware key: 0b0101 0110 (0x56)

The following steps are required to disable write protection on the DATA area:

1. Write an first 8-bit key into the FLASH_DUKR register. When this register is written for
the first time after a reset, the data bus content is not latched into the register, but
compared to the first hardware key value (0xAE).

2. If the key available on the data bus is incorrect, the application can re-enter two MASS
keys to try unprotecting the DATA area.

3. If the first hardware key is correct, the FLASH_DUKR register is programmed with the
second key. The data bus content is still not latched into the register, but compared to
the second hardware key value (0x56).

4. If the key available on the data bus is incorrect, then the data EEPROM area remains
write protected until the next reset. Any new write command sent to this address is
ignored.

5. If the second hardware key is correct, the DATA area is write unprotected and the DUL
bit of the FLASH_IAPSR register is set (see Section 4.9.8: Flash Status register
(FLASH_IAPSR)).

Before starting programming, the application can verify that the DATA area is not write
protected by checking that the DUL bit is effectively set. The application can choose at any
time to disable again write access to the DATA area by clearing the DUL bit.

Flash program memory and data EEPROM (FLASH) RM0016

40/430

4.5.3 Enabling write access to option bytes

The procedure for enabling write access to the option byte area is the same as that used for
Data EEPROM. however there is an additional OPT bit in Flash control register 2
(FLASH_CR2) to be set and the corresponding NOPT bit in the Flash complementary
control register 2 (FLASH_NCR2) to be cleared in order to enable write access to the option
bytes.

4.6 Memory programming
The main program memory, and the DATA area must be unlocked before attempting to
perform any program operation. The unlock mechanism depends on the memory area to be
programmed as described in Section 4.5.2: Memory access security system (MASS).

4.7 Read-while-write (RWW)
The RWW feature allows performing write operations on Data EEPROM while reading and
executing the program memory. Execution time is therefore optimized. The opposite
operation is not allowed: data memory cannot be read while writing to program memory.

This RWW feature is always enabled and can be used at any time.

Note: The RWW feature is not available on all devices. Refer to the datasheets for addition
information.

4.7.1 Byte programming

The main program memory and the DATA area can be programmed at byte level. To
program one byte, the application writes directly to the target address

● In main program memory

The application stops for the duration of the byte program operation.

● In DATA area

– Devices with RWW capability: program execution does not stop, and the byte
program operation is performed using the read-while-write (RWW) capability in
IAP mode.

– Devices without RWW capability: the application stops for the duration of the byte
program operation.

To erase a byte, simply write 0x00 at the corresponding address.

The application can read the FLASH_IAPSR register to verify that the programming or
erasing operation has been correctly executed:

● EOP flag is set after a successful programming operation

● WR_PG_DIS is set when the software has tried to write to a protected page. In this
case, the write procedure is not performed.

As soon as one of these flags are set, a Flash interrupt is generated if it has been previously
enabled by setting the IE bit of the FLASH_CR1 register.

RM0016 Flash program memory and data EEPROM (FLASH)

 41/430

Automatic fast byte programming

The programming duration can vary according to the initial content of the target address. If
the word (4 bytes) containing the byte to be programmed is not empty, the whole word is
automatically erased before the program operation. On the contrary if the word is empty, no
erase operation is performed and the programming time is shorter (see tPROG in Table
“Flash program memory” in the datasheet).

however, the programming time can be fixed by setting the FIX bit of the FLASH_CR1
register to force the program operation to systematically erase the byte whatever its content
(see Section 4.9.1: Flash control register 1 (FLASH_CR1)). The programming time is
consequently fixed and equal to the sum of erase and write time (see tPROG in Table “Flash
program memory” in the datasheet).

Note: In order to write a byte fast (no erase), the whole word (4 bytes) into which it is written must
previously be erased. It is consequently not possible to do two fast writes to the same word
(without an erase before the second write): the first write will be fast but the second write to
the other byte will require an erase.

4.7.2 Word programming

A word write operation allows to program an entire 4-byte word in one shot, thus minimizing
the programming time.

Like byte programming, the word operation is available both for main program memory and
data EEPROM. On some STM8S devices, the read-while-write (RWW) capability is also
available when a word programming operation is performed on the data EEPROM. Refer to
the datasheets for additional information.

To program a word, the WPRG/NWPRG bits in the FLASH_CR2 and FLASH_NCR2
registers must be previously set/cleared to enable word programming mode (see
Section 4.9.2: Flash control register 2 (FLASH_CR2) and Section 4.9.2: Flash control
register 2 (FLASH_CR2)). Then the 4 bytes of the word to be programmed must be loaded
starting with the first address. The programming cycle starts automatically when the 4 bytes
have been written.

Like for byte operation, the EOP and the WR_PG_DIS control flags of FLASH_IAPSR
together with the Flash interrupt can be used to determine if the operation has been
correctly completed.

4.7.3 Block programming

Block program operations are much faster than byte or word program operations. In a block
program operation, a whole block is programmed or erased in a single programming cycle.
Refer to Table 4 for details on the block size according to the devices.

Flash program memory and data EEPROM (FLASH) RM0016

42/430

Block operations can be performed both to main program memory and DATA area:

● In main program memory

Block program operations to main program memory have to be executed totally from
RAM.

● In DATA area

– Devices with RWW capability: DATA block operations can be executed from main
program memory. However the data loading phase (see below) has to be executed
from RAM.

– Devices without RWW capability: block program operations must be executed
totally from RAM.

There are three possible block operation:

● Block programming also called standard block programming: the block is automatically
erased before being programmed.

● Fast block programming: no previous erase operation is performed.

● Block erase

During block programming, interrupts are masked by hardware.

Standard block programming

A standard block program operation allows to write a whole block in one shot. The block is
automatically erase before being programmed.

To program a whole block in standard mode, the PRG/NPRG bits in the FLASH_CR2 and
FLASH_NCR2 registers must be previously set/cleared to enable standard block
programming (see Section 4.9.2: Flash control register 2 (FLASH_CR2) and Section 4.9.2:
Flash control register 2 (FLASH_CR2)). Then the block of data to be programmed must be
loaded sequentially to the destination addresses in main program memory or DATA area.
This causes all the bytes of data to be latched. To start programming the whole block, all the
bytes of data must be written. All the bytes written in a programming sequence must be in
the same block. This means that they must have the same high address: only the six least
significant bits of the address can change. When the last byte of the target block is loaded,
the programming starts automatically. It is preceded by an automatic erase operation of the
whole block.

When programming a block in DATA area, the application can check the HVOFF bit in the
Flash Status register (FLASH_IAPSR). As soon the HVOFF flag is reset the actual
programming phase starts and the application can return to main program memory.

The EOP and the WR_PG_DIS control flags of the FLASH_IAPSR together with the Flash
interrupt can be used to determine if the operation has been correctly completed.

Fast block programming

Fast block programming allows to program without first erasing the memory contents. Fast
block programming is therefore twice as fast as standard programming.

This mode is intended only for programming parts that have already been erased. It is very
useful for programming blank parts with the complete application code, as the time saving is
significant.

Fast block programming is performed by using the same sequence as standard block
programming. To enable fast block programming mode, the FPRG/NFPRG bits of the
FLASH_CR2 and FLASH_NCR2 registers must be previously set/cleared.

RM0016 Flash program memory and data EEPROM (FLASH)

 43/430

The HVOFF flag can also be polled by the application, which can execute other instructions
(RWW) during the actual programming phase of the DATA.

The EOP and the WR_PG_DIS bits of the FLASH_IAPSR register can be checked to
determine if the fast block programming operation has been correctly completed.

Caution: The data programmed in the block are not guaranteed when the block is not blank before
the fast block program operation.

Block erasing

A block erase allows to erase a whole block.

To erase a whole block, the ERASE/NERASE bits in the FLASH_CR2 and FLASH_NCR2
registers must be previously set/cleared to enable block erasing (see Section 4.9.2: Flash
control register 2 (FLASH_CR2) and Section 4.9.3: Flash complementary control register 2
(FLASH_NCR2)). The block is then erased by writing ‘0x00 00 00 00’ to any word inside the
block. The word start address must end with ‘0’, ‘4’, ‘8’, or ‘C’.

The EOP and the WR_PG_DIS control flags of the FLASh_IAPSR together with the Flash
interrupt can be used to determine if the operation has been correctly completed.

4.7.4 Option byte programming

Option byte programming is very similar to data EEPROM byte programming.

The application writes directly to the target address. The program does not stop and the
write operation is performed using the RWW capability.

Refer to the datasheet for details of the option byte contents.

4.8 ICP and IAP
The in-circuit programming (ICP) method is used to update the entire content of the memory,
using the SWIM interface to load the user application into the microcontroller. ICP offers
quick and efficient design iterations and eliminates unnecessary package handling or
socketing of devices. The SWIM interface (single wire interface module) uses the SWIM pin
to connect to the programming tool.

In contrast to the ICP method, in-application programming (IAP) can use any communication
interface supported by the microcontroller (I/Os, I2C, SPI, USART...) to download the data to
be programmed in the memory. IAP allows reprogramming the Flash program memory
content during application execution. Nevertheless, part of the application must have been
previously programmed in Flash program memory using ICP.

Refer to the STM8 Flash programming manual (PM0051) and STM8 SWIM protocol and
debug manual (UM0470) for more information on programming procedures.

Table 4. Block size

STM8 microcontroller family Block size

Low density STM8S 64 bytes

Medium density STM8S 128 bytes

High density STM8S 128 bytes

Flash program memory and data EEPROM (FLASH) RM0016

44/430

Table 5. Memory access versus programming method(1)

1. R/W/E = Read; Write and Execute;
R/E = Read and Execute (write operation forbidden);
R = Read (write and execute operations forbidden);
P = the area cannot be accessed (read, execute and write operations forbidden);
P/WROP = Protected, write forbidden except for ROP option byte.

Mode ROP Memory Area Access

User, IAP, and
Bootloader (if available)

Readout
protection
enabled

User boot code area (UBC) R/E

Main program R/W/E(2)

2. The Flash program memory is write protected (locked) until the correct MASS key is written in the
FLASH_PUKR. It is possible to lock the memory again by resetting the PUL bit in the FLASH_IAPSR
register. Unlocking can only be done once between two resets.

Data EEPROM area (DATA) R/W/E(3)

3. The data memory is write protected (locked) until the correct MASS key is written in the FLASH_DUKR. It
is possible to lock the memory again by resetting the DUL bit in the IAPSR register.

Option bytes R

Readout
protection
disabled

User boot code area (UBC) R/E(4)

4. To program the UBC area the application must first clear the UBC option byte.

Main program R/W/E(2)

Data EEPROM area (DATA) R/W/E(3)

Option bytes R/W(5)

5. The option bytes are write protected (locked) until the correct MASS key is written in the FLASH_DUKR
(with OPT set to ‘1’). It is possible to lock the memory again by resetting the DUL bit in the FLASH_IAPSR
register.

ICP and SWIM

Readout
protection
enabled

User boot code area (UBC) P

Main program P

Data EEPROM area (DATA) P

Option bytes R/WROP
(6)

6. When ROP is removed, the whole memory is erased, including option bytes.

Readout
protection
disabled

User boot code area (UBC) R/E(4)

Main program R/W/E(2)

Data EEPROM area (DATA) R/W/E(3)

Option bytes R/W

RM0016 Flash program memory and data EEPROM (FLASH)

 45/430

4.9 FLASH registers

4.9.1 Flash control register 1 (FLASH_CR1)

Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
HALT AHALT IE FIX

rw rw rw rw

Bits 7:4 Reserved, forced by hardware to 0.

Bit 3 HALT: Power-down in Halt mode
This bit is set and cleared by software.
0: Flash in power-down mode when MCU is in halt mode
1: Flash in operating mode when MCU is in halt mode

Bit 2 AHALT: Power-down in Active-halt mode
This bit is set and cleared by software.
0: Flash in operating mode when MCU is in Active-halt mode
1: Flash in power-down when MCU is in Active-halt mode

Bit 1 IE: Flash Interrupt enable
This bit is set and cleared by software.
0: Interrupt disabled
1: Interrupt enabled. An interrupt is generated if the EOP or WR_PG_DIS flag in the
FLASH_IAPSR register is set.

Bit 0 FIX: Fixed Byte programming time

This bit is set and cleared by software.
0: Standard programming time of (1/2 tprog) if the memory is already erased and tprog
otherwise.
1: Programming time fixed at tprog.

Flash program memory and data EEPROM (FLASH) RM0016

46/430

4.9.2 Flash control register 2 (FLASH_CR2)

Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0

OPT WPRG ERASE FPRG
Reserved

PRG

rw rw rw rw ro

Bit 7 OPT: Write option bytes

This bit is set and cleared by software.
0: Write access to option bytes disabled
1: Write access to option bytes enabled

Bit 6 WPRG: Word programming

This bit is set by software and cleared by hardware when the operation is completed.
0: Word program operation disabled

1: Word program operation enabled

Bit 5 ERASE(1): Block erasing

This bit is set by software and cleared by hardware when the operation is completed.
0: Block erase operation disabled
1: Block erase operation enabled

Bit 4 FPRG(1): Fast block programming
This bit is set by software and cleared by hardware when the operation is completed
(updated, please check).
0: Fast block program operation disabled
1: Fast block program operation enabled

Bit 3:1 Reserved

Bit 0 PRG: Standard block programming

This bit is set by software and cleared by hardware when the operation is completed.
0: Standard block programming operation disabled
1: Standard block programming operation enabled (automatically first erasing)

1. The ERASE and FPRG bits are locked when the memory is busy.

RM0016 Flash program memory and data EEPROM (FLASH)

 47/430

4.9.3 Flash complementary control register 2 (FLASH_NCR2)

Address offset: 0x02

Reset value: 0xFF

7 6 5 4 3 2 1 0

NOPT NWPRG NERASE NFPRG Reserved NPRG

rw rw rw rw Res. rw

Bit 7 NOPT: Write option bytes
This bit is set and cleared by software.
0: Write access to Option bytes enabled
1: Write access to Option bytes disabled

Bit 6 NWPRG: Word Programming
This bit is cleared by software and set by hardware when the operation is completed.
0: Word programming enabled
1: Word programming disabled

Bit 5 NERASE: Block erase
This bit is cleared by software and set by hardware when the operation is completed.
0: Block erase enabled
1: Block erase disabled

Bit 4 NFPRG: Fast block Programming
This bit is cleared by software and set by software reading the register.
0: Fast block programming enabled (no erase before programming, the programmed data
values are not guaranteed when the block is not blank (fully erased) before the operation)
1: Fast block programming disabled

Bits 3:1 Reserved, forced by hardware to 1.

Bit 0 NPRG: Block programming

This bit is cleared by software and set by hardware when the operation is completed.
0: Block programming enabled
1: Block programming disabled

Flash program memory and data EEPROM (FLASH) RM0016

48/430

4.9.4 Flash protection register (FLASH_FPR)

Address offset: 0x03

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
WPB5 WPB4 WPB3 WPB2 WPB1 WPB0

ro ro ro ro ro ro

Bit 7:6 Reserved - must be kept to ‘0’

Bit 5:0 WPB[5:0]: User boot code area protection bits

These bits show the size of the boot code area. They are loaded at startup with the content of
the UBC option byte. Refer o the datasheet for the protected pages according to the bit values.

RM0016 Flash program memory and data EEPROM (FLASH)

 49/430

4.9.5 Flash protection register (FLASH_NFPR)

Address offset: 0x04

Reset value: 0xFF

7 6 5 4 3 2 1 0

Reserved
NWPB5 NWPB4 NWPB3 NWPB2 NWPB1 NWPB0

ro ro ro ro ro ro

Bit 7:6 Reserved - must be kept to ‘1’

Bit 5:0 WPB[5:0]: User boot code area protection bits

These bits show the size of the boot code area. They reflect the content of the NUBC option
byte. Refer o the datasheet for the protected pages according to the bit values.

Flash program memory and data EEPROM (FLASH) RM0016

50/430

4.9.6 Flash program memory unprotecting key register (FLASH_PUKR)

Address offset: 0x08

Reset value: 0x00

4.9.7 Data EEPROM unprotection key register (FLASH_DUKR)

Address offset: 0x0A

Reset value: 0x00

7 6 5 4 3 2 1 0

MASS_PRG KEYS

rw rw rw rw rw rw rw rw

Bits 7:0 PUK [7:0]: Main program memory unlock keys

This byte is written by software (all modes). It returns 0x00 when read.
Refer to Enabling write access to the main program memory on page 38 for the description
of main program area write unprotection mechanism.

7 6 5 4 3 2 1 0

MASS_DATA KEYS

rw rw rw rw rw rw rw rw

Bits 7:0 DUK[7:0]: Data EEPROM write unlock keys
This byte is written by software (all modes). It returns 0x00 when read.
Refer to Enabling write access to the DATA area on page 39 for the description of main
program area write unprotection mechanism.

RM0016 Flash program memory and data EEPROM (FLASH)

 51/430

4.9.8 Flash Status register (FLASH_IAPSR)

Address offset: 0x05

Reset value: 0x40

7 6 5 4 3 2 1 0

Reserved
HVOFF

Reserved
DUL EOP PUL WR_PG_DIS

r rc_w0 r rc_w0 r

Bit 7 Reserved, forced by hardware to 0.

Bit 6 HVOFF: End of high voltage flag
This bit is set and cleared by hardware.
0: HV ON, start of actual programming
1: HV OFF, end of high voltage

Bits 5:4 Reserved, forced by hardware to 0.

Bit 3 DUL: Data EEPROM area unlocked flag

This bit is set by hardware and cleared by software by programming it to ‘0’.
0: Data EEPROM area write protection enabled
1: Data EEPROM area write protection can be disabled by MASS keys

Bit 2 EOP: End of programming (write or erase operation) flag

This bit is set by hardware and cleared by software by reading the register.
0: No EOP event occurred
1: An EOP operation occurred. An interrupt is generated if the IE bit is set in the
FLASH_CR1 register.

Bit 1 PUL: Flash Program memory unlocked flag

This bit is set by hardware and cleared by software by programming it to ‘0’.
0: Write protection of main Program area enabled
1: Write protection of main Program area can be disabled by MASS keys.

Bit 0 WR_PG_DIS: Write attempted to protected page flag

This bit is set by hardware and cleared by software by reading the register.
0: No WR_PG_DIS event occurred
1: A write attempt to a write protected page occurred. An interrupt is generated if the IE bit
is set in the FLASH_CR1 register.

Flash program memory and data EEPROM (FLASH) RM0016

52/430

4.9.9 Flash register map and reset values

For details on the register boundary addresses, refer to in the general hardware register
map in the datasheet.

Table 6. Flash register map and reset values

Address Register name 7 6 5 4 3 2 1 0

0x00
FLASH_CR1
Reset Value

-
0

-
0

-
0

-
0

HALT
0

AHALT
0

IE
0

FIX
0

0x01
FLASH_CR2
Reset Value

OPT
0

WPRG
0

ERASE
0

FPRG
0

-
0

-
0

-
0

PRG
0

0x02
FLASH_NCR2

Reset Value
NOPT

1
NWPRG

1
NERASE

1
NFPRG

1
-
1

-
1

-
1

NPRG
1

0x03
FLASH_FPR
Reset Value

-
0

-
0

WPB5
0

WPB4
0

WPB3
0

WPB2
0

WPB1
0

WPB0
0

0x04
FLASH_NFPR

Reset Value
-
1

-
1

NWPB5
1

NWPB4
1

NWPB3
1

NWPB2
1

NWPB1
1

NWPB0
1

0x05
FLASH_IAPSR

Reset Value
-
0

HVOFF
1

- - DUL
0

EOP
0

PUL
0

WR_PG_DIS
0

0x06-0x07 Reserved

0x08
FLASH_PUKR

Reset Value
PUK7

0
PUK6

0
PUK5

0
PUK4

0
PUK3

0
PUK2

0
PUK1

0
PUK0

0

0x09 Reserved

0x0A
FLASH_DUKR

Reset Value
DUK7

0
DUNP6

0
DUK5

0
DUK4

0
DUK3

0
DUK2

0
DUK1

0
DUK0

0

RM0016 Single wire interface module (SWIM) and debug module (DM)

 53/430

5 Single wire interface module (SWIM) and debug
module (DM)

5.1 Introduction
In-circuit debugging mode or in-circuit programming mode are managed through a single
wire hardware interface featuring ultra fast memory programming. Coupled with an in-circuit
debugging module, it also offers a non-intrusive emulation mode, making the in-circuit
debugger extremely powerful, close in performance to a full-featured emulator.

5.2 Main features
● Based on an asynchronous, high sink (8 mA), open-drain, bidirectional communication.

● Allows reading or writing any part of memory space.

● Access to CPU registers (A, X, Y, CC, SP). They are memory mapped for read or write
access.

● Non intrusive read/write on the fly to the RAM and peripheral registers.

● Device reset capability with status flag in the Reset status register (RST_SR).

● Clock speed selectable in the SWIM clock control register (CLK_SWIMCCR).

SWIM pin can be used as a standard I/O with some restrictions if you also want to use it for
debug. The most secure way is to provide on the PCB a strap option.

Figure 9. SWIM pin connection

5.3 SWIM modes
After a power-on reset, the SWIM is reset and enters OFF mode.

1. OFF: Default state after power-on reset. The SWIM pin cannot be used by the
application as an I/O.

2. I/O: This state is entered by software writing to the SWD bit in the Global configuration
register (CFG_GCR). In this state, the SWIM pin can be used by the application as a
standard I/O pin. In case of a reset, the SWIM goes back to OFF mode.

3. SWIM: This state is entered when a specific sequence is performed on the SWIM pin.
In this state, the SWIM pin is used by the host tool to control the STM8 with 3
commands (SRST System Reset, ROTF Read On The Fly, WOTF Write On The Fly).

Note: Refer to the STM8 SWIM communication Protocol and Debug Module User Manual for a
description of the SWIM and Debug module (DM) registers.

MCU

SWIM/PD1

Jumper selection for
debug purposes

I/O for application

SWIM interface for tools

Power supply RM0016

54/430

6 Power supply

The MCU has four distinct power supplies:

● VDD/VSS: Main power supply (3 V to 5.5 V)

● VDDIO/VSSIO: I/O power supply (3 V to 5.5 V)

● VDDA/VSSA: Power supply for the analog functions

● VREF+/VREF-: Reference supply for Analog Digital Converter

The VDD/VSS pins are used to supply the internal Main Voltage Regulator (MVR) and the
internal Low Power Voltage Regulator (LPVR). The 2 regulator outputs are connected and
provide the 1.8 V supply (V18) to the MCU core (CPU, Flash and RAM)

In low power modes the system automatically switches from the MVR to the LPVR in order
to reduce current consumption.

To stabilize the MVR, a capacitor must be connected to the VCAP pin. The minimum
recommended value is 470 nF with low Equivalent Series Resistance.

Depending on the package size, there are one or two pairs of dedicated pins for
VDDIO/VSSIO to supply power to the I/Os.

VDDA/VSSA and VREF+/VREF- are connected to the Analog to Digital Converter (ADC).

Figure 10. Power supply overview

Low Power Voltage Regulator

VDD

VCAP

VDDIO

Main Voltage Regulator

I/O buffers

MCU core
1.8V3V-5.5V

RAM
Flash

3V-5.5V

A/D converter

VDDA
VSSA

3V-5.5V

VREF+
VREF-

CPU
V18

RM0016 Reset (RST)

 55/430

7 Reset (RST)

There are 9 reset sources:

● External reset through the NRST pin

● Power-on reset (POR)

● Brown-out Reset (BOR)

● Independent watchdog reset (IWDG)

● Window watchdog reset (WWDG)

● Software reset

● SWIM reset

● Illegal opcode reset

● EMS reset: generated if critical registers are corrupted or badly loaded

These sources act on the RESET pin and it is always kept low during the delay phase. The
RESET service routine vector is fixed at address 6000h in the memory map.

Figure 11. Reset circuit

7.1 Reset circuit description
The NRST pin is both an input and an open-drain output with integrated RPU weak pull-up
resistor.

A minimum of 500 ns low pulse on the NRST pin generates an external reset. The reset
detection is asynchronous and therefore the MCU can enter reset even in HALT mode.

The NRST pin also acts as an open-drain output for resetting external devices.

An internal temporization maintains a pulse of at least 20 µs whatever the internal reset
source. An additional internal weak pull-up ensures a high level on the reset pin when the
reset is not forced.

Refer to Figure 11 and see Electrical parameters section of the datasheet for more details.

7.2 Internal reset sources
Each internal reset source is linked to a specific flag bit in the Reset status register
(RST_SR) except POR/BOR which have no flag. These flags are set respectively at reset
depending on the given reset source. So they are used to identify the last reset source. They
are cleared by software writing the logic value “1”.

NRST

RPU

VDD_IO

PULSE
GENERATOR SWIM RESET

EXTERNAL
RESET

(min 20¬µs

SYSTEM NRESET

ILLEGAL OPCODE RESET
EMS RESET

IWDG/WWDG/SOFTWARE RESET
POR/BOR RESET

Filter
(typ 45kΩ)

Reset (RST) RM0016

56/430

7.2.1 Power-on reset (POR) and brown-out reset (BOR)

During power-on, the POR keeps the device under reset until the supply voltages (VDD and
VDDIO) reach the voltage level at which the BOR starts to function. At this point, the BOR
reset replaces the POR and the POR is automatically switched off. The BOR reset is
maintained till the supply voltage reaches the operating voltage range.

See Electrical parameters section of the datasheet for more details.

The BOR also generates a reset when the supply voltage drops below the VIT- threshold.
When this occurs, the POR is re-armed for the next power-on phase.

An hysteresis is implemented to ensure clean detection of voltage rise and fall.

The BOR always remains active even when the MCU is put into Low Power mode.

Figure 12. VDD/VDDIO voltage detection: POR/BOR threshold

7.2.2 Watchdog reset

Refer to Section 15: Window watchdog (WWDG) and Section 14: Independent watchdog
(IWDG) for details.

7.2.3 Software reset

The application software can trigger reset by clearing bit T6 in the WWDG_CR register.
Refer to Section 15: Window watchdog (WWDG).

7.2.4 SWIM reset

An external device connected to the SWIM interface can request the SWIM block to
generate an MCU reset.

VDD/VDDIO

NRST

VIT+

VIT-

RM0016 Reset (RST)

 57/430

7.2.5 Illegal opcode reset

In order to provide enhanced robustness to the device against unexpected behavior, a
system of illegal opcode detection is implemented. If a code to be executed does not
correspond to any opcode or prebyte value, a reset is generated. This, combined with the
Watchdog, allows recovery from an unexpected fault or interference.

Note: A valid prebyte associated with a valid opcode forming an unauthorized combination does
not generate a reset.

7.2.6 EMS reset

To protect the application against spurious write access or system hang-up, possibly caused
by electromagnetic disturbance, the most critical registers are implemented as two bit-fields
that must contain complementary values. Mismatches are automatically detected by this
mechanism, triggering an EMS reset and allowing the application to cleanly recover normal
operations.

Reset (RST) RM0016

58/430

7.3 RST register description

7.3.1 Reset status register (RST_SR)

Address offset: 0x00

Reset value: undefined

7 6 5 4 3 2 1 0

Reserved
EMCF SWIMF ILLOPF IWDGF WWDGF

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

Bits 7:5 Reserved, must be kept cleared.

Bit 4 EMCF: EMC reset flag
This bit is set by hardware and cleared by software writing “1”.
0: No EMC reset occurred
1: An EMC reset occurred (possible cause: complementary register or option byte mismatch).

Bit 3 SWIMF: SWIM reset flag
This bit is set by hardware and cleared by software writing “1”.
0: No SWIM reset occurred
1: A SWIM reset occurred

Bit 2 ILLOPF: Illegal opcode reset flag
This bit is set by hardware and cleared by software writing “1”.
0: No ILLOP reset occurred
1: An ILLOP reset occurred

Bit 1 IWDGF: Independent Watchdog reset flag
This bit is set by hardware and cleared by software writing “1”.
0: No IWDG reset occurred
1: An IWDG reset occurred

Bit 0 WWDGF: Window Watchdog reset flag
This bit is set by hardware and cleared by software writing “1”.
0: No WWDG reset occurred
1: An WWDG reset occurred

RM0016 Reset (RST)

 59/430

7.4 RST register map
Refer to the corresponding datasheet for the base address.

Table 7. RST register map

Address
offset

Register Name 7 6 5 4 3 2 1 0

0x00
RST_SR

Reset value
-
x

-
x

-
x

EMCF
x

SWIMF
x

ILLOPF
x

IWDGF
x

WWDGF
x

Clock control (CLK) RM0016

60/430

8 Clock control (CLK)

The clock controller is designed to be powerful, very robust, and at the same time easy to
use. Its purpose is to allow you to obtain the best performance in your application while at
the same time get the full benefit of all the microcontroller’s power saving capabilities.

You can manage all the different clock sources independently and distribute them to the
CPU and to the various peripherals. Prescalers are available for the master and CPU clocks.

A safe and glitch-free switch mechanism allows you to switch the master clock on the fly
from one clock source to another one.

EMS-hardened clock configuration registers

To protect the application against spurious write access or system hang-up, possibly caused
by electromagnetic disturbance, the most critical CLK registers are implemented as two bit-
fields that must contain complementary values. Mismatches are automatically detected by
the CLK, triggering an EMS reset and allowing the application to cleanly recover normal
operations. See CLK register description for more details.

RM0016 Clock control (CLK)

 61/430

Figure 13. Clock tree

8.1 Master clock sources
4 different clock sources can be used to drive the master clock:

● 1-24 MHz High Speed External crystal oscillator (HSE)

● Up to 24 MHz High Speed user-external clock (HSE user-ext)

● 16 MHz High Speed Internal RC oscillator (HSI)

● 128 kHz Low Speed Internal RC (LSI)

HSE OSC

1-24MHz

OSCIN

OSCOUT

HSI RC
16 MHz

LSI RC
128 kHz

/1
/2
/4
/8

fMASTER

fHSE

fHSIDIV

fLSI

HSIDIV[1:0]

/1

/2
/4
/8
/16
/32
/64
/128

CPUDIV[2:0]

fCPU

CKM[7:0]

to Timers

Peripheral Clock

to CPU and

to Independent Watchdog

Window Watchdog

I2C
SPI
ADC
AWU
CAN

HSE = High Speed External clock signal

LSI = Low Speed Internal clock signal

HSI = High Speed Internal clock signal

Legend:

CCO

fHSI
fHSIDIV
fHSE
fLSI
fMASTER
fCPU
fCPU/2
fCPU/4
fCPU/8
fCPU/16
fCPU/32
fCPU/64

Configurable Clock Output

CCOSEL[3:0]

Master
Clock
Switch

Enable (8 bits)

to Auto wakeup unit (AWU)

HSE Ext.

EXTCLK OPT BIT

CKAWUSEL OPT BIT

128 kHz

PRSC(1:0) OPT BITS

to beCAN/1, /2 ../8

CANDIV[2:0]

fHSI

CSS

LSI_EN OPT BIT

UART

Clock control (CLK) RM0016

62/430

Each clock source can be switched on or off independently when it is not used, to optimize
power consumption.

8.1.1 HSE

The High Speed External clock signal (HSE) can be generated from two possible clock
sources:

● HSE external crystal/ceramic resonator

● HSE user external clock

The resonator and the load capacitors have to be placed as close as possible to the
oscillator pins in order to minimize output distortion and start-up stabilization time. The
loading capacitance values must be adjusted according to the selected oscillator.

External crystal/ceramic resonator (HSE crystal)

The 1 to 24 MHz external oscillator has the advantage of producing a very accurate rate on
the main clock with 50% duty cycle.

The associated hardware configuration is shown in Figure 14. Refer to the electrical
characteristics section for more details.

At start up the clock signal produced by the oscillator is not stable, and by default a delay of
2048 osc cycles is inserted before the clock signal is released. You can program a shorter
stabilization time in the HSECNT option byte, please refer to option bytes section in the
datasheet.

Figure 14. HSE clock sources

Hardware configuration

E
xt

er
n

al
cl

o
ck

C
ry

st
al

/c
er

am
ic

re
so

n
at

o
rs

OSCOUT

EXTERNAL
SOURCE

(I/O available)

OSCIN OSCOUT

LOAD
CAPACITORS

CL2CL1

RM0016 Clock control (CLK)

 63/430

The HSERDY flag in the External clock register (CLK_ECKR) indicates if the high-speed
external oscillator is stable or not. At startup, the clock is not released until this bit is set by
hardware.

The HSE Crystal can be switched on and off using the HSEEN bit in the External clock
register (CLK_ECKR).

External source (HSE user-ext)
In this mode, an external clock source must be provided. It can have a frequency of up to
24MHz. You select this mode by programming the EXTCLK option bit. Refer to the option
bytes section of the datasheet. The external clock signal (square, sinus or triangle) with
~50% duty cycle has to drive the OSCIN pin while the OSCOUT pin is available as standard
I/O. See Figure 13.

8.1.2 HSI

The HSI clock signal is generated from an internal 16 MHz RC oscillator together with a
programmable divider (factor 1 to 8). This is programmed in the Clock divider register
(CLK_CKDIVR).

Note: At startup the master clock source is automatically selected as HSI RC clock output divided
by 8 (fHSI/8).

The HSI RC oscillator has the advantage of providing a 16 MHz master clock source with
50% duty cycle at low cost (no external components). It also has a faster startup time than
the HSE crystal oscillator however, even with calibration the frequency is less accurate than
an external crystal oscillator or ceramic resonator.

The HSIRDY flag in the Internal clock register (CLK_ICKR) indicates if the HSI RC is stable
or not. At startup, the HSI RC output clock is not released until this bit is set by hardware.

The HSI RC can be switched on and off using the HSIEN bit in the Internal clock register
(CLK_ICKR).

Backup source

The HSI/8 signal can also be used as a backup source (Auxiliary clock) if the HSE crystal
oscillator fails. Refer to Section 8.6: Clock security system (CSS).

Fast wakeup feature

If the FHWU bit in the Internal clock register (CLK_ICKR) is set, this automatically selects
the HSI clock as master clock after MCU wakeup from Halt or Active Halt (see Low Power
chapter).

Calibration

Each device is factory calibrated by ST.

After reset, the factory calibration value is automatically loaded in an internal calibration
register.

If the application is subject to voltage or temperature variations this may affect the RC
oscillator speed. You can trim the HSI frequency in the application using the HSI clock
calibration trimming register (CLK_HSITRIMR). In this register there are 3 or 4 bits providing
an additional trimming value that is added to the internal HSI calibration register value.

Clock control (CLK) RM0016

64/430

8.1.3 LSI

The 128 kHz LSI RC acts as a low power, low cost alternative master clock source as well
as a low power clock source that can be kept running in Halt mode for the independent
watchdog (IWDG) and Auto-Wakeup unit (AWU).

The LSI RC can be switched on and off using the LSIEN bit in the Internal clock register
(CLK_ICKR).

The LSIRDY flag in the Internal clock register (CLK_ICKR) indicates if the low-speed
internal oscillator is stable or not. At startup, the clock is not released until this bit is set by
hardware.

Calibration

Like the HSI RC, the LSI RC device is factory calibrated by ST. However, it is not possible to
perform further trimming.

Note: When using the Independent Watchdog with the LSI as clock source, in order to guarantee
that the CPU will never run on the same clock in case of corruption, the LSI clock cannot be
the master clock if LSI_EN option bit is reset. Refer to the option bytes section in the
datasheet.

8.2 Master clock switching
The clock switching feature provides an easy to use, fast and secure way for the application
to switch from one master clock source to another.

8.2.1 System startup

For fast system startup, after a reset the clock controller configures the master clock source
as HSI RC clock output divided by 8 (HSI/8). This is to take advantage of the short
stabilization time of the HSI oscillator. The /8 divider is to ensure safe start-up in case of
poor VDD conditions.

Once the master clock is released, the user program can switch the master clock to another
clock source.

8.2.2 Master clock switching procedures

To switch clock sources, you can proceed in one of two ways:

● Automatic switching

● Manual switching

Automatic switching

The automatic switching enables the user to launch a clock switch with a minimum number
of instructions. The software can continue doing other operations without taking care of the
switch event exact time.

Refer to the flowchart in Figure 15.

RM0016 Clock control (CLK)

 65/430

1. Enable the switching mechanism by setting the SWEN bit in the Switch control register
(CLK_SWCR).

2. Write the 8-bit value used to select the target clock source in the Clock master switch
register (CLK_SWR). The SWBSY bit in the CLK_SWCR register is set by hardware,
and the target source oscillator starts. The old clock source continues to drive the CPU
and peripherals.

As soon as the target clock source is ready (stabilized), the content of the CLK_SWR
register is copied to the Clock master status register (CLK_CMSR).

The SWBSY bit is cleared and the new clock source replaces the old one. The SWIF flag in
the CLK_SWCR is set and an interrupt is generated if the SWIEN bit is set.

Manual switching

The manual switching is not as immediate as the automatic switching but it offers to the user
a precise control of the switch event time.

Refer to the flowchart in Figure 16.

1. write the 8-bit value used to select the target clock source in the Clock master switch
register (CLK_SWR). Then the SWBSY bit is set by hardware, and the target source
oscillator starts. The old clock source continues to drive the CPU and peripherals.

2. The software has to wait until the target clock source is ready (stabilized). This is
indicated by the SWIF flag in the CLK_SWCR register and by an interrupt if the SWIEN
bit is set.

3. The final software action is to set, at the chosen time, the SWEN bit in the CLK_SWCR
register to execute the switch.

In both manual and automatic switching modes, the old master clock source will not be
powered off automatically in case it is required by other blocks (the LSI RC may be used to
drive the Independent Watchdog for example). The clock source can be powered off using
the bits in the Internal clock register (CLK_ICKR) and External clock register (CLK_ECKR).

If the clock switch does not work for any reason, software can reset the current switch
operation by clearing the SWBSY flag. This will restore the CLK_SWR register to its
previous content (old master clock).

Clock control (CLK) RM0016

66/430

Figure 15. Clock switching flowchart (automatic mode example)

Reset

MCU in run mode with HSI/8

Write target clock source in CLK_SWR

Target clock source ready after

CLK_SWR CLK_CMSR

SWBSY 0

Set SWEN bit in CLK_SWCR

Target clock source powered on

SWBSY 1

stabilization time

Switch busy

MCU in run mode
with new master clock source

SOFTWARE ACTIONHARDWARE ACTION

Reset Switch busy flag

Update Clock Master Status

Clear SWIF flag

Set SWIEN bit in CLK_SWCR to enable interrupt if suitable

Interrupt if activated
SWIF 1
Switch done

RM0016 Clock control (CLK)

 67/430

Figure 16. Clock switching flowchart (manual mode example)

8.3 Low speed clock selection
The Low speed clock source for the AWU or the Independent Watchdog can be LSI or HSE
divided according to the CKAWUSEL option bit. Refer to option bytes section in the
datasheet.

The division factor for HSE has to be programmed in the HSEPRSC[1:0] option bits Refer to
in the option bytes section of the datasheet. The goal is to get 128 kHz at the output of the
HSE prescaler.

8.4 CPU clock divider
The CPU clock (fCPU) is derived from the master clock (fMASTER), divided by a factor
programmed in the CPUDIV[2:0] bits in the Clock divider register (CLK_CKDIVR). Seven
division factors (1 to 128 in steps of power of 2) can be selected. Refer to Figure 13.

The fCPU signal is the clock for both the CPU and the Window Watchdog.

Reset

MCU in run mode with HSI/8

Write target clock source in CLK_SWR

Target clock source ready after

CLK_SWR CLK_CMSR

SWBSY 0

Target clock source powered on

 SWIF

SWBSY 1

stabilization time

Switch busy

1

MCU in run mode
with new master clock source

SOFTWARE ACTIONHARDWARE ACTION

Reset Switch busy flag

Update Clock Master Status

Clear SWIF flag

Set SWIEN bit in CLK_SWCR to enable interrupt if suitable

Set SWEN bit in CLK_SWCR to execute switch

Interrupt if activated

Ready for the switch

Clock control (CLK) RM0016

68/430

8.5 Peripheral clock gating (PCG)
Gating the clock to unused peripherals helps reduce power consumption. Peripheral clock
Gating (PCG) mode allows you to selectively enable or disable the fMASTER clock
connection to the following peripherals at any time in run mode:

● ADC

● I2C

● AWU (register clock, not counter clock)

● SPI

● TIM[4:1]

● UART

● CAN (register clock, not CAN clock)

After a device reset, all peripheral clocks are enabled. You can disable the clock to any
peripheral by clearing the corresponding PCKEN bit in the Peripheral clock gating register 1
(CLK_PCKENR1) and in the Peripheral clock gating register 2 (CLK_PCKENR2). But you
have to disable properly the peripheral using the appropiate bit, before stopping the
corresponding clock.

To enable a peripheral, you must first enable the corresponding PCKEN bit in the
CLK_PCKENR registers and then set the peripheral enable bit in the peripheral’s control
registers.

The AWU counter is driven by an internal or external clock (LSI or HSE) independent from
fMASTER, so that it continues to run even if the register clock to this peripheral is switched off.

RM0016 Clock control (CLK)

 69/430

8.6 Clock security system (CSS)
The Clock Security System (CSS) monitors HSE crystal clock source failures. When
fMASTER depends on HSE crystal, i.e. when HSE is selected, if the HSE clock fails due to a
broken or disconnected resonator or any other reason, the clock controller activates a stall-
safe recovery mechanism by automatically switching fMASTER to the auxiliary clock source
(HSI/8). Once selected the auxiliary clock source remains enabled until the MCU is reset.

You enable the clock security system by setting the CSSEN bit in the Clock security system
register (CLK_CSSR). For safety reason, once CSS is enabled it cannot be disabled until
the next reset.

The following conditions must be met so that the CSS can detect HSE quartz crystal
failures:

● HSE crystal on: (HSEEN=1 in the External clock register (CLK_ECKR))

● HSE oscillator in quartz crystal configuration (EXTCLK option bit is set)

● CSS function enabled: (CSSEN=1 in the CLK_CSSR register)

If HSE is the current clock master when a failure is detected, the CSS performs the following
actions:

● The CSSD bit is set in the CLK_CSSR register and an interrupt is generated if the
CSSIEN bit is set.

● The Clock master status register (CLK_CMSR), Clock master switch register
(CLK_SWR) register and the HSIDIV[1:0] bits in the Clock divider register
(CLK_CKDIVR) are set to their reset values (CKM[7:0]= SWI[7:0]=E1h). HSI/8
becomes the master clock.

● The HSIEN bit in the Internal clock register (CLK_ICKR) register is set (HSI on).

● The HSEEN bit in the External clock register (CLK_ECKR) is cleared (HSE off)

● The AUX bit is set to indicate that the HSI/8 auxiliary clock source is forced.

You can clear the CSSD bit by software but the AUX bit is cleared only by reset.

To select a faster clock speed, you can modify the HSIDIV[1:0] bits in the CLK_CKDIVR
register after the CSSD bit in the CLK_CSSR register is cleared.

If HSE is not the current clock master when a failure is detected, the master clock is not
switched to the auxiliary clock and none of the above actions are performed except:

● The HSEEN bit is cleared in the CLK_ECKR register, HSE is then switched OFF

● The CSSD bit is set in the CLK_CSSR register and interrupt is generated if CSSDIE is
also set, it can be cleared by software.

If HSE is not the current clock master and the master clock switch to HSE is ongoing, the
SWBSY bit in the CLK_SWCR register must be cleared by software before clearing the
CSSD bit.

If HSE is selected by CCOSEL to be in output mode (see Clock-out capability (CCO)) when
a failure is detected, the selection is automatically changed to force HSI (HSIDIV) instead of
HSE.

Clock control (CLK) RM0016

70/430

8.7 Clock-out capability (CCO)
The configurable Clock Output (CCO) capability allows you to output a clock on the external
CCO pin. You can select one of 6 clock signals as CCO clock:

● fHSE

● fHSI

● fHSIDIV

● fLSI

● fMASTER

● fCPU (with current prescaling selection)

Note: 50% duty cycle is not guaranteed on all possible prescaled values

The selection is controlled by the CCOSEL[3:0] bits in the Configurable clock output register
(CLK_CCOR).

The user has to select first the desired clock for the dedicated I/O pin (see Pin Description
chapter). This I/O must be set at 1 in the corresponding Px_CR1 register to be set as input
with pull-up or push-pull output.

The sequence to really output the chosen clock starts with CCOEN=1 in Configurable clock
output register (CLK_CCOR).

The CCOBSY is set to indicate that the Configurable Clock Output system is operating. As
long as the CCOBSY bit is set, the CCOSEL bits are write protected.

The CCO automatically activates the target oscillator if needed. The CCORDY bit is set
when the chosen clock is ready.

To disable the clock output the user has to clear the CCOEN bit. Both CCOBSY and
CCORDY remain at 1 till the shut down is completed. The time between the clear of CCOEN
and the reset of the two flags can be relatively long, for instance in case the selected clock
output is very slow compared to fCPU.

8.8 CLK interrupts
The following interrupts can be generated by the clock controller:

● Master clock source switch event

● Clock Security System event

Both interrupts are individually maskable.

Table 8. CLK interrupt requests

Interrupt event
Event
flag

Enable
control

bit

Exit
from
Wait

Exit
from
Halt

CSS event CSSD CSSDIE Yes No

Master clock switch event SWIF SWIEN Yes No

RM0016 Clock control (CLK)

 71/430

8.9 CLK register description

8.9.1 Internal clock register (CLK_ICKR)

Address offset: 0x00

Reset value: 0x01

7 6 5 4 3 2 1 0

Reserved
REGAH LSIRDY LSIEN FHW HSIRDY HSIEN

rw r rw rw r rw

Bits 7:6 Reserved, must be kept cleared.

Bit 5 REGAH: Regulator power off in Active Halt mode
This bit is set and cleared by software. When it is set, the main voltage regulator is powered off as
soon as the MCU enters Active Halt mode, so the wakeup time is longer.

0: MVR regulator ON in active halt mode
1: MVR regulator OFF in active halt mode

Bit 4 LSIRDY: Low speed internal oscillator ready
This bit is set and cleared by hardware.
0: LSI clock not ready
1: LSI clock ready

Bit 3 LSIEN: Low speed internal RC oscillator enable
This bit is set and cleared by software. It is set by hardware whenever the LSI oscillator is required,
for example:

– When switching to the LSI clock (see CLK_SWR register)

– When LSI is selected as the active CCO source (see CLK_CCOR register)

– When BEEP is enabled (BEEPEN bit set in the BEEP_CSR register)
– When LSI measurement is enabled (MSR bit set in the AWU_CSR register)

It cannot be cleared when LSI is selected as master clock source (CLK_CMSR register), as active
CCO source or as clock source for the AWU peripheral or independent Watchdog.
0: Low-speed internal RC off
1: Low-speed internal RC on

Bit 2 FHWU: Fast wakeup from Halt/Active Halt modes

This bit is set and cleared by software.
0: Fast wakeup from Halt/Active Halt modes disabled
1: Fast wakeup from Halt/Active Halt modes enabled

Bit 1 HSIRDY: High speed internal oscillator ready

This bit is set and cleared by hardware.
0: HSI clock not ready
1: HSI clock ready

Clock control (CLK) RM0016

72/430

Bit 0 HSIEN: High speed internal RC oscillator enable
This bit is set and cleared by software. It is set by hardware whenever the HSI oscillator is required,
for example:

– When activated as safe oscillator by the CSS

– When switching to HSI clock (see CLK_SWR register)

– When HSI is selected as the active CCO source (see CLK_CCOR register)
It cannot be cleared when HSI is selected as clock master (CLK_CMSR register), as active CCO
source or if the safe oscillator (AUX) is enabled.
0: High-speed internal RC off
1: High-speed internal RC on

RM0016 Clock control (CLK)

 73/430

8.9.2 External clock register (CLK_ECKR)

Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
HSERDY HSEEN

r rw

Bits 7:2 Reserved, must be kept cleared.

Bit 1 HSERDY: High speed external crystal oscillator ready
This bit is set and cleared by hardware.
0: HSE clock not ready
1: HSE clock ready (HSE clock is stabilized and available)

Bit 0 HSEEN: High speed external crystal oscillator enable
This bit is set and cleared by software. It can be used to switch the external crystal oscillator on or
off. It is set by hardware in the following cases:

– When switching to HSE clock (see CLK_SWR register)

– When HSE is selected as the active CCO source (see CLK_CCOR register)
It cannot be cleared when HSE is selected as clock master (indicated in CLK_CMSR register) or as
the active CCO source.
0: HSE clock off
1: HSE clock on

Clock control (CLK) RM0016

74/430

8.9.3 Clock master status register (CLK_CMSR)

Address offset:0x03

Reset value: 0xE1

8.9.4 Clock master switch register (CLK_SWR)

Address offset: 0x04

Reset value: 0xE1

7 6 5 4 3 2 1 0

CKM[7:0]

r r r r r r r r

Bits 7:0 CKM[7:0]: Clock master status bits

These bits are set and cleared by hardware. They indicate the currently selected master clock
source. An invalid value occurring in this register will automatically generate an MCU reset.
0xE1: HSI selected as master clock source (reset value)
0xD2: LSI selected as master clock source (only if LSI_EN option bit is set)
0xB4: HSE selected as master clock source

7 6 5 4 3 2 1 0

SWI[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 SWI[7:0]: Clock master selection bits
These bits are written by software to select the master clock source. Its contents are write protected
while a clock switch is ongoing (while the SWBSY bit is set). They are set to the reset value (HSI) if
the AUX bit is set in the CLK_CSSR register. If Fast Halt wakeup mode is selected (FHW bit =1 in
CLK_ICKR register) then these bits are set by hardware to E1h (HSI selected) when resuming from
Halt/Active halt mode.
0xE1: HSI selected as master clock source (reset value)
0xD2: LSI selected as master clock source (only if LSI_EN option bit is set)
0xB4: HSE selected as master clock source

RM0016 Clock control (CLK)

 75/430

8.9.5 Switch control register (CLK_SWCR)

Address offset: 0x05

Reset value: undefined

7 6 5 4 3 2 1 0

Reserved
SWIF SWIEN SWEN SWBSY

rc_w0 rw rw rw

Bits 7:4 Reserved, must be kept cleared.

Bit 3 SWIF: Clock switch interrupt flag
This bit is set by hardware and cleared by software writing 0. Its meaning depends on the status of
the SWEN bit. Refer to Figure 15 and Figure 16.

● In manual switching mode (SWEN=0):
0: Target clock source not ready
1: Target clock source ready

● In automatic switching mode (SWEN=1):
0: No clock switch event occurred
1: Clock switch event occurred

Bit 2 SWIEN: Clock switch interrupt enable

This bit is set and cleared by software.
0: Clock switch interrupt disabled
1: Clock switch interrupt enabled

Bit 1 SWEN: Switch start/stop

This bit is set and cleared by software. Writing a 1 to this bit enables switching the master clock to
the source defined in the CLK_SWR register.
0: Disable clock switch execution
1: Enable clock switch execution

Bit 0 SWBSY: Switch busy
This bit is set and cleared by hardware. It can be cleared by software to reset the clock switch
process.
0: No clock switch ongoing
1: Clock switch ongoing

Clock control (CLK) RM0016

76/430

8.9.6 Clock divider register (CLK_CKDIVR)

Address offset: 0x06

Reset value: 0x18

7 6 5 4 3 2 1 0

Reserved
HSIDIV[1:0] CPUDIV[2:0]

rw rw rw rw rw

Bits 7:5 Reserved, must be kept cleared.

Bits 4:3 HSIDIV[1:0]: High speed internal clock prescaler
These bits are written by software to define the HSI prescaling factor.

00: fHSI= fHSI RC output
01: fHSI= fHSI RC output/2
10: fHSI= fHSI RC output/4
11: fHSI= fHSI RC output/8

Bits 2:0 CPUDIV[2:0]: CPU clock prescaler
These bits are written by software to define the CPU clock prescaling factor.
000: fCPU=fMASTER
001: fCPU=fMASTER/2
010: fCPU=fMASTER/4
011: fCPU=fMASTER/8
100: fCPU=fMASTER/16
101: fCPU=fMASTER/32
110: fCPU=fMASTER/64
111: fCPU=fMASTER/128

RM0016 Clock control (CLK)

 77/430

8.9.7 Peripheral clock gating register 1 (CLK_PCKENR1)

Address offset: 0x07

Reset value: 0xFF

7 6 5 4 3 2 1 0

PCKEN1[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 PCKEN1[7:0]: Peripheral clock enable

These bits are written by software to enable or disable the fMASTER clock to the corresponding
peripheral. See Table 9
0: fMASTER to peripheral disabled
1: fMASTER to peripheral enabled

Table 9. Peripheral clock gating bits

Control bit Peripheral

PCKEN17 TIM1

PCKEN16 TIM3

PCKEN15 TIM2

PCKEN14 TIM4

PCKEN13 UART2/3

PCKEN12 UART1

PCKEN11 SPI

PCKEN10 I2C

Clock control (CLK) RM0016

78/430

8.9.8 Peripheral clock gating register 2 (CLK_PCKENR2)

Address offset: 0x0B

Reset value: 0xFF

7 6 5 4 3 2 1 0

PCKEN2[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 PCKEN2[7:0]: Peripheral clock enable

These bits are written by software to enable or disable the fMASTER clock to the corresponding
peripheral. See Table 9
0: fMASTER to peripheral disabled
1: fMASTER to peripheral enabled

Table 10. Peripheral clock gating bits

Control bit Peripheral

PCKEN27 CAN

PCKEN26 Reserved

PCKEN25 Reserved

PCKEN24 Reserved

PCKEN23 ADC

PCKEN22 AWU

PCKEN21 Reserved

PCKEN20 Reserved

RM0016 Clock control (CLK)

 79/430

8.9.9 Clock security system register (CLK_CSSR)

Address offset: 0x08

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
CSSD CSSDIE AUX CSSEN

rc_w0 rw r rwo

Bits 7:4 Reserved, must be kept cleared.

Bit 3 CSSD: Clock security system detection
This bit is set by hardware and cleared by software writing 0.
0: CSS is OFF or no HSE crystal clock disturbance detected.
1: HSE crystal clock disturbance detected.

Bit 2 CSSDIE: Clock security system detection interrupt enable
This bit is set and cleared by software.
0: Clock security system interrupt disabled
1: Clock security system interrupt enabled

Bit 1 AUX: Auxiliary oscillator connected to master clock
This bit is set and cleared by hardware.
0: Auxiliary oscillator is OFF.
1: Auxiliary oscillator (HSI/8) is on and selected as current clock master source.

Bit 0 CSSEN: Clock security system enable
This bit can be read many times and be written once-only by software.
0: Clock security system off
1: Clock security system on

Clock control (CLK) RM0016

80/430

8.9.10 Configurable clock output register (CLK_CCOR)

Address offset: 0x09

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
CCOBSY CCORDY CCOSEL[3:0] CCOEN

r r rw rw rw rw rw

Bit 7 Reserved, must be kept cleared.

Bit 6 CCOBSY: Configurable clock output busy
This bit is set and cleared by hardware. It indicates that the selected CCO clock source is being
switched-on and stabilized. While CCOBSY is set, the CCOSEL bits are write-protected. CCOBSY
remains set until the CCO clock is enabled.
0: CCO clock not busy
1: CCO clock busy

Bit 5 CCORDY: Configurable clock output ready

This bit is set and cleared by hardware. It indicates that the CCO clock is being output.
0: CCO clock not available
1: CCO clock available

Bits 4:1 CCOSEL[3:0]: Configurable clock output selection.

These bits are written by software to select the source of the output clock available on the CLK_CCO
pin. They are write-protected when CCOBSY is set.
0000: fHSIDIV
0001: fLSI
0010: fHSE
0011: Reserved
0100: fCPU
0101: fCPU/2
0110: fCPU/4
0111: fCPU/8
1000: fCPU/16
1001: fCPU/32
1010: fCPU/64
1011: fHSI
1100: fMASTER
1101: fCPU
1110: fCPU
1111: fCPU

Bit 0 CCOEN: Configurable clock output enable

This bit is set and cleared by software.
0: CCO clock output disabled
1: CCO clock output enabled

RM0016 Clock control (CLK)

 81/430

8.9.11 CAN external clock control register (CLK_CANCCR)

Address offset: 0x0B

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
CANDIV[2:0]

rw rw rw

Bits 7:0 CANDIV[2:0]: External CAN clock divider

These bits are written by software to define the divider for the external CAN clock. See Section 23.9:
Clock system on page 373 for more details.
000: External CAN clock = fHSE/1 (reset value)
001: External CAN clock = fHSE/2
...
111: External CAN clock = fHSE/8

Clock control (CLK) RM0016

82/430

8.9.12 HSI clock calibration trimming register (CLK_HSITRIMR)

Address offset: 0x0C

Reset value: undefined

7 6 5 4 3 2 1 0

Reserved
HSITRIM[3:0]

rw rw rw rw

Bits 7:3 Reserved, must be kept cleared.

Bits 2:0 HSITRIM[3:0] HSI trimming value
These bits are written by software to fine tune the HSI calibration.

Note: In high density devices only bits 2:0 are available.

In medium and low density devices bits 3:0 or 2:0 are available, depending on the option byte
configuration (refer to datasheet).

RM0016 Clock control (CLK)

 83/430

8.9.13 SWIM clock control register (CLK_SWIMCCR)

Address offset: 0x0D

Reset value: undefined
7 6 5 4 3 2 1 0

Reserved
SWIMCLK

rw

Bits 7:1 Reserved, must be kept cleared.

Bit 0 SWIMCLK SWIM clock divider
This bit is set and cleared by software.

0: SWIM clock divided by 2

1: SWIM clock not divided by 2

Clock control (CLK) RM0016

84/430

8.10 CLK register map

Table 11. CLK register map and reset values

Address
Offset

Register Name 7 6 5 4 3 2 1 0

0x00
CLK_ICKR
Reset value

-
0

-
0

REGAH
0

LSIRDY
0

LSIEN
0

FHWU
0

HSIRDY
0

HSIEN
1

0x01
CLK_ECKR
Reset value

-
0

-
0

-
0

-
0

-
0

-
0

HSERDY
0

HSEEN
0

0x02 Reserved area (1 byte)

0x03
CLK_CMSR
Reset value

CKM7
1

CKM6
1

CKM5
1

CKM4
0

CKM3
0

CKM2
0

CKM1
0

CKM0
1

0x04
CLK_SWR
Reset value

SWI7
1

SWI6
1

SWI5
1

SWI4
0

SWI3
0

SWI2
0

SWI1
0

SWI0
1

0x05
CLK_SWCR
Reset value

-
x

-
x

-
x

-
x

SWIF
0

SWIEN
0

SWEN
0

SWBSY
0

0x06
CLK_CKDIVR
Reset value

-
0

-
0

-
0

HSIDIV1
1

HSIDIV0
1

CPUDIV2
0

CPUDIV12
0

CPUDIV0
0

0x07
CLK_PCKENR1

Reset value
PCKEN17

1
PCKEN16

1
PCKEN15

1
PCKEN14

1
PCKEN13

1
PCKEN12

1
PCKEN11

1
PCKEN10

1

0x08
CLK_CSSR
Reset value

-
0

-
0

-
0

-
0

CSSD
0

CSSDIE
0

AUX
0

CSSEN
0

0x09
CLK_CCOR
Reset value

-
0

CCOBSY
0

CCORDY
0

CCOSEL3
0

CCOSEL2
0

CCOSEL1
0

CCOSEL0
0

CCOEN
0

0x0A
CLK_PCKENR2

Reset value
PCKEN27

1
PCKEN26

1
PCKEN25

1
PCKEN24

1
PCKEN23

1
PCKEN22

1
PCKEN21

1
PCKEN20

1

0x0B
CLK_CANCCR

Reset value
-
x

-
x

-
x

-
x

-
x

CANDIV2
0

CANDIV1
0

CANDIV0
0

0x0C
CLK_HSITRIMR

Reset value
-
x

-
x

-
x

-
x

-
x

HSITRIM2
0

HSITRIM1
0

HSITRIM0
0

0x0D
CLK_SWIMCCR

Reset value
-
x

-
x

-
x

-
x

-
x

-
0

-
0

SWIMCLK
0

RM0016 Power management

 85/430

9 Power management

By default, after a system or power reset, the microcontroller is in Run mode. In this mode
the CPU is clocked by fCPU and executes the program code, the system clocks are
distributed to the active peripherals and the microcontroller is drawing full power.

While in Run mode, still keeping the CPU running and executing code, the application has
several ways to reduce power consumption, such as:

● Slowing down the system clocks

● Gating the clocks to individual peripherals when they are unused

● Switching off any unused analog functions

However, when the CPU does not need to be kept running, three dedicated low power
modes can be used:

● Wait

● Active Halt (configurable for slow or fast wakeup)

● Halt (configurable for slow or fast wakeup)

You can select one of these three modes and configure them to obtain the best compromise
between lowest power consumption, fastest start-up time and available wakeup sources.

9.1 General considerations
Low power consumption features are generally very important for all types of application for
energy saving. Ultra low power features are especially important for mobile applications to
ensure long battery lifetimes. This is also crucial for environmental protection.

In a silicon chip there are two kind of consumption:

● Static power consumption which is due to analog polarization and leakages. This so
small, it is only significant in Halt and Active Halt modes (refer to Section 9.3: Low
power modes).

● Dynamic power consumption which comes from running the digital parts of the chip.
It depends on VDD, clock frequency and load capacitors.

In a microcontroller device the consumption depends on:

● VDD supply voltage

● Analog performance

● MCU size or number of digital gates (leakages and load capacitors)

● Clock frequency

● Number of active peripherals

● Available low power modes and low power levels

Device processing performance is also very important, as this allows the application to
minimize the time spent in Run mode and maximize the time in low power mode.

Using the MCU’s flexible power management features, you can obtain a range of significant
power savings while the system is running or able to resume operations quickly.

Power management RM0016

86/430

9.2 Clock management for low consumption

9.2.1 Slowing down the system clock

In Run mode, choosing the oscillator to be used as the system clock source is very
important to ensure the best compromise between performance and consumption. The
selection is done by programming the clock controller registers. Refer to the Clock control
(CLK) section.

As a further measure, fCPU can be reduced by writing to the CPUDIV[2:0] bits in the Clock
divider register (CLK_CKDIVR). This reduces the speed of the CPU and consequently the
power consumption of the MCU. The other peripherals (clocked by fMASTER) are not affected
by this setting.

To return to full speed at any time in Run mode, clear the CPUDIV[2:0] bits.

9.2.2 Peripheral clock gating

For additional power saving you can use Peripheral Clock Gating (PCG). This can be done
at any time by selectively enabling or disabling the fMASTER clock connection to individual
peripherals. Refer to the Clock control (CLK) section.

These settings are effective in both Run and Wait modes.

RM0016 Power management

 87/430

9.3 Low power modes
The main characteristics of the four low power modes are summarized in Table 12.

9.3.1 Wait mode

Wait mode is entered from Run mode by executing a WFI (Wait For Interrupt) instruction:
this stops the CPU but allows the other peripherals and interrupt controller to continue to
run. Therefore the consumption decreases accordingly. Wait mode can be combined with
PCG (peripheral clock gating), reduced CPU clock frequency and low mode clock source
selection (LSI, HSI) to further reduce the power consumption of the device. Refer to the
Clock control (CLK) description.

In Wait mode, all the registers and RAM contents are preserved, the previously defined
clock configuration remains unchanged (Clock master status register (CLK_CMSR)).

When an internal or external interrupt request occurs, the CPU wakes-up from Wait mode
and resumes processing.

9.3.2 Halt mode

In this mode the master clock is stopped. This means that the CPU and all the peripherals
clocked by fMASTER or by derived clocks are disabled. As a result, none of the peripherals
are clocked and the digital part of the MCU consumes almost no power.

In Halt mode, all the registers and RAM contents are preserved, by default the clock
configuration remains unchanged (Clock master status register (CLK_CMSR)).

The MCU enters Halt mode when a HALT instruction is executed. Wakeup from Halt mode is
triggered by an external interrupt, sourced by a GPIO port configured as interrupt input or an
Alternate Function pin capable of triggering a peripheral interrupt.

Table 12. Low power mode management

Mode

(consumption
level)

Main voltage
regulator

Oscillators CPU Peripherals
Wakeup trigger

event

Wait

(-)
ON ON OFF ON(1)

All internal interrupts
(including AWU) or
external interrupts,

reset

Active Halt

(- -)
ON

OFF
except LSI

(or HSE)

OFF
Only AWU

and IWDG if
activated

AWU or external(2)
interrupts, reset

 Active Halt with

MVR auto power off

(- - -)

OFF

(Low Power
Regulator ON)

OFF

except LSI only
OFF

Only AWU
and IWDG if

activated

AWU or external(2)
interrupts, reset

Halt

(- - - -)

OFF

(Low Power
Regulator ON)

OFF OFF OFF External(2) interrupts,
reset

1. If the peripheral clock is not disabled by Peripheral Clock Gating function.

2. Including communication peripheral interrupts (see interrupt vector table).

Power management RM0016

88/430

In this mode the MVR regulator is switched off to save power. Only the LPVR regulator (and
brown-out reset) is active.

Fast clock wakeup

The HSI RC start-up time is much faster than the HSE crystal start-up time (refer to the
Electrical Parameters in the datasheet). Therefore, to optimize the MCU wakeup time, it is
recommended to select the HSI clock as the fMASTER clock source before entering Halt
mode.

This selection can be done without clock switching using the FHWU bit in the Internal clock
register (CLK_ICKR). Refer to the Clock control (CLK) chapter.

9.3.3 Active Halt modes

Active Halt mode is similar to Halt mode except that it does not require an external interrupt
for wakeup. It uses the AWU to generate a wakeup event internally after a programmable
delay.

In Active Halt mode, the main oscillator, the CPU and almost all the peripherals are stopped.

Only the LSI RC or HSE oscillators are running to drive the AWU counters and IWD counter
if enabled.

To enter Active Halt mode, first enable the AWU as described in the AWU section. Then
execute a HALT instruction.

Main voltage regulator (MVR) auto power-off

By default the main voltage regulator is kept on Active Halt mode. Keeping it active ensures
fast wakeup from Active Halt mode. However, the current consumption of the MVR is non-
negligible.

To further reduce current consumption, the MVR regulator can be powered off automatically
when the MCU enters Active Halt mode. To configure this feature, set the REGAH bit in the
Internal clock register (CLK_ICKR) register. In this mode:

● The MCU core is powered only by the LPVR regulator (same as in Halt mode).

● Only the LSI clock source can be used, as the HSE clock current consumption is too
high for the LPVR.

The Main voltage regulator is powered on again at wakeup and it requires a longer wakeup
time (Refer to the datasheet electrical characteristics section for wakeup timing and current
consumption data).

Fast clock wakeup

As described for Halt mode, in order to get the shortest wakeup time, it is recommended to
select HSI as the fMASTER clock source. The FHWU bit is also available to save switching
time.

A fast wakeup time is very important in Active Halt mode. It supplements the effect of CPU
processing performance by helping to minimize the time MCU stays in Run mode between
two periods in low power mode and thus reduces the overall average power consumption.

RM0016 Power management

 89/430

9.4 Additional analog power controls

9.4.1 Fast Flash wakeup from Halt mode

By default the Flash is in Power-down state when the microcontroller enters Halt mode. The
current leakage is negligible, resulting in very low consumption in Halt mode. However the
Flash wakeup time is relatively slow (several µs).

If you need the application to wakeup quickly from Halt mode, set the HALT bit in
Section 4.9.1: Flash control register 1 (FLASH_CR1). This ensures that the Flash is in
Standby mode when the microcontroller enters in Halt mode. Its wakeup time is reduced to
a few ns. However, in this case the consumption is increased up to several µAs.

Refer to the Electrical characteristics section of the datasheet for more details.

9.4.2 Very low Flash consumption in Active Halt mode

By default, in Active-Halt mode, the Flash remains in operating mode to ensure the fastest
wakeup time, however in this case the power consumption is not optimized.

To optimize the power consumption you can set the AHALT bit in Flash control register 1
(FLASH_CR1). This will switch the Flash to Power-down state when entering Active-Halt
mode. The consumption decreases but the wakeup time increases up to a few µs.

Interrupt controller (ITC) RM0016

90/430

10 Interrupt controller (ITC)

10.1 ITC introduction
● Management of hardware interrupts

– External interrupt capability on all I/O pins with dedicated interrupt vector per port
and dedicated flag per pin

– Peripheral interrupt capability

● Management of software interrupt (TRAP)

● Nested or concurrent interrupt management with flexible interrupt priority and level
management:

– Up to 4 software programmable nesting levels

– Up to 32 interrupt vectors fixed by hardware

– 2 non maskable events: RESET, TRAP

– 1 non-maskable top level hardware interrupt (TLI)

This interrupt management is based on:

● Bit I1 and I0 of the CPU Condition Code register (CCR)

● Software priority registers (ITC_SPRx)

● Reset vector address 0x00 8000 at the beginning of program memory. In devices with
boot ROM, the Reset initialization routine is programmed in ROM by
STMicroelectronics.

● Fixed interrupt vector addresses located at the high addresses of the memory map
(0x00 8004 to 0x00 807Ch) sorted by hardware priority order.

10.2 Interrupt masking and processing flow
The interrupt masking is managed by bits I1 and I0 of the CCR register and by the
ITC_SPRx registers which set the software priority level of each interrupt vector (see
Table 13). The processing flow is shown in Figure 17.

When an interrupt request has to be serviced:

1. Normal processing is suspended at the end of the current instruction execution.

2. The PC, X,Y, A and CCR registers are saved onto the stack.

3. Bits I1 and I0 of CCR register are set according to the values in the ITC_SPRx registers
corresponding to the serviced interrupt vector.

4. The PC is then loaded with the interrupt vector of the interrupt to service and the first
instruction of the interrupt service routine is fetched (refer to Table 16: Interrupt
mapping for details on vector addresses).

The interrupt service routine should end with the IRET instruction which causes the content
of the saved registers to be recovered from the stack. As a consequence of the IRET
instruction, bits I1 and I0 are restored from the stack and the program execution resumes.

RM0016 Interrupt controller (ITC)

 91/430

Figure 17. Interrupt processing flowchart

10.2.1 Servicing pending interrupts

Several interrupts can be pending at the same time. The interrupt to be taken into account is
determined by the following two-step process:

1. The highest software priority interrupt is serviced.

2. If several interrupts have the same software priority then the interrupt with the highest
hardware priority is serviced first.

When an interrupt request is not serviced immediately, it is latched and then processed
when its software priority combined with the hardware priority becomes the highest one.

Note: 1 The hardware priority is exclusive while the software one is not. This allows the previous
process to succeed with only one interrupt.

2 RESET, TLI and TRAP are considered as having the highest software priority in the decision
process.

3 A TLI interrupts all level-3 interrupts including TRAP and RESET.

See Figure 18 for a description of pending interrupt servicing process.

Table 13. Software priority levels

Software priority Level I1 I0

Level 0 (main)
Low

High

1 0

Level 1 0 1

Level 2 0 0

Level 3 (= software priority disabled) 1 1

“IRET”

RESTORE PC, X, Y, A, CCR
STACK PC, X, Y, A, CCR

LOAD I1:0 FROM INTERRUPT SW REG.

FETCH NEXT

RESET TRAP
PENDING

INSTRUCTION

I1:0

FROM STACK

LOAD PC FROM INTERRUPT VECTOR

Y

N

Y

N

Y

NInterrupt has the same or a
lower software priority

THE INTERRUPT
STAYS PENDING

than current one

In
te

rr
up

th
as

a
hi

gh
er

so
ftw

ar
e

pr
io

rit
y

th
an

cu
rr

en
to

ne

EXECUTE
INSTRUCTION

INTERRUPT

Interrupt controller (ITC) RM0016

92/430

Figure 18. Priority decision process

10.2.2 Interrupt sources

Two interrupt source types are managed by the STM8 interrupt controller:

● Non-maskable interrupts: RESET, TLI and TRAP

● Maskable interrupts: external interrupts or interrupts issued by internal peripherals

Non-maskable interrupt sources

Non-maskable interrupt sources are processed regardless of the state of bits I1 and I0 of
the CCR register (see Figure 17). PC, X, Y, A and CCR registers are stacked only when a
TRAP interrupt occurs. The corresponding vector is then loaded in the PC register and bits
I1 and I0 of the CCR register are set to disable interrupts (level 3).

● TRAP (non-maskable software interrupt)

This software interrupt source is serviced when the TRAP instruction is executed. It is
serviced as a TLI according to the flowchart shown in Figure 17.

A TRAP interrupt does not allow the processor to exit from Halt mode.

● RESET

The RESET interrupt source has the highest STM8 software and hardware priorities.
This means that all the interrupts are disabled at the beginning of the reset routine.
They must be re-enabled by the RIM instruction (see Table 15: Dedicated interrupt
instruction set).

A RESET interrupt allows the processor to exit from Halt mode.

See RESET chapter for more details on RESET interrupt management.

● TLI (top level hardware interrupt)

This hardware interrupt occurs when a specific edge is detected on the corresponding
TLI input.

Caution: A TRAP instruction must not be used in a TLI service routine.

PENDING

SOFTWARE Different

INTERRUPTS

Same

HIGHEST HARDWARE

 PRIORITY SERVICED

PRIORITY

HIGHEST SOFTWARE

 PRIORITY SERVICED

RM0016 Interrupt controller (ITC)

 93/430

Maskable interrupt sources

Maskable interrupt vector sources are serviced if the corresponding interrupt is enabled and
if its own interrupt software priority in ITC_SPRx registers is higher than the one currently
being serviced (I1 and I0 in CCR register). If one of these two conditions is not met, the
interrupt is latched and remains pending.

● External interrupts

External interrupts can be used to wake up the MCU from Halt mode. The device
sensitivity to external interrupts can be selected by software through the External
Interrupt Control registers (EXTI_CRx).

When several input pins connected to the same interrupt line are selected
simultaneously, they are logically ORed.

When external level-triggered interrupts are latched, if the given level is still present at
the end of the interrupt routine, the interrupt remains activated except if it has been
inactivated in the routine.

● Peripheral interrupts

Most peripheral interrupts cause the MCU to wake up from Halt mode. See Table 16:
Interrupt mapping for the list.

A peripheral interrupt occurs when a specific flag is set in the peripheral status register
and the corresponding enable bit is set in the peripheral control register.

The standard sequence for clearing a peripheral interrupt performs an access to the
status register followed by a read or write to an associated register. The clearing
sequence resets the internal latch. A pending interrupt (that is an interrupt waiting to be
serviced) is therefore lost when the clear sequence is executed.

10.3 Interrupts and low power modes
All interrupts allow the processor to exit from Wait mode.

Only external and other specific interrupts allow the processor to exit from Halt mode (see
Wakeup from Halt and Wakeup from Active Halt columns in Table 16: Interrupt mapping).

When several pending interrupts are present while waking up from Halt mode, the first
interrupt serviced can only be an interrupt with exit-from-Halt mode capability. It is selected
through the decision process shown in Figure 18. If the highest priority pending interrupt
cannot wake up the device from Halt mode, it will be serviced next.

If any internal or external interrupt (from a timer for example) occurs while the HALT
instruction is executing, the HALT instruction is completed but the interrupt invokes the
wakeup process immediately after the HALT intruction has finished executing.

In this case the MCU is actually waking up from Halt mode to Run mode, with the
corresponding delay of tWUH as specified in the datasheet.

10.4 Activation level/low power mode control
The MCU activation level is configured by programming the AL bit in the CFG_GCR register
(see Section 1.3: Global configuration register (CFG_GCR) on page 26).
This bit is used to control the low power modes of the MCU. In very low power applications,
the MCU spends most of the time in WFI/Halt mode and is woken up (through interrupts) at
specific moments in order to execute a specific task. Some of these recurring tasks are

Interrupt controller (ITC) RM0016

94/430

short enough to be treated directly in an ISR (Interrupt Service Routine), rather than going
back to the main program. To cover this case, you can set the AL bit before going to low
power (by executing WFI/HALT instruction), then the interrupt routine returns directly to low
power mode. The run time/ISR execution is reduced due to the fact that the register context
is saved only on the first interrupt.
In a very simple application all the operations can be therefore executed in ISR only. In more
complex ones, an interrupt routine may take the decision to relaunch the main program by
simply resetting the AL bit.

For example, an application may need to be woken up by the Auto wakeup Unit (AWU) every
50 ms in order to check the status of some pins/sensors/push-buttons. Most of the time, as
these pins are not active, the MCU can return to low-power without running the main
program. If one of these pins is active, the ISR will decide to launch the main program and
will do this by resetting the AL bit.

10.5 Concurrent and nested interrupt management
STM8 devices feature two interrupt management modes:

● Concurrent mode

● Nested mode

10.5.1 Concurrent interrupt management mode

In this mode, all interrupts are interrupt priority level 3 so that none of them can be
interrupted, except by a TLI, RESET, or TRAP.

The hardware priority is given in the following order from the lowest to the highest priority,
that is: MAIN, IT4, IT3, IT2, IT1, IT0, TRAP/TLI (same priority), and RESET.

Figure 19 shows an example of concurrent interrupt management mode.

Figure 19. Concurrent interrupt management

MAIN

IT4

IT2

IT1

TRAP

IT1

MAIN

IT0

I1

H
A

R
D

W
A

R
E

 P
R

IO
R

IT
Y

SOFTWARE

3

3

3

3

3

3/0

3

1 1

1 1

1 1

1 1

1 1

11 / 10

1 1

RIM

IT
2

IT
1

IT
4

T
R

A
P

IT
3

IT
0

IT3

I0

10

PRIORITY
LEVEL

RM0016 Interrupt controller (ITC)

 95/430

10.5.2 Nested interrupt management mode

In this mode, interrupts are allowed during interrupt routines. This mode is activated as soon
as an interrupt priority level lower than level 3 is set.

The hardware priority is given in the following order from the lowest to the highest priority,
that is: MAIN, IT4, IT3, IT2, IT1, IT0, and TRAP.

The software priority is configured for each interrupt vector by setting the corresponding
I1_x and I0_x bits of the ITC_SPRx register. I1_x and I0_x bits have the same meaning as
I1 and I0 bits of the CCR register (see Table 14).

Level 0 can not be programmed (I1_x=1, I0_x=0). In this case, the previously stored value is
kept. For example: if previous value is CFh, and programmed value equals 64h, the result is
44h.

The RESET and TRAP vectors have no software priorities. When one is serviced, bits I1
and I0 of the CCR register are both set.

Caution: If bits I1_x and I0_x are modified while the interrupt x is executed, the device operates as
follows: if the interrupt x is still pending (new interrupt or flag not cleared) and the new
software priority is higher than the previous one, then the interrupt x is re-entered.
Otherwise, the software priority remains unchanged till the next interrupt request (after the
IRET of the interrupt x).

During the execution of an interrupt routine, the HALT, POPCC, RIM, SIM and WFI
instructions change the current software priority till the next IRET instruction or one of the
previously mentioned instructions is issued. See Section 10.7 for the list of dedicated
interrupt instructions.

Figure 20 shows an example of nested interrupt management mode.

Warning: A stack overflow may occur without notifying the software of
the failure.

Table 14. Vector address map versus software priority bits

Vector address ITC_SPRx bits

0x00 8008h I1_0 and I0_0 bits(1)

0x00 800Ch I1_1 and I0_1 bits

... ...

0x00 807Ch I1_29 and I0_29 bits

1. ITC_SPRx register bits corresponding to the TLI can be read and written. However they are not significant in the interrupt
process management.

Interrupt controller (ITC) RM0016

96/430

Figure 20. Nested interrupt management

MAIN

IT2

TRAP

MAIN

IT0

IT
2

IT
1

IT
4

T
R

A
P

IT
3

IT
0

H
A

R
D

W
A

R
E

 P
R

IO
R

IT
Y

3

2

1

3

3

3/0

3

1 1

0 0

0 1

1 1

1 1

1 1

RIM

IT1

IT4 IT4

IT1

IT2

IT3

I1 I0

11 / 10 10

SOFTWARE
PRIORITY
LEVEL

U
S

E
D

S
T

A
C

K
=

20
B

Y
T

E
S

RM0016 Interrupt controller (ITC)

 97/430

10.6 External interrupts
Five interrupt vectors are dedicated to external Interrupt events:

● 5 lines on Port A: PA[6:2]

● 8 lines on Port B: PB[7:0]

● 8 lines on Port C: PC[7:0]

● 7 lines on Port D: PD[6:0]

● 8 lines on Port E: PE[7:0]

PD(7) is the Top Level Interrupt source (TLI).

To generate an interrupt, the corresponding GPIO port must be configured in input mode
with interrupts enabled. Refer to the register description in the GPIO chapter for details.

The interrupt sensitivity must be configured in the external interrupt control register 1
(EXTI_CR1) and external interrupt control register 2 (EXTI_CR2) (see Section 10.9.3 and
Section 10.9.4.)

Interrupt controller (ITC) RM0016

98/430

10.7 Interrupt instructions
Table 15 shows the interrupt instructions.

10.8 Interrupt mapping
Table 16 shows the interrupt mapping.

 I

Table 15. Dedicated interrupt instruction set

Instruction New description Function/example I1 H I0 N Z C

HALT Entering Halt mode 1 0

IRET Interrupt routine return Pop CCR, A, X, Y, PC I1 H I0 N Z C

JRM Jump if I1:0=11 (level 3) I1:0=11 ?

JRNM Jump if I1:0<>11 I1:0<>11 ?

POP CC Pop CCR from the Stack Mem => CCR I1 H I0 N Z C

RIM Enable interrupt (level 0 set) Load 10 in I1:0 of CCR 1 0

SIM Disable interrupt (level 3 set) Load 11 in I1:0 of CCR 1 1

TRAP Software trap Software NMI 1 1

WFI Wait for interrupt 1 0

Table 16. Interrupt mapping

IRQ
No.

Source
block

Description
Wakeup

from Halt
mode

Wakeup
from Active
Halt mode

Vector

address

RESET Reset Yes Yes 0x00 8000

TRAP Software interrupt - - 0x00 8004

0 TLI External Top level Interrupt - - 0x00 8008

1 AWU Auto Wake up from Halt - Yes 0x00 800C

2 CLK Clock controller - - 0x00 8010

3 EXTI0 Port A external interrupts Yes Yes 0x00 8014

4 EXTI1 Port B external interrupts Yes Yes 0x00 8018

5 EXTI2 Port C external interrupts Yes Yes 0x00 801C

6 EXTI3 Port D external interrupts Yes Yes 0x00 8020

7 EXTI4 Port E external interrupts Yes Yes 0x00 8024

8 CAN CAN RX interrupt Yes Yes 0x00 8028

9 CAN CAN TX/ER/SC interrupt - - 0x00 802C

10 SPI End of Transfer Yes Yes 0x00 8030

11 TIM1 Update /Overflow/Underflow/Trigger/Break - - 0x00 8034

12 TIM1 Capture/Compare - - 0x00 8038

13 TIM2 Update /Overflow - - 0x00 803C

RM0016 Interrupt controller (ITC)

 99/430

14 TIM2 Capture/Compare - - 0x00 8040

15 TIM3 Update /Overflow - - 0x00 8044

16 TIM3 Capture/Compare - - 0x00 8048

17 UART1 Tx complete - - 0x00 804C

18 UART1 Receive Register DATA FULL - - 0x00 8050

19 I2C I2C interrupt Yes Yes 0x00 8054

20 UART2/3 Tx complete - - 0x00 8058

21 UART2/3 Receive Register DATA FULL - - 0x00 805C

22 ADC End of Conversion - - 0x00 8060

23 TIM4 Update/Overflow - - 0x00 8064

24 FLASH EOP/WR_PG_DIS - - 0x00 8068

Reserved
0x00 806C to
0x00 807C

Table 16. Interrupt mapping (continued)

IRQ
No.

Source
block

Description
Wakeup

from Halt
mode

Wakeup
from Active
Halt mode

Vector

address

Interrupt controller (ITC) RM0016

100/430

10.9 ITC registers

10.9.1 CPU Condition Code register interrupt bits (CCR)

Address: refer to the general hardware register map table in the datasheet

Reset value: 0x28

7 6 5 4 3 2 1 0

V - I1 H I0 N Z C

r r rw r rw r r r

Bits 5, 3(1) I[1:0]: Software Interrupt Priority bits(2)

These two bits indicate the software priority of the current interrupt request. When an
interrupt request occurs, the software priority of the corresponding vector is loaded
automatically from the software priority registers (ITC_SPRx).
The I[1:0] bits can be also set/cleared by software using the RIM, SIM, HALT, WFI, IRET or
PUSH/POP instructions (see Figure 20: Nested interrupt management).

I1 I0 Priority Level

1 0 Level 0 (main)
Low

High

0 1 Level 1

0 0 Level 2

1 1 Level 3 (= software priority disabled*)

1. Refer to the central processing section for details on the other CCR bits.

2. TLI, TRAP and RESET events can interrupt a level-3 program.

RM0016 Interrupt controller (ITC)

 101/430

10.9.2 Software priority register x (ITC_SPRx)

Address offset: 0x00 to 0x07

Reset value: 0xFF

7 6 5 4 3 2 1 0

ITC_SPR1 VECT3SPR[1:0] VECT2SPR[1:0] VECT1SPR[1:0] VECT0SPR[1:0]

ITC_SPR2 VECT7SPR[1:0] VECT6SPR[1:0] VECT5SPR[1:0] VECT4SPR[1:0]

ITC_SPR3 VECT11SPR[1:0] VECT10SPR[1:0] VECT9SPR[1:0] VECT8SPR[1:0]

ITC_SPR4 VECT15SPR[1:0] VECT14SPR[1:0] VECT13SPR[1:0] VECT12SPR[1:0]

ITC_SPR5 VECT19SPR[1:0] VECT18SPR[1:0] VECT17SPR[1:0] VECT16SPR[1:0]

ITC_SPR6 VECT23SPR[1:0] VECT22SPR[1:0] VECT21SPR[1:0] VECT20SPR[1:0]

ITC_SPR7 VECT27SPR[1:0] VECT26SPR[1:0] VECT25SPR[1:0] VECT24SPR[1:0]

ITC_SPR8 Reserved VECT29SPR[1:0] VECT28SPR[1:0]

rw rw rw rw rw rw rw rw

Bits 7:0 VECTxSPR[1:0]: Vector x Software Priority bits
These eight read/write registers (ITC_SPR1 to ITC_SPR8) are written by software to
define the software priority of each interrupt vector.
The list of vectors is given in Table 14: Vector address map versus software priority bits.
Refer to Section 10.9.1: CPU Condition Code register interrupt bits (CCR) for the values to
be programmed for each priority.
ITC_SPR1 bits 1:0 are forced to 1 by hardware (TLI)
ITC_SPR8 bits 7:4 are forced to 1 by hardware.

Note: It is forbidden to write 10b (priority level 0). If 10b is written, level 3 (value 11b) is
forced by hardware.

Interrupt controller (ITC) RM0016

102/430

10.9.3 External interrupt control register 1 (EXTI_CR1)

Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0

PDIS[1:0] PCIS[1:0] PBIS[1:0] PAIS[1:0]

rw rw rw rw rw rw rw rw

Bits 7:6 PDIS[1:0]: Port D external interrupt sensitivity bits
These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
They define the sensitivity of Port D external interrupts.
00: Falling edge and low level
01: Rising edge only
10: Falling edge only
11: Rising and falling edge

Bits 5:4 PCIS[1:0]: Port C external interrupt sensitivity bits

These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
They define the sensitivity of Port C external interrupts.
00: Falling edge and low level
01: Rising edge only
10: Falling edge only
11: Rising and falling edge

Bits 3:2 PBIS[1:0]: Port B external interrupt sensitivity bits

These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
They define the sensitivity of Port B external interrupts.
00: Falling edge and low level
01: Rising edge only
10: Falling edge only
11: Rising and falling edge

Bits 1:0 PAIS[1:0]: Port A external interrupt sensitivity bits
These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
They define the sensitivity of Port A external interrupts.
00: Falling edge and low level
01: Rising edge only
10: Falling edge only
11: Rising and falling edge

RM0016 Interrupt controller (ITC)

 103/430

10.9.4 External interrupt control register 1 (EXTI_CR2)

Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
TLIS PEIS[1:0]

rw rw rw

Bits 7:4 Reserved, must be kept cleared.

Bit 2 TLIS: Top Level interrupt sensitivity

This bit is set and cleared by software. This bit can be written only when external interrupt
is disabled on the corresponding GPIO port (PD7).
0: Falling edge
1: Rising edge

Bits 1:0 PEIS[1:0]: Port E external interrupt sensitivity bits

These bits can only be written when I1 and I0 in the CCR register are both set to 1 (level 3).
They define the sensitivity of the Port E external interrupts.
00: Falling edge and low level
01: Rising edge only
10: Falling edge only
11: Rising and falling edge

Interrupt controller (ITC) RM0016

104/430

10.9.5 ITC register map and reset values

Table 17. Interrupt register map

Address
offset

Register
name 7 6 5 4 3 2 1 0

ITC-SPR block(1)

0x00
ITC_SPR1
Reset value

VECT3SPR1
1

VECT3SPR0
1

VECT2SPR1
1

VECT2SPR0
1

VECT1SPR1
1

VECT1SPR0
1

Reserved
1

Reserved
1

0x01 ITC_SPR2
Reset value

VECT7SPR1
1

VECT7SPR0
1

VECT6SPR1
1

VECT6SPR0
1

VECT5SPR1
1

VECT5SPR0
1

VECT4SPR1
1

VECT4SPR0
1

0x02 ITC_SPR3
Reset value

VECT11SPR1
1

VECT11SPR0
1

VECT10SPR1
1

VECT10SPR0
1

VECT9SPR1
1

VECT9SPR0
1

VECT8SPR1
1

VECT8SPR0
1

0x03
ITC_SPR4
Reset value

VECT15SPR1
1

VECT15SPR0
1

VECT14SPR1
1

VECT14SPR0
1

VECT13SPR1
1

VECT13SPR0
1

VECT12SPR1
1

VECT12SPR0
1

0x04
ITC_SPR5
Reset value

VECT19SPR1
1

VECT19SPR0
1

VECT18SPR1
1

VECT18SPR0
1

VECT17SPR1
1

VECT17SPR0
1

VECT16SPR1
1

VECT16SPR0
1

0x05 ITC_SPR6
Reset value

VECT23SPR1
1

VECT23SPR0
1

VECT22SPR1
1

VECT22SPR0
1

VECT21SPR1
1

VECT21SPR0
1

VECT20SPR1
1

VECT20SPR0
1

0x06
ITC_SPR7
Reset value

VECT27SPR1
1

VECT27SPR0
1

VECT26SPR1
1

VECT26SPR0
1

VECT25SPR1
1

VECT25SPR0
1

VECT24SPR1
1

VECT24SPR0
1

0x07
ITC_SPR8
Reset value - - - - - -

VECT28SPR1
1

VECT28SPR0
1

ITC-EXTI block(2)

0x00 EXTI_CR1
PDIS1

0
PDIS0

0
PCIS1

0
PCIS0

0
PBIS1

0
PBIS0

0
PAIS1

0
PAIS0

0

0x01 EXTI_CR2 -
0

-
0 0 0

-
0

TLIS
0

PEIS1
0

PEIS0
0

1. The address offsets are expressed for the ITC-SPR block base address (see CPU/SWIM/debug module/interrupt controller
registers table in the datasheet).

2. The address offsets are expressed for the ITC-EXTI block base address (see General hardware register map table in the
datasheet).

RM0016 General purpose I/O ports (GPIO)

 105/430

11 General purpose I/O ports (GPIO)

11.1 Introduction
General purpose input/output ports are used for data transfers between the chip and the
external world. An I/O port can contain up to eight pins. Each pin can be individually
programmed as a digital input or digital output. In addition, some ports may have alternate
functions like analog inputs, external interrupts, input/output for on-chip peripherals. Only
one alternate function can be mapped to a pin at a time, the alternate function mapping is
controlled by option byte. Refer to the datasheet for a description of the option bytes.

An Output Data register, Input pin register, Data Direction register, Option register, and
Configuration register are associated with each port. A particular port will behave as an
input or output depending on the status of the Data direction register of the port.

11.2 GPIO main features
● Port bits can be configured individually

● Selectable input modes: floating input or input with pull-up

● Selectable output modes: push-pull output or pseudo-open-drain.

● Separate registers for data input and output

● External interrupts can be enabled and disabled individually

● Output slope control for reduced EMC noise

● Alternate Function I/Os for on-chip peripherals

● Input Schmitt trigger can be disabled on analog inputs for reduced power consumption

● Read-Modify-Write possible on data output latch

● 5 V-tolerant inputs

● I/O state guaranteed in voltage range 1.6 V to VDDIOmax

General purpose I/O ports (GPIO) RM0016

106/430

Figure 21. GPIO block diagram

ODR REGISTER

DDR REGISTER

CR1 REGISTER

D
A

T
A

 B
U

S

PIN

VDDALTERNATE
ENABLE

ALTERNATE
OUTPUT

1

0

PULL-UP
CONDITION

P-BUFFER
(see table below)

N-BUFFER

PULL-UP
(see table below)

ANALOG
INPUT TO A/D CONVERTER

ALTERNATE FUNCTION
INPUT TO ON-CHIP

VDD

DIODES
(see table below)

FROM
OTHER
BITS

EXTERNAL

TO INTERRUPT
INTERRUPT

CMOS
SCHMITT
TRIGGER

CR2 REGISTER

ADC_TDR REGISTER

PERIPHERAL

CONTROLLER

SLOPE
CONTROL

IDR REGISTER
(Read only)

OUTPUT

INPUT

PAD

PROTECTION

RM0016 General purpose I/O ports (GPIO)

 107/430

11.3 Port configuration and usage
An Output Data Register (ODR), Pin Input Register (IDR), Data Direction Register (DDR)
are always associated with each port.

The Control Register 1 (CR1) and Control Register 2 (CR2) allow input/output options. An
I/O pin is programmed using the corresponding bits in the DDR, ODR, CR1 and CR2
registers.

Bit n in the registers corresponds to pin n of the Port.

The various configurations are summarized in Table 18.

Note: The diode to VDD is not implemented in true open drain pads. A local protection between the
pad and VOL is implemented to protect the device against positive stress.

11.3.1 Input modes

Clearing the DDRx bit selects input mode. In this mode, reading a IDR bit returns the digital
value of the corresponding I/O pin.

Refer to Section 11.7: Input mode details on page 108 for information on analog input,
external interrupts and Schmitt trigger enable/disable.

As shown in Table 18, four different input modes can be theoretically be configured by
software: floating without interrupt, floating with interrupt, pull-up without interrupt or pull-up
with interrupt. However in practice, not all ports have external interrupt capability or pull-ups.
You should refer to the datasheet pin-out description for details on the actual hardware
capability of each port.

Table 18. I/O port configuration summary

Mode
DDR

bit

CR1

bit

CR2

bit
Function Pull-Up P-Buffer

Diodes

to VDD to VSS

Input

0 0 0
Floating without
interrupt

Off

Off

On

On

0 1 0
Pull-up without
interrupt

On

0 0 1 Floating with interrupt Off

0 1 1 Pull-up with interrupt On

Output

1 0 0 Open Drain Output

Off

Off

1 1 0 Push Pull Output On

1 x 1
Output speed limited to
10 MHz

Depends
on CR1 bit

1 x x
True Open Drain (on
specific pins)

Not Implemented
Not Im-

plemented
(see note)

General purpose I/O ports (GPIO) RM0016

108/430

11.3.2 Output modes

Setting the DDRx bit selects output mode. In this mode, writing to the ODR bits applies a
digital value to the I/O through the latch. Reading IDR bit returns the digital value from the
corresponding I/O pin. Using the CR1, CR2 registers, different output modes can be
configured by software: Push-Pull output, Open-drain output.

Refer to Section 11.8: Output mode details on page 109 for more information.

11.4 Reset configuration
At reset, all ports are input floating.

11.5 Unused I/O pins
Unused I/O pins must be connected to fixed voltage levels. Either connect a pull-up or pull-
down to the unused I/O pins.

11.6 Low power modes

Note: If PA1/PA2 pins are used to connect an external oscillator, to ensure a lowest power
consumption in Halt mode, PA1 and PA2 must be configured as input pull-up.

11.7 Input mode details

11.7.1 Alternate function Input

Some I/Os can be used as alternate function input. For example as the port may be used as
the input capture input to a timer. Alternate function inputs are not selected automatically,
you select them by writing to a control bit in the registers of the corresponding peripheral.
For Alternate Function input, you should select floating or pull-up input configuration in the
DDR and CR1 registers.

11.7.2 Interrupt capability

You can configure an I/O as an input with interrupt by setting the CR2x bit while the I/O is in
input mode. In this configuration, a signal edge or level input on the I/O generates an
interrupt request.

Falling or rising edge sensitivity is programmed independently for each interrupt vector in
the EXTI_CR[2:1] registers.

Table 19. Effect of low power modes on GPIO ports

Mode Description

WAIT
No effect on I/O ports. External interrupts cause the device to exit from
WAIT mode.

HALT
No effect on I/O ports. External interrupts cause the device to wakeup from
HALT mode.

RM0016 General purpose I/O ports (GPIO)

 109/430

External interrupt capability is only available if the port is configured in input mode.

Interrupt masking

Interrupts can be enabled/disabled individually by programming the corresponding bit in the
Configuration Register (Px_CR2). At reset the interrupts are disabled.

11.7.3 Analog channels

Analog channels of the I/O port can be selected by the ADC peripheral. As mentioned in the
next section, the input Schmitt trigger should be disabled in the ADC_TDR register when
using the analog channels.

11.7.4 Schmitt trigger

An internal input Schmitt trigger is included in some I/Os. The Schmitt trigger can be
enabled/disabled using the ADC_TDR Schmitt Trigger Disable Register.

11.8 Output mode details

11.8.1 Alternate function output

Alternate function outputs provide a direct path from a peripheral to an output or to an I/O
pad, taking precedence over the port bit in the Data Output Latch Register (Px_ODR) and
forcing the Px_DDR corresponding bit to 1.

An alternate function output can be push-pull or pseudo-open drain depending on the
peripheral and Control register 1 (Px_CR1) and slope can be controlled depending on the
Control register 2 (Px_CR2) values.

Examples:

SPI output pins must be set-up as push-pull, fast slope for optimal operation. UART_Tx can
be configured either in push-pull or open drain with an external pull-up in order to implement
multi slave configuration.

11.8.2 Slope control

The output frequency can be controlled by software using the CR2 bit. Setting the CR bit
selects 10 MHz output frequency. This feature can be applied in either Open Drain or Push-
Pull output mode on I/O ports of output type O3 or O4. Refer to the pin description table for
the specific output type information for each port.

Table 20. Recommended and non-recommended configurations for analog input

DDR CR1 CR2 ADC_TDR Configuration Comments

0 0 0 1
Floating Input without interrupt,

Schmitt trigger disabled
Recommended analog input
configuration

0 1 x x Input with pull-up enabled Not recommended for analog input, if
analog voltage is present, these
configurations cause excess current flow
on the input pin.

1 0 x x Output

1 1 x x Output

General purpose I/O ports (GPIO) RM0016

110/430

11.9 GPIO registers
Note: The bit of each port register drives the corresponding pin of the port.

11.9.1 Port x output data register (Px_ODR)

Address offset: 0x00

Reset value: 0x00

11.9.2 Port x pin input register (Px_IDR)

Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0

ODR7 ODR6 ODR5 ODR4 ODR3 ODR2 ODR1 ODR0

rw rw rw rw rw rw rw rw

Bits 7:0 ODR[7:0]: Output data register bits

Writing to the ODR register when in output mode applies a digital value to the I/O through the latch.
Reading the ODR returns the previously latched value in the register.
In Input mode, writing in the ODR register, latches the value in the register but does not change the
pin state. The ODR register is always cleared after reset. Bit read-modify-write instructions (BSET,
BRST) can be used on the DR register to drive an individual pin without affecting the others.

7 6 5 4 3 2 1 0

IDR7 IDR6 IDR5 IDR4 IDR3 IDR2 IDR1 IDR0

r r r r r r r r

Bits 7:0 IDR[7:0]: Pin input values

The Pin register can be used to read the pin value irrespective of whether port is in input or output
mode. This register is Read-only.
0: Low logic level
1: High logic level

RM0016 General purpose I/O ports (GPIO)

 111/430

11.9.3 Port x data direction register (Px_DDR)

Address offset: 0x02

Reset value: 0x00

11.9.4 Port x control register 1 (Px_CR1)

Address offset: 0x03

Reset value: 0x00

7 6 5 4 3 2 1 0

DDR7 DDR6 DDR5 DDR4 DDR3 DDR2 DDR1 DDR0

rw rw rw rw rw rw rw rw

Bits 7:0 DDR[7:0]: Data direction bits

These bits are set and cleared by software to select input or output mode for a particular pin of a
port.
0: Input mode
1: Output mode

7 6 5 4 3 2 1 0

C17 C16 C15 C14 C13 C12 C11 C10

rw rw rw rw rw rw rw rw

Bits 7:0 C1[7:0]: Control bits
These bits are set and cleared by software. They select different functions in input mode and output
mode see Table 18 on page 107.

● In input mode (DDR=0):
0: Floating input
1: Input with pull-up

● In output mode (DDR=1):
0: Pseudo Open Drain
1: Push-pull, slope control for the output depends on the corresponding CR2 bit

Note: This bit has no effect on true open drain ports (refer to pin marked “T” in datasheet pin
description table).

General purpose I/O ports (GPIO) RM0016

112/430

11.9.5 Port x control register 2 (Px_CR2)

Address offset: 0x04

Reset value: 0x00

11.9.6 GPIO register map and reset values

Each GPIO port has five registers mapped as shown in Table 21. Refer to the register map
in the corresponding datasheet for the base address for each port.

Note: At reset, all ports are input floating. Exceptions are indicated in the pin description table of
the corresponding datasheet.

7 6 5 4 3 2 1 0

C27 C26 C25 C24 C23 C22 C21 C20

rw rw rw rw rw rw rw rw

Bits 7:0 C2[7:0]: Control bits

These bits are set and cleared by software. They select different functions in input mode and output
mode. In input mode, the CR2 bit enables the interrupt capability if available. If the I/O does not have
interrupt capability, setting the CR2 bit has no effect.
In output mode, setting the bit increases the speed of the I/O. This applies to ports with O3 and O4
output types (see pin description table).

● In input mode (DDR=0):
0: External interrupt disabled
1: External interrupt enabled

● In output mode (DDR=1) :
0: Output speed up to 2 MHz
1: Output speed up to 10 MHz

Table 21. GPIO register map

Address

offset
Register

name
7 6 5 4 3 2 1 0

0x00 Px_ODR ODR7
0

ODR6
0

ODR5
0

ODR4
0

ODR3
0

ODR2
0

ODR1
0

ODR0
0

0x01 Px_IDR IDR7
0

IDR6
0

IDR5
0

IDR4
0

IDR3
0

IDR2
0

IDR1
0

IDR0
0

0x02 Px_DDR DDR7
0

DDR6
0

DDR5
0

DDR4
0

DDR3
0

DDR2
0

DDR1
0

DDR0
0

0x03 Px_CR1 C17
0

C16
0

C15
0

C14
0

C13
0

C12
0

C11
0

C10
0

0x04 Px_CR2 C27
0

C26
0

C25
0

C24
0

C23
0

C22
0

C21
0

C20
0

RM0016 Auto-wakeup (AWU)

 113/430

12 Auto-wakeup (AWU)

12.1 Introduction
The AWU is used to provide an internal wakeup time base that is used when the MCU goes
into Active-halt power saving mode. This time base is clocked by the low speed internal
(LSI) RC oscillator clock or the HSE crystal oscillator clock divided by a prescaler.

LSI clock measurement

To ensure the best possible accuracy when using the LSI clock, its frequency can be
measured with TIM3 timer input capture 1.

Figure 22. AWU block diagram

Note: The LS clock source is selected by programming the CKAWUSEL option bit as explained in
Clock Controller chapter.

COUNTER

AWU COUNTERS

6-BIT PROG

LSI RC
128 kHz

AWUTB[3:0]

15 time bases

AWU Interrupt

AWUEN & HALT/WAIT

MSR

APR[5:0]

Prescaler

~ 128 kHz LS clock

OPTION bit

HSE clock
OPTION bits
PRSC[1:0]

(for measurement)

CKAWUSEL

(1 - 24 MHz)

fLS

fLS

to Timer Input Capture

Auto-wakeup (AWU) RM0016

114/430

12.2 AWU functional description

12.2.1 AWU operation

To use the AWU, perform the following steps in order:

1. Measure the LS clock frequency using the MSR bit in AWU_CSR register and TIM3
input capture 1.

2. Define the appropriate prescaler value by writing to the APR [5:0] bits in the
Asynchronous prescaler register (AWU_APR).

3. Select the desired auto-wakeup delay by writing to the AWUTB[3:0] bits in the
Timebase selection register (AWU_TBR).

4. Set the AWUEN bit in the Control/status register (AWU_CSR).

5. Execute the HALT instruction.

Note: The counters only start when the MCU enters Active-halt mode after a HALT instruction
(Refer to the Active-halt mode section in the Power Management chapter). The AWU
interrupt is then enabled at the same time.

The prescaler counter starts to count only if APR[5:0] value is different from its reset value,
0x3F.

Idle mode

If the AWU is not in use, then the AWUTB[3:0] bits the Timebase selection register
(AWU_TBR) should be loaded with 0b0000 to reduce power consumption.

RM0016 Auto-wakeup (AWU)

 115/430

12.2.2 Time base selection

Please refer to the Asynchronous prescaler register (AWU_APR) and Timebase selection
register (AWU_TBR) descriptions.

The AWU time intervals depend on the values of AWUTB[3:0] bits and on the values of APR
[5:0] bits (APRDIV values). 15 non-overlapped ranges of time intervals can be defined as
follows:

In order to obtain the right values for AWUTB[3:0] and APRDIV, you have first to search the
interval range corresponding to the desired time interval. This gives the AWUTB[3:0] value.
Then APRDIV can be chosen to get a time interval value as close as possible to the desired
one. This can be done using the formulas listed in the description of the Timebase selection
register (AWU_TBR).

Note: If the target value is between 212x64/fLS and 211x130/fLS or between 211x320/fLS and
211x330/fLS, the value closer to the target one must be chosen.

The right TB[3:0] value is 1001. The “ideal APRDIV “= 0.0785xfLS/28 = 39.25. Therefore the
value to be assigned to APRDIV is 39, which gives a time interval of 78 ms.

Table 22. AWUTB[3:0] selection

AWUTB[3:0] Time interval range APRDIV range

0b0001 2/fLS - 64/fLS 2 to 64

0b0010 2x32/fLS - 2x64/fLS 32 to 64

0b0011 2x2x32/fLS - 22x64/fLS 32 to 64

0b0100 22x2x32/fLS - 23x64/fLS 32 to 64

...

0b1100 210x2x32/fLS - 2
11x64/fLS 32 to 64

0b1101 211x2x32/fLS - 2
12x64/fLS 32 to 64

0b1110 211x130/fLS - 211x320/fLS 26 to 64

0b1111 211x330/fLS - 2
12x960/fLS 11 to 64

Table 23. Example where fLS=128 kHz and target time is 78.5 ms

 AWUTB[3:0] Interval range APRDIV range

0001 0.015625 ms - 0.5 ms 2 to 64

0010 0.5 ms - 1.0 ms 32 to 64

...

1000 32 ms - 64 ms 32 to 64

1001 64 ms - 128 ms 32 to 64

...

1101 1.024 s - 2.048 s 32 to 64

1110 2.080 s - 5.120 s 26 to 64

1111 5.280 s - 30.720 s 11 to 64

Auto-wakeup (AWU) RM0016

116/430

12.2.3 LSI clock frequency measurement

The frequency dispersion of the Low Speed Internal RC (LSI) oscillator after RC factory
trimming is 128 kHz +/- 12.5% on the whole temperature range. To obtain a precise AWU
time interval or Beeper output, the exact LSI frequency has to be measured.

Use the following procedure:

1. Set the MSR bit in the Control/status register (AWU_CSR) to connect the LSI clock
internally to ICAP1 of the TIM3 timer.

2. Measure the frequency of LSI clock using the Timer input capture interrupt.

3. Write the appropriate value in the APR [5:0] bits in the Asynchronous prescaler register
(AWU_APR) to adjust the AWU time interval to the desired length. The AWUTB[3:0]
bits can be modified to select different time intervals.

LSI clock frequency measurement can also be used to calibrate the Beeper frequency (see
Section 13.2.2)

RM0016 Auto-wakeup (AWU)

 117/430

12.3 AWU registers

12.3.1 Control/status register (AWU_CSR)

Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
AWUF AWUEN

Reserved
MSR

r rw rw

Bits 7:6 Reserved, must be kept cleared.

Bit 5 AWUF: Auto-wakeup flag
This bit is set by hardware when the AWU module generates an interrupt and cleared by reading the
AWU_CSR1 register. Writing to this bit does not change its value.
0: No AWU interrupt occurred
1: AWU interrupt occurred

Bit 4 AWUEN: Auto-wakeup enable
This bit is set and cleared by software. It enables the Auto-wakeup feature. If the microcontroller
enters Active-halt or Wait mode, the AWU feature wakes up the microcontroller after a
programmable time delay.
0: AWU (Auto-wakeup) disabled
1: AWU (Auto-wakeup) enabled

Bits 3:1 Reserved, must be kept cleared.

Bit 0 MSR: Measurement enable
This bit connects the fLS clock to the TIM3 input capture. This allows the timer to be used to measure
the LS frequency (fLS).
0: Measurement disabled
1: Measurement enabled

Auto-wakeup (AWU) RM0016

118/430

12.3.2 Asynchronous prescaler register (AWU_APR)

Address offset: 0x01

Reset value: 0x3F
7 6 5 4 3 2 1 0

Reserved
APR[5:0]

rw rw rw rw rw rw

Bits 7:6 Reserved, must be kept cleared.

Bits 5:0 APR[5:0]: Asynchronous Prescaler divider
These bits are written by software to select the prescaler divider (APRDIV) feeding the counter clock.
0x00: APRDIV = 2
0x01: APRDIV = 3
...
0x06: APRDIV = 8
...
0x0E: APRDIV = 16
0x0F: APRDIV = 17
....
0x3E: APRDIV = 64

Note: This register must not be kept at its reset value (0x3F)

RM0016 Auto-wakeup (AWU)

 119/430

12.3.3 Timebase selection register (AWU_TBR)

Address offset: 0x02

Reset value: 0x00

12.3.4 AWU register map and reset values

7 6 5 4 3 2 1 0

Reserved
AWUTB[3:0]

rw rw rw rw

Bits 7:4 Reserved, must be kept cleared.

Bits 3:0 AWUTB[3:0]: Auto-wakeup timebase selection
These bits are written by software to define the time interval between AWU interrupts.
AWU interrupts are enabled when AWUEN=1.
0000: No interrupt

0001: APRDIV/fLS 0010: 2xAPRDIV/fLS 0011: 22APRDIV/fLS

0100: 23APRDIV/fLS 0101: 24APRDIV/fLS 0110: 25APRDIV/fLS

0111: 26APRDIV/fLS 1000: 27APRDIV/fLS 1001: 28APRDIV/fLS

1010: 29APRDIV/fLS 1011: 210APRDIV/fLS 1100: 211APRDIV/fLS

1101: 212APRDIV/fLS 1110: 5x211APRDIV/fLS 1111: 30x211APRDIV/fLS

Table 24. AWU register map

Address
offset

Register name 7 6 5 4 3 2 1 0

0x00 AWU_CSR -
0

-
0

AWUF
0

AWUEN
0

-
0

-
0

-
0

MSR
0

0x01 AWU_APR -
0

-
0

APR5
1

APR4
1

APR3
1

APR2
1

APR1
1

APR0
1

0x02 AWU_TBR -0 -
0

-
0

-
0

AWUTB3
0

AWUTB2
0

AWUTB1
0

AWUTB0
0

Beeper (BEEP) RM0016

120/430

13 Beeper (BEEP)

13.1 Introduction
This function generates a beep signal in the range of 1, 2 or 4 kHz when the LS clock is
operating at a frequency of 128 kHz.

Figure 23. Beep block diagram

BEEPEN

BEEP pin

LSI RC
128 kHz

MSR
to Timer Input Capture

5-BIT BEEPER PROG
COUNTER

~8 kHz
3-BIT COUNTER

1 kHz, 2 kHz, 4 kHz

Prescaler
128 kHz LS clock

OPTION bit

HSE clock (4- 24 MHz)

OPTION bits
PRSC[1:0]

(for measurement)

CKAWUSEL

fLS

BEEPDIV[4:0] bits BEEPSEL[1:0] bits

RM0016 Beeper (BEEP)

 121/430

13.2 BEEP functional description

13.2.1 Beeper operation

To use the Beep function, perform the following steps in order:

1. Calibrate the LS clock frequency as described in Section 13.2.2: Beeper calibration to
define BEEPDIV[4:0] value.

2. Select 1 kHz, 2 kHz or 4 kHz output frequency by writing to the BEEPSEL[1:0] bits in
the Beep control/status register (BEEP_CSR).

3. Set the BEEPEN bit in the Beep control/status register (BEEP_CSR) to enable the LS
clock source.

Note: The prescaler counter starts to count only if BEEPDIV[4:0] value is different from its reset
value, 0x1F.

13.2.2 Beeper calibration

This procedure can be used to calibrate the LS 128 kHz clock in order to reach the standard
frequency output, 1 kHz, 2 kHz or 4 kHz.

Use the following procedure:

1. Measure the LSI clock frequency (refer to Section 12.2.3: LSI clock frequency
measurement above)

2. Calculate the BEEPDIV value as follows, where A and x are the integer and fractional
part of fLS/8 (in kHz):

BEEPDIV = A-2 when x is less than or equal to A/(1+2*A), else

BEEPDIV = A-1

3. Write the resulting BEEPDIV value in the BEEPDIV[4:0] bits in the Beep control/status
register (BEEP_CSR).

Beeper (BEEP) RM0016

122/430

13.3 BEEP registers

13.3.1 Beep control/status register (BEEP_CSR)

Address offset: 0x00

Reset value: 0x1F

13.3.2 BEEP register map and reset values

7 6 5 4 3 2 1 0

BEEPSEL[1:0] BEEPEN BEEPDIV[4:0]

rw rw rw rw rw rw rw rw

Bits 7:6 BEEPSEL[1:0]: Beep selection

These bits are set and cleared by software to select 1, 2 or 4 kHz beep output when calibration is
done.
00: fLS/(8 x BEEPDIV) kHz output
01: fLS/(4 x BEEPDIV) kHz output
1x: fLS/(2 x BEEPDIV) kHz output

Bit 5 BEEPEN: Beep enable
This bit is set and cleared by software to enable the beep feature.
0: Beep disabled
1: Beep enabled

Bits 4:0 BEEPDIV[4:0]: Beep prescaler divider
These bits are set and cleared by software to define the Beeper prescaler dividing factor BEEPDIV.
0x00: BEEPDIV = 2
0x01: BEEPDIV = 3
...
0x0E: BEEPDIV = 16
0x0F: BEEPDIV = 17
....
0x1E: BEEPDIV = 32

Note: This register must not be kept at its reset value (0x1F)

Table 25. BEEP register map

Address
offset

Register name 7 6 5 4 3 2 1 0

0x00 BEEP_CSR BEEPSEL2
0

BEEPSEL1
0

BEEPEN
0

BEEPDIV4
1

BEEPDIV3
1

BEEPDIV2
1

BEEPDIV1
1

BEEPDIV0
1

RM0016 Independent watchdog (IWDG)

 123/430

14 Independent watchdog (IWDG)

14.1 Introduction
The independent watchdog peripheral can be used to resolve processor malfunctions due to
hardware or software failures. It is clocked by the 128 kHz LSI internal RC clock source, and
thus stays active even if the main clock fails.

14.2 IWDG functional description
Figure 24 shows the functional blocks of the independent Watchdog module.

When the independent watchdog is started by writing the value 0xCC in the Key Register
(IWDG_KR), the counter starts counting down from the reset value of 0xFF. When it reaches
the end of count value (0x00) a reset signal is generated (WDG RESET).

The independent watchdog is configured through the IWDG_PR, and IWDG_RLR registers.
The IWDG_PR register is used to select the prescaler divider feeding the counter clock.
Whenever the KEY_REFRESH value (0xAA) is written in the IWDG_KR register, the IWDG
is refreshed by reloading the IWDG_RLR value into the counter and the watchdog reset is
prevented.

The IWDG_PR and IWDG_RLR registers are write protected. To modify them, first write the
KEY_ACCESS code (0x55) in the IWDG_KR register. The sequence can be aborted by
writing AAh in the IWDG_KR register to refresh it.

Refer to Section 14.3: IWDG registers for details on the IWDG registers.

Figure 24. Independent watchdog block diagram

Hardware watchdog feature

If the Hardware watchdog feature has been enabled through the IWDG_HW option byte, the
watchdog is automatically enabled at power on, and generates a reset unless the Key
register is written by the software before the counter reaches end of count. Refer to the
Option Byte description in the datasheet.

Timeout period

The timeout period is a function of this value and the clock prescaler.Refer to Table 26 for
the values of the minimum timeout periods.

WDG RESET

Prescaler
8-bit Down-counter

IWDG_PR
Register

IWDG_RLR
Reload Register

7-bit

IWDG_KR
Key Register

/2

128kHz LSI
clock

64kHz

Independent watchdog (IWDG) RM0016

124/430

Table 26. Watchdog timeout period (with 64 kHz counter clock)

Prescaler divider PR[2:0] bits
Min timeout

RL[7:0]= 0x00

Max timeout

RL[7:0]= 0xFF

/4 0 62.5 µs 15.90 ms

/8 1 125 µs 31.90 ms

/16 2 250 µs 63.70 ms

/32 3 500 µs 127 ms

/64 4 1.00 ms 255 ms

/128 5 2.00 ms 510 ms

/256 6 4.00 ms 1.02 s

RM0016 Independent watchdog (IWDG)

 125/430

14.3 IWDG registers

14.3.1 Key register (IWDG_KR)

Address offset: 0x00

Reset value: undefined

14.3.2 Prescaler register (IWDG_PR)

Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0

KEY[7:0]

w w w w w w w w

Bits 7:0 KEY[7:0]: Key value

The KEY_REFRESH value must be written by software at regular intervals, otherwise the watchdog
generates an MCU reset when the counter reaches 0.
KEY_ENABLE value = 0xCC
Writing the KEY_ENABLE value starts the IWDG.
KEY_REFRESH value = 0xAA
Writing the KEY_REFRESH value refreshes the IWDG.
KEY_ACCESS value = 0x55
Writing the KEY_ACCESS value enables the access to the protected IWDG_PR and IWDG_RLR
registers (see Section 14.2)

7 6 5 4 3 2 1 0

Reserved PR[2:0]

rw rw rw

Bits 7:3 Reserved, must be kept cleared.

Bits 2:0 PR[2:0]: Prescaler divider

These bits are write access protected (see Section 14.2). They can be written by software to select
the prescaler divider feeding the counter clock.
000: divider /4
001: divider /8
010: divider /16
011: divider /32
100: divider /64
101: divider /128
110: divider /256
111: Reserved

Independent watchdog (IWDG) RM0016

126/430

14.3.3 Reload register (IWDG_RLR)

Address offset: 0x02

Reset value: 0xFF

14.3.4 IWDG register map and reset values

7 6 5 4 3 2 1 0

RL[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0

RL[7:0]: Watchdog counter reload value

These bits are write access protected (see Section 14.2). They are written by software to define the
value to be loaded in the watchdog counter each time the value 0xAA is written in the IWDG_KR
register. The watchdog counter counts down from this value. The timeout period is a function of this
value and the clock prescaler. Refer to Table 26.

Table 27. IWDG register map

Address
offset

Register
name

7 6 5 4 3 2 1 0

0x00 IWDG_KR
Reset value

KEY7
x

KEY6
x

KEY5
x

KEY4
x

KEY3
x

KEY2
x

KEY1
x

KEY0
x

0x01 IWDG_PR
Reset value

-
0

-
0

-
0

-
0

-
0

PR2
0

PR1
0

PR0
0

0x02 IWDG_RLR
Reset value

RL7
1

RL6
1

RL5
1

RL4
1

RL3
1

RL2
1

RL1
1

RL0
1

RM0016 Window watchdog (WWDG)

 127/430

15 Window watchdog (WWDG)

15.1 Introduction
The Window Watchdog is used to detect the occurrence of a software fault, usually
generated by external interference or by unforeseen logical conditions, which causes the
application program to abandon its normal sequence. The Watchdog circuit generates an
MCU reset on expiry of a programmed time period, unless the program refreshes the
contents of the downcounter before the T6 bit becomes cleared. An MCU reset is also
generated if the 7-bit downcounter value (in the control register) is refreshed before the
downcounter has reached the window register value. This implies that the counter must be
refreshed in a limited window.

15.2 WWDG main features
● Programmable free-running downcounter

● Conditional reset

– Reset (if watchdog activated) when the downcounter value becomes less than
0x40

– Reset (if watchdog activated) if the downcounter is reloaded outside the window
(see Figure 27)

● Hardware/Software Watchdog activation (selectable by option byte)

● Optional reset on HALT instruction (configurable by option byte)

15.3 WWDG functional description
If the watchdog is activated (the WDGA bit is set) and when the 7-bit downcounter (T[6:0]
bits) rolls over from 0x40 to 0x3F (T6 becomes cleared), it initiates a reset cycle pulling low
the reset pin. If the software refreshes the counter while the counter is greater than the value
stored in the window register, then a reset is generated.

Window watchdog (WWDG) RM0016

128/430

Figure 25. Watchdog block diagram

The application program must write in the WDGCR register at regular intervals during
normal operation to prevent an MCU reset. This operation must occur only when the counter
value is lower than the window register value. The value to be stored in the WDGCR register
must be between 0xFF and 0xC0 (see Figure 26):

● Enabling the watchdog:
When Software Watchdog is selected (by option byte), the watchdog is disabled after a
reset. It is enabled by setting the WDGA bit in the WDGCR register, then it cannot be
disabled again except by a reset.

When Hardware Watchdog is selected (by option byte), the watchdog is always active
and the WDGA bit is not used.

● Controlling the downcounter:
This downcounter is free-running: It counts down even if the watchdog is disabled.
When the watchdog is enabled, the T6 bit must be set to prevent generating an
immediate reset.
The T[5:0] bits contain the number of increments which represents the time delay
before the watchdog produces a reset (see Figure 26: Approximate timeout duration).
The timing varies between a minimum and a maximum value due to the unknown
status of the prescaler when writing to the WDGCR register (see Figure 27).

The window register (WDGWR) contains the high limit of the window: To prevent a
reset, the downcounter must be reloaded when its value is lower than the window
register value and greater than 0x3F. Figure 27 describes the window watchdog
process.

Note: The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is
cleared).

● Watchdog Reset on Halt option
If the watchdog is activated and the watchdog reset on halt option is selected, then the
HALT instruction will generate a Reset.

RESET

WDGA

6-BIT DOWNCOUNTER (CNT)

T6

WATCHDOG CONTROL REGISTER (WDGCR)

T1T2T3T4T5

- W6 W0

WATCHDOG WINDOW REGISTER (WDGWR)

W1W2W3W4W5

comparator

T6:0 > W6:0 CMP

= 1 when

Write WDGCR

WDG PRESCALER
 DIV 12288

fCPU

T0

(from clock)

RM0016 Window watchdog (WWDG)

 129/430

15.4 Using Halt mode with the WWDG
If Halt mode with Watchdog is enabled by option byte (no watchdog reset on HALT
instruction), it is recommended before executing the HALT instruction to refresh the WDG
counter, to avoid an unexpected WDG reset immediately after waking up the microcontroller.

15.5 How to program the watchdog timeout
Figure 26 shows the linear relationship between the 6-bit value to be loaded in the
Watchdog Counter (CNT) and the resulting timeout duration in milliseconds. This can be
used for a quick calculation without taking the timing variations into account. If more
precision is needed, use the formulae in Figure 27.

Warning: When writing to the WDGCR register, always write 1 in the T6
bit to avoid generating an immediate reset.

Figure 26. Approximate timeout duration

C
N

T
 V

al
u

e
(h

ex
.)

Watchdog timeout (ms) @ 16 MHz fCPU

7F

40

78

49.1520.768 24.576

70

68

60

58

50

48

18.43212.2886.144 30.72 36.864 43.008

Window watchdog (WWDG) RM0016

130/430

Figure 27. Window watchdog timing diagram

15.6 WWDG low power modes

T6 bit

Reset

WDGWR

T[5:0] CNT downcounter

time
Refresh WindowRefresh not allowed (step = 12288/fclk_wwdg_ck)

0x7F

Example:

Counter code 0h 7Fh

fckc_wwdg_ck 1 step 64 steps

16 MHz 0.768 ms

16 MHz/8 6.144 ms 393 ms

49.152 ms

Table 28. Effect of low power modes on WWDG

Mode Description

WAIT No effect on Watchdog: The downcounter continues to decrement.

HALT

WWDG_HALT
in Option Byte

0

No Watchdog reset is generated. The MCU enters Halt mode. The Watchdog counter
is decremented once and then stops counting and is no longer able to generate a
watchdog reset until the MCU receives an external interrupt or a reset.

If an interrupt is received (refer to interrupt table mapping to see interrupts which can
occur in halt mode), the Watchdog restarts counting after the stabilization delay. If a
reset is generated, the Watchdog is disabled (reset state) unless Hardware Watchdog
is selected by option byte. For application recommendations see Section 15.8 below.

1 A reset is generated instead of entering halt mode.

ACTIVE
HALT

x

No reset is generated. The MCU enters Active Halt mode. The Watchdog counter is
not decremented. It stops counting. When the MCU receives an oscillator interrupt or
external interrupt, the Watchdog restarts counting immediately. When the MCU
receives a reset the Watchdog restarts counting after the stabilization delay.

RM0016 Window watchdog (WWDG)

 131/430

15.7 Hardware watchdog option
If Hardware Watchdog is selected by option byte, the watchdog is always active and the
WDGA bit in the WDGCR is not used. Refer to the Option Byte description in the datasheet.

15.8 Using Halt mode with the WWDG (WWDGHALT option)
The following recommendation applies if Halt mode is used when the watchdog is enabled.

Before executing the HALT instruction, refresh the WDG counter, to avoid an unexpected
WDG reset immediately after waking up the microcontroller.

15.9 WWDG interrupts
None.

15.10 WWDG registers

15.10.1 Control register (WWDG_CR)

Address offset: 0x00

Reset value: 0x7F

7 6 5 4 3 2 1 0

WDGA T6 T5 T4 T3 T2 T1 T0

rw rw rw rw rw rw rw rw

Bit 7 WDGA: Activation bit (1)

This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the
watchdog can generate a reset.
0: Watchdog disabled
1: Watchdog enabled

Bits 6:0 T[6:0]: 7-bit counter (MSB to LSB)
These bits contain the value of the watchdog counter. It is decremented every 12288 fckc_wwdg_ck
cycles (approx.). A reset is produced when it rolls over from 0x40 to 0x3F (T6 becomes cleared).

1. This bit is not used if the hardware watchdog option is enabled by option byte.

Window watchdog (WWDG) RM0016

132/430

15.10.2 Window register (WWDG_WR)

Address offset: 0x01

Reset value: 0x7F

15.11 Window watchdog register map and reset values

7 6 5 4 3 2 1 0

Reserved W6 W5 W4 W3 W2 W1 W0

rw rw rw rw rw rw rw rw

Bit 7 Reserved

Bits 6:0 W[6:0]: 7-bit window value

These bits contain the window value to be compared to the downcounter.

Table 29. WWDG register map and reset values

Address
offset

Register
name

7 6 5 4 3 2 1 0

0x00
WWDG_CR
Reset value

WDGA
0

T6
1

T5
1

T4
1

T3
1

T2
1

T1
1

T0
1

0x01
WWDG_WR
Reset value

-
0

W6
1

W5
1

W4
1

W3
1

W2
1

W1
1

W0
1

RM0016 Timer overview

 133/430

16 Timer overview

There are three types of TIM timers: advanced control (TIM1), general purpose (TIM2/
TIM3/TIM5), and basic timers (TIM4/TIM6). They have different features but are based on a
common architecture. This makes it easier to design applications using the various timers
(identical register mapping, common basic features).

In STM8S devices with TIM1, TIM5 and TIM6, the timers do not share any resources but
they can be linked together and synchronized as described in Synchronization from
TIM5/TIM6 timers on page 157. In STM8S devices with TIM1, TIM2, TIM3 and TIM4, the
timers are not linked together.

This section gives a comparison of the different timer features and glossary of internal timer
signal names.

Section 17: 16-bit advanced control timer (TIM1) contains a full description of all the various
timer modes. The other timer sections are more brief and give only specific details on each
timer, its block diagram, and register description.

Table 30. Timer characteristics

Symbol Parameter Min Typ Max Unit

tw(ICAP)in Input capture pulse time 2 tMASTER

tres(TIM) Timer resolution time 1 tMASTER

ResTIM

 Timer resolution with 16-bit counter 16 bit

 Timer resolution with 8-bit counter 8 bit

tCOUNTER
Counter clock period when internal clock is
selected

1 tMASTER

tMAX_COUNT

Maximum possible count with 16-bit counter 65,536 tMASTER

Maximum possible count with 8-bit counter 256 tMASTER

Timer overview RM0016

134/430

16.1 Timer feature comparison

Table 31. Timer feature comparison

Timer
Counter
resol-
ution

Counter

type

Prescaler

factor

Capture/
compare

chan-
nels

Comple-
mentary
outputs

Repet-
ition

counter

External
trigger
input

External
break
input

Timer
synchr-

onization
/

chaining

TIM1
(advanced

control
timer)

16-bit

Up/down
Any integer
from 1 to

65536
4 3 Yes 1 1

 With
TIM5/
TIM6

TIM2
(general
purpose
timer)

Up

Any power of
2 from 1 to

32768

3

None No 0 0 No
TIM3

(general
purpose
timer)

2

TIM4
(basic
timer)

8-bit
Any power of
2 from 1 to

128
0

TIM5
(general
purpose
timer)

16-bit

Up

Any power of
2 from 1 to

32768
3

None No 0 0 Yes

TIM6
(basic
timer)

8-bit
Any power of
2 from 1 to

128
0

RM0016 Timer overview

 135/430

16.2 Glossary of timer signal names

Table 32. Glossary of internal timer signals

Internal signal name Description Related figures

BI Break interrupt
Figure 28: TIM1 general block diagram on
page 139CCiI, CC1I, CC2I, CC3I, CC4I

Capture/compare
interrupt

CK_CNT Counter clock
Figure 32: Counter update when ARPE=0
(ARR not preloaded) with prescaler = 2 on
page 143

CK_PSC Prescaler clock

CNT_EN Counter enable

CNT_INIT Counter initialize
Figure 42: TI2 external clock connection
example on page 151

ETR
External trigger from
TIMx_ETR pin

Figure 44: External trigger input block on
page 152

ETRF External trigger filtered

ETRP
External trigger
prescaled

fMASTER

Timer peripheral clock
from clock controller
(CLK)

Figure 13: Clock tree on page 61

ICi, IC1, IC2 Input capture Figure 61: Input stage of TIM 1 channel 1
on page 165ICiPS, IC1PS, IC2PS Input capture prescaled

MATCH1 Compare match

Figure 51: Trigger/master mode selection
blocks on page 157 and Section 17.7.2:
Control register 2 (TIM1_CR2) on
page 185

OCi, OC1, OC2 Timer output channel Figure 65: Detailed output stage of
channel with complementary output
(channel 1) on page 169OCiREF, OC1REF, OC2REF

Output compare
reference signal

TGI Trigger interrupt
Figure 40: Clock/trigger controller block
diagram on page 150

TIi, TI1, TI2 Timer input

Figure 61: Input stage of TIM 1 channel 1
on page 165

TIiF, TI1F, TI2F Timer input filtered

TI1_ED
Timer input edge
detector

TIiFPx, TI1FP1, TI1FP2,
TI2FP1, TI2FP2

Timer input filtered
prescaled

TRC Trigger capture

TRGI
Trigger input to
clock/trigger/slave
mode controller

Figure 41: Control circuit in normal mode,
fMASTER divided by 1 on page 151

Timer overview RM0016

136/430

UEV Update event Figure 32: Counter update when ARPE=0
(ARR not preloaded) with prescaler = 2 on
page 143UIF Update interrupt

Table 32. Glossary of internal timer signals (continued)

Internal signal name Description Related figures

RM0016 16-bit advanced control timer (TIM1)

 137/430

17 16-bit advanced control timer (TIM1)

This section gives a description of the full set of timer features.

17.1 Introduction
TIM1 consists of a 16-bit up-down auto-reload counter driven by a programmable prescaler.

In this section, the index i, may be 1, 2, 3 or 4 referring to the four capture/compare
channels.

The timer may be used for a variety of purposes, including:

● Time base generation

● Measuring the pulse lengths of input signals (input capture)

● Generating output waveforms (output compare, PWM and One Pulse Mode)

● Interruptcapability on various events (capture, compare, overflow, break, trigger)

● Synchronization with TIM5/TIM6 timers or external signals (external clock, reset, trigger
and enable)

This timer is ideally suited for a wide range of control applications, including those requiring
center-aligned PWM capability with complementary outputs and dead-time insertion.

The timer clock can be sourced from internal clocks or from an external source selectable
through a configuration register.

16-bit advanced control timer (TIM1) RM0016

138/430

17.2 TIM1 main features
TIM1features include:

● 16-bit up, down, up/down counter auto-reload counter.

● Repetition counter to update the timer registers only after a given number of cycles of
the counter.

● 16-bit programmable prescaler allowing the counter clock frequency to be divided “on
the fly” by any factor between 1 and 65536.

● Synchronization circuit to control the timer with external signals and to interconnect
several timers (timer interconnection not implemented in some devices).

● 4 independent channels that can alternately be configured as:

– Input capture

– Output compare

– PWM generation (edge and center-aligned mode)

– 6-step PWM generation

– One Pulse Mode output

– Complementary Outputs on three channels with programmable dead-time
insertion

● Break input to put the timer output signals in reset state or in a known state.

● Interrupt generation on the following events:

– Update: counter overflow/underflow, counter initialization (by software or
internal/external trigger)

– Trigger event (counter start, stop, initialization or count by internal/external trigger)

– Input capture

– Output compare

– Break input

RM0016 16-bit advanced control timer (TIM1)

 139/430

Figure 28. TIM1 general block diagram

Repetition
counter

Prescaler AutoReload RegisterUP-DOWN COUNTER

Capture/Compare 1 Register

Capture/Compare 2 Register

UEV

ETR

fMASTER

Capture/Compare 3 Register

OC1REF

OC2REF

OC3REF

CK_PSC

Prescaler
IC3PS

IC1

IC2
Prescaler

Prescaler

IC2PS

IC1PS

IC3

CC1I

CC2I

CC3I

TIM1_CH2

TIM1_CH3

OC1

OC2

OC3

TIM1_BKIN

TIM1_TRIG

TIM1_CH3N
OC3N

OC2N

OC1N

CK_CNT

Capture/Compare 4 Register
OC4REF

Prescaler
IC4PSIC4

TIM1_CH4

CC4I

UEV

UEV

UEV

TIME BASE UNIT

CLOCK/TRIGGER CONTROLLER

INPUT
OUTPUT

CAPTURE COMPARE ARRAY

TIM1_CH2N

TIM1_CH1N

TI1

TI2

TI3

TI4 OC4

TIM1_CH2

TIM1_CH1

 STAGE
STAGE

TIM1_CH1

TIM1_CH3

TIM1_CH4

ITR
TRGO from other TIM timers

TRGO to TIM5/TIM6 or to ADC

Reg

event

Legend:

Preload registers transferred
to shadow registers on update

interrupt

event (UEV) according to
control bit

TRC
Clock/reset/enable

16-bit advanced control timer (TIM1) RM0016

140/430

17.3 TIM1 time base unit
The timer has a Time base unit that includes:

● 16-bit up/down counter

● 16-bit auto-reload register

● Repetition counter

● Prescaler

Figure 29. Time base unit

The 16-bit counter, the prescaler, the auto-reload register and the repetition counter register
can be written or read by software.

The auto-reload register is composed of a preload register plus a shadow register.

Writing to the auto-reload register can be done in two modes:

● Auto-reload preload enabled (ARPE bit set in the TIM1_CR1 register). In this mode,
when data is written to the autoreload register, it is kept in the preload register and
transferred into the shadow register at the next update event (UEV).

● Auto-reload preload disabled (ARPE bit cleared in the TIM1_CR1 register). In this
mode, when data is written to the autoreload register it is transferred into the shadow
register immediately.

An update event is generated:

● On a counter overflow or underflow.

● By software, setting the UG bit in the TIM1_EGR register.

● By an trigger event from the clock/trigger controller.

With preload enabled (ARPE=1), when an update event occurs: the auto-reload shadow
register is updated with the preload value (TIM1_ARR) and the buffer of the prescaler is
reloaded with the preload value (content of the TIM1_PSCR register).

The update event (UEV) can be disabled by setting the UDIS bit in the TIM1_CR1

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIM1_CR1 register is set.

Note: The actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

Prescaler

Auto-reload register

16-bit Counter
CK_PSC CK_CNT

TIM1_PSCRH, PSCRL TIM1_CNTRH, CNTRL

TIM1_ARRH, ARRL

UEV
UIF

UEV Repetition counter register

Repetition Counter

TIM1_RCR

Reg

event

Legend:

Preload registers transferred
to shadow registers on update

control bit

interrupt

event (UEV) according to

RM0016 16-bit advanced control timer (TIM1)

 141/430

17.3.1 Reading and writing to the 16-bit counter

There is no buffering when writing the counter. Both TIM1_CNTRH and TIM1_CNTRL can
be written at any time, so it is suggested not to write a new value into the counter while it is
running to avoid loading a wrong intermediate content.

An 8-bit buffer is implemented for the read. The user must read the MS byte first, then the
LS byte value is buffered automatically, as described in Figure 30. This buffered value
remains unchanged until the 16-bit read sequence is completed.

Note: Do not use the LDW instruction to read the 16-bit counter, because it reads the LS byte first,
and would return a wrong result.

Figure 30. 16-bit read sequence for the counter (TIM1_CNTR)

17.3.2 Write sequence for 16-bit TIM1_ARR register

16-bit values are loaded in the TIM1_ARR register through preload registers. This must be
performed by two write instructions, one for each byte. The MS byte must be written first.

The shadow register update is blocked as soon as the MS byte has been written, and stays
blocked until the LS byte has been written. Do not use the LDW instruction, as this writes the
LS byte first, and would produce wrong results in this case.

17.3.3 Prescaler

The prescaler implementation is as follows:

● The TIM1 prescaler is based on a 16-bit counter controlled through a 16-bit register (in
TIM1_PSCR register). It can be changed on the fly as this control register is buffered. It
can divide the counter clock frequency by any factor between 1 and 65536.

The counter clock frequency is calculated as follows:

fCK_CNT = fCK_PSC/(PSCR[15:0]+1)

The prescaler value is loaded through a preload register. The shadow register, which
contains the current value to be used is loaded as soon as the LS Byte has been written.

To update the 16-bit prescaler, load two bytes in separate write operations, MSB-first. Do not
use the LDW instruction for this purpose, as it writes LSB-first.

The new prescaler value is taken into account in the following period (after the next counter
update event).

is buffered
Read

At t0

Read Returns the buffered
LS Byte value at t0At t0 +Dt

Other
instructions

Beginning of the sequence

Sequence completed

LS Byte

LS Byte

MS byte

16-bit advanced control timer (TIM1) RM0016

142/430

Read operations to the TIM1_PSCR registers access the preload registers, so no special
care needs to be taken to read them.

17.3.4 Up-counting mode

In up-counting mode, the counter counts from 0 to a user-defined compare value (content of
the TIM1_ARR register), then restarts from 0 and generates a counter overflow event, and
an update event (UEV) if the UDIS bit is 0 in the TIM1_CR1 register.

Figure 31 shows an example of this counting mode.

Figure 31. Counter in up-counting mode

An update event can also be generated by setting the bit UG in the TIM1_EGR register (by
software or by using the trigger controller).

The UEV event can be disabled by software by setting the UDIS bit in the TIM1_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event will occur until UDIS bit has been written to 0.
However, the counter restarts from 0, as well as the counter of the prescaler (but the
prescaler division factor does not change). In addition, if the URS bit (update request
selection) in TIM1_CR1 register is set, setting the UG bit generates an update event UEV
but without setting the UIF flag (thus no interrupt request is sent). This is to avoid generating
both update and capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIM1_SR1 register) is set (depending on the URS bit):

The auto-reload shadow register is updated with the preload value (TIM1_ARR),

The buffer of the prescaler is reloaded with the preload value (content of the TIM1_PSCR
register).

Counter

TIMx_ARR

OverflowOverflow Overflow Overflow
0

Time

RM0016 16-bit advanced control timer (TIM1)

 143/430

The following figures show two examples of the counter behavior for different clock
frequencies when TIM1_ARR=36h.

In Figure 32 the prescaler divider is set to 2, so the counter clock (CK_CNT) frequency is at
half the frequency of the the prescaler clock source (CK_PSC).

In Figure 32 the autoreload preload is disabled (ARPE=0), so the shadow register is
changed immediately and counter overflow occurs when upcounting reaches 36h. This
generates an update event.

Figure 32. Counter update when ARPE=0 (ARR not preloaded) with prescaler = 2

 CK_PSC

00

CNT_EN

 TIMER CLOCK = CK_CNT

COUNTER REGISTER

UPDATE INTERRUPT FLAG (UIF)

COUNTER OVERFLOW

UPDATE EVENT (UEV)

01 02 03 04 05 06 0732 33 34 35 3631

AUTO-RELOAD PRELOAD REGISTER FF 36

AUTO-RELOAD SHADOW REGISTER

Write a new value in TIMx_ARR

FF 36

New value transferred immediately in shadow register

16-bit advanced control timer (TIM1) RM0016

144/430

In Figure 33 the prescaler divider is set to 1, so CK_CNT has the same frequency as
CK_PSC.

In Figure 33 autoreload preload is enabled (ARPE=1), so the next counter overflow occurs
at FFh. The new autoreload value register value of 36h is taken into account after the
overflow which generates an update event.

Figure 33. Counter update event when ARPE=1 (TIM1_ARR preloaded)

17.3.5 Down-counting mode

In down-counting mode, the counter counts from the auto-reload value (content of the
TIM1_ARR register) down to 0, then restarts from the auto-reload value and generates a
counter underflow and an update event (UEV) if the UDIS bit is 0 in the TIM1_CR1 register.

Figure 34 shows an example of this counting mode.

Figure 34. Counter in down-counting mode

An update event can also be generated by setting the bit UG in the TIM1_EGR register (by
software or by using the clock/trigger mode controller).

The UEV update event can be disabled by software by setting the UDIS bit in TIM1_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event will occur until UDIS bit has been written to 0.

00

CNT_EN

 TIMER CLOCK = CK_CNT

COUNTER REGISTER

UPDATE INTERRUPT FLAG (UIF)

COUNTER OVERFLOW

UPDATE EVENT (UEV)

01 02 03 04 05 06 07FB FC FD FE FFFA

AUTO-RELOAD PRELOAD REGISTER FF 36

AUTO-RELOAD SHADOW REGISTER FF 36

Write a new value in TIMx_ARR

 CK_PSC

New value transferred in shadow register
on counter overflow

Counter

Time

TIMx_ARR

UnderflowUnderflow Underflow Underflow0

RM0016 16-bit advanced control timer (TIM1)

 145/430

However, the counter restarts from the current auto-reload value, whereas the counter of the
prescaler restarts from 0 (but the prescale rate doesn’t change).

In addition, if the URS bit (update request selection) in TIM1_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt
request is sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIM1_SR1 register) is set (depending on the URS bit):

The buffer of the prescaler is reloaded with the preload value (content of the TIM1_PSCR
register),

The auto-reload shadow register is updated with the preload value (content of the
TIM1_ARR register). Note that the auto-reload is updated before the counter is reloaded, so
that the next period is the expected one.

The following figures show some examples of the counter behavior for different clock
frequencies when TIM1_ARR=36h.

In downcounting mode, preload is normally not used so that the new value is taken into
account in the next period (see Figure 35).

Figure 35. Counter update when ARPE=0 (ARR not preloaded) with prescaler = 2

 CK_PSC

36

CNT_EN

 TIMER CLOCK = CK_CNT

COUNTER REGISTER

UPDATE INTERRUPT FLAG (UIF)

COUNTER UNDERFLOW

UPDATE EVENT (UEV)

35 34 33 32 31 30 2F05 04 03 02 0106

AUTO-RELOAD PRELOAD REGISTER FF 36

AUTO-RELOAD SHADOW REGISTER

Write a new value in TIMx_ARR

FF 36

New value transferred immediately in shadow register

00

16-bit advanced control timer (TIM1) RM0016

146/430

Figure 36. Counter update when ARPE=1 (ARR preloaded), with prescaler = 1

17.3.6 Center-aligned mode (up/down counting)

In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the
TIM1_ARR register) -1, generates a counter overflow event, then counts down to 0 and
generates a counter underflow event. Then it restarts counting from 0.

In this mode, the DIR direction bit in the TIM1_CR1 register cannot be written. It is updated
by hardware and gives the current direction of the counter.

The Figure 37 shows an example of this counting mode.

Figure 37. Counter in center-aligned mode

If the timer has a repetition counter (in TIM1 for example), the update event (UEV) is
generated after up and down-counting is repeated for the number of times programmed in
the repetition counter register (TIM1_RCR). Else the update event is generated at each
counter overflow and at each counter underflow.

Setting the bit UG in the TIM1_EGR register (by software or by using the clock/trigger mode
controller) also generates an update event. In this case, the counter restarts counting from
0, as well as the counter of the prescaler.

The update event (UEV) can be disabled by software setting the UDIS bit in TIM1_CR1
register. This is to avoid updating the shadow registers while writing new values in the

FF

CNT_EN

 TIMER CLOCK = CK_CNT

COUNTER REGISTER

UPDATE INTERRUPT FLAG (UIF)

COUNTER UNDERFLOW

UPDATE EVENT (UEV)

FE FD FC FB 36 35 3405 04 03 02 0106

AUTO-RELOAD PRELOAD REGISTER FF 36

AUTO-RELOAD SHADOW REGISTER FF 36

Write a new value in TIMx_ARR

 CK_PSC

New value transferred in shadow register
on counter underflow

00 00

Cleared by software

Counter

Time

TIMx_ARR

UnderflowOverflow Overflow Underflow
0

RM0016 16-bit advanced control timer (TIM1)

 147/430

preload registers. Then no update event will occur until UDIS bit has been written to 0.
However, the counter continues counting up and down, based on the current auto-reload
value. In timers with a repetition counter, the new update rate will be used because the
repetition register is not double buffered. For this reason, you must take care when changing
the update rate.

In addition, if the URS bit (update request selection) in TIM1_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt
request will be sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIM1_SR1 register) is set (depending on the URS bit).

The buffer of the prescaler is reloaded with the preload value (content of the TIM1_PSCR
register).

The auto-reload shadow register is updated with the preload value (content of the
TIM1_ARR register). Note that if the update source is a counter overflow, the auto-reload is
updated before the counter is reloaded, so that the next period is the expected one (the
counter is loaded with the new value).

Hereafter are some examples of the counter behavior for different clock frequencies.

Figure 38. Counter timing diagram, CK_PSC divided by 1, TIM1_ARR=06h, ARPE=1

Hints on using center-aligned mode:

● When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter will start counting up or down depending on the value written in

CK_PSC

02

CNT_EN

 TIMER CLOCK = CK_CNT

COUNTER REGISTER

UPDATE INTERRUPT FLAG (UIF)

COUNTER UNDERFLOW

UPDATE EVENT (UEV)

03 04 05 06 05 04 0303 02 01 00 0104

COUNTER OVERFLOW

AUTO-RELOAD PRELOAD REGISTER FD 06

AUTO-RELOAD SHADOW REGISTER FD 06

Write a new value in TIMx_ARR

New value transferred in shadow register
on update event

16-bit advanced control timer (TIM1) RM0016

148/430

the DIR bit in the TIM1_CR1 register. Moreover, the DIR and CMS bits must not be
changed at the same time by the software.

● Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:

– The direction is not updated if you write a value in the counter that is greater than
the auto-reload value (TIM1_CNT>TIM1_ARR). For example, if the counter was
counting up, it will continue to count up.

– The direction is updated if you write 0 or write the TIM1_ARR value in the counter
but no Update Event UEV is generated.

● The safest way to use center-aligned mode is to generate an update by software
(setting the UG bit in the TIM1_EGR register) just before starting the counter and not to
write the counter while it is running.

17.3.7 Repetition down-counter

Section 17.3: TIM1 time base unit describes how the update event (UEV) is generated with
respect to the counter overflows/underflows. It is actually generated only when the repetition
down-counter has reached zero. This can be useful while generating PWM signals.

This means that data are transferred from the preload registers to the shadow registers
(TIM1_ARR auto-reload register, TIM1_PSCR prescaler register, but also TIM1_CCRx
capture/compare registers in compare mode) every N counter overflows or underflows,
where N is the value in the TIM1_RCR repetition counter register.

The repetition down-counter is decremented:

● At each counter overflow in up-counting mode,

● At each counter underflow in down-counting mode,

● At each counter overflow and at each counter underflow in center-aligned mode.
Although this limits the maximum number of repetitions to 128 PWM cycles, it makes it
possible to update the duty cycle twice per PWM period. When refreshing compare
registers only once per PWM period in center-aligned mode, maximum resolution is
2 x tCK_PSC, due to the symmetry of the pattern.

The repetition down-counter is an auto-reload type; the repetition rate will be maintained as
defined by the TIM1_RCR register value (refer to Figure 39). When the update event is
generated by software (by setting the UG bit in the TIM1_EGR register) or by hardware
through the clock/trigger controller, it occurs immediately whatever is the value of the
repetition down-counter and the repetition down-counter is reloaded with the content of the
TIM1_RCR register.

RM0016 16-bit advanced control timer (TIM1)

 149/430

Figure 39. Update rate examples depending on mode and TIM1_RCR register settings

Center-aligned mode Edge-aligned mode

UEV

UEV

UEV

UEV

UEV Update Event: Preload registers transferred to shadow registers and update interrupt generated

Counter

TIM1_RCR = 0

TIM1_RCR = 1

TIM1_RCR = 2

TIM1_RCR = 3

Update Event if the repetition down-counter underflow occurs when the counter is equal to
 to the auto-reload value.

UEV

TIM1_RCR = 3
and

re-synchronization

(by SW) (by SW)

TIM1_CNT

(by SW)

Up-counting Down-counting

16-bit advanced control timer (TIM1) RM0016

150/430

17.4 TIM1 clock/trigger controller
The clock/trigger controller allows you to configure the timer clock sources, input triggers
and output triggers. The block diagram is shown in Figure 40.

Figure 40. Clock/trigger controller block diagram

17.4.1 Prescaler clock (CK_PSC)

The Time base unit prescaler clock (CK_PSC) can be provided by the following clock
sources:

● Internal clock (fMASTER)

● External clock mode 1: external timer input (TIx)

● External clock mode 2: external trigger input ETR

● Internal trigger inputs (ITRx): using one timer as prescaler for another timer. Refer to
Using one timer as prescaler for another timer on page 158 for more details.

17.4.2 Internal clock source (fMASTER)

If both the clock/trigger mode controller and the external trigger input are disabled
(SMS=0b000 in TIM1_SMCR and ECE=0 in the TIM1_ETR register), then the CEN, DIR
and UG bits are actual control bits and can be changed only by software (except UG which
remains cleared automatically). As soon as the CEN bit is written to 1, the prescaler is
clocked by the internal clock.

The Figure 41 shows the behavior of the control circuit and the up-counter in normal mode,
without prescaler.

ETR

fMASTER

Trigger
Controller

TI1FP1

TI2FP2

TRGI
Controller

Encoder
Interface

Reset, Enable,

Input filterPolarity Selection & Edge
Detector & Prescaler

ETRP

TGI

ETRF

TIM1_TRIG

Mode
Clock/Trigger

TRGO to other

TRC

TI1F_ED

TRGO from TIM5 (ITR2)

ITR

CK_PSC

to Time Base Unit

From input stage

From input stage

TRGO from TIM6 (ITR0)

 Up/Down, Count

timers

RM0016 16-bit advanced control timer (TIM1)

 151/430

Figure 41. Control circuit in normal mode, fMASTER divided by 1

17.4.3 External clock source mode 1

The counter can count at each rising or falling edge on a selected timer input. This mode is
selected when SMS=0b111 in the TIM1_SMCR register.

Figure 42. TI2 external clock connection example

For example, to configure the up-counter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S= ‘01’ in the
TIM1_CCMR2 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIM1_CCMR2
register (if no filter is needed , keep IC2F=0000).

Note: The capture prescaler is not used for triggering, so you don’t need to configure it. Also you
don’t need to configure the TI2S bits, they only select the input capture source.

3. Select rising edge polarity by writing CC2P=0 in the TIM1_CCER1 register.

4. Configure the timer in external clock mode 1 by writing SMS=0b111 in the TIM1_SMCR
register.

5. Select TI2 as the input source by writing TS=110 in the TIM1_SMCR register.

6. Enable the counter by writing CEN=1 in the TIM1_CR1 register.

When a rising edge occurs on TI2, the counter counts once and the trigger flag is set (TIF bit
in the TIM1_SR1 register) and an interrupt request can be sent if enabled (depending on the
TIE bit in the TIM1_IER register).

fMASTER

00

 COUNTER CLOCK = CK_CNT = CK_PSC

COUNTER REGISTER 01 02 03 04 05 06 0732 33 34 35 3631

CEN = CNT_EN

UG

CNT_INIT (=UG synchronized: UG or UG+1 clock)

fMASTER

encoder
mode

external clock
mode 1

external clock
mode 2

internal clock
mode

ETRF

TRGI

TI1F
TI2F or

or
or

(internal clock)

CK_PSC

TIM1_ETR
ECE

TIM1_SMCR
SMS[2:0]

TI1F_ED

TI1FP1

TI2FP2

ETRF

TIM1_SMCR
TS[2:0]

TI2
0

1

TIM1_CCER1

CC2P

Filter

ICF[3:0]
TIM1_CCMR2

Edge
Detector

ti2f_rising

ti2f_falling 110

100

101

111

TRGO from other timers

16-bit advanced control timer (TIM1) RM0016

152/430

The delay between the rising edge on TI2 and the actual reset of the counter is due to the
resynchronization circuit on TI2 input.

Figure 43. Control circuit in external clock mode 1

17.4.4 External clock source mode 2

The counter can count at each rising or falling edge on the external trigger input ETR. This
mode is selected by writing ECE=1 in the TIM1_ETR register.

The Figure 44 gives an overview of the external trigger input block.

Figure 44. External trigger input block

For example, to configure the up-counter to count each 2 rising edges on ETR, use the
following procedure:

1. As no filter is needed in this example, write ETF[3:0]=0b0000 in the TIM1_ETR register.

2. Set the prescaler by writing ETPS[1:0]=0b01 in the TIM1_ETR register

3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIM1_ETR register

4. Enable external clock mode 2 by writing ECE=1 in the TIM1_ETR register.

5. Enable the counter by writing CEN=1 in the TIM1_CR1 register.

The counter counts once each 2 ETR rising edges.

The delay between the rising edge on ETR and the actual reset of the counter is due to the
resynchronization circuit on the ETRP signal.

 COUNTER CLOCK = CK_CNT = CK_PSC

COUNTER REGISTER 35 3634

TI2

CNT_EN

TIF

Write TIF=0

ETR
0

1

TIM1_ETR

ETP

divider
/1, /2, /4, /8

ETPS[1:0]

ETRP filter

ETF[3:0]

down-counterfMASTER

TIM1_ETRTIM1_ETR

ETR pin

fMASTER

encoder
mode

external clock
mode 1

external clock
mode 2

internal clock
mode

ETRF

TRGI

TI1F
TI2F or

or
or

(internal clock)

CK_PSC

TIM1_ETR
ECE

TIM1_SMCR
SMS[2:0]

RM0016 16-bit advanced control timer (TIM1)

 153/430

Figure 45. Control circuit in external clock mode 2

17.4.5 Trigger synchronization

There are four trigger inputs (refer to Table 32: Glossary of internal timer signals on
page 135):

● ETR

● TI1

● TI2

● TRGO from TIM5/TIM6

The TIM1 timer can be synchronized with an external trigger in three modes: trigger
standard mode, trigger reset mode and trigger gated mode.

Trigger standard mode

The counter can start in response to an event on a selected input.

In the following example, the up-counter starts in response to a rising edge on TI2 input:

● Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC2F=0b0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. TI2S bits are
selecting the input capture source only, and don’t need to be configured too. Write
CC2P=0 in TIM1_CCER1 register to select rising edge polarity.

● Configure the timer in trigger mode by writing SMS=0b110 in the TIM1_SMCR register.
Select TI2 as the input source by writing TS=0b110 in the TIM1_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual reset of the counter is due to the
resynchronization circuit on TI2 input.

 COUNTER CLOCK = CK_CNT = CK_PSC

COUNTER REGISTER 35 3634

ETR

CNT_EN

fMASTER

ETRP

ETRF

16-bit advanced control timer (TIM1) RM0016

154/430

Figure 46. Control circuit in trigger mode

Trigger reset mode

The counter and its prescaler can be re-initialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIM1_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIM1_ARR, TIM1_CCRx) are updated.

In the following example, the up-counter is cleared in response to a rising edge on TI1 input:

● Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0b0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits
select the input capture source only, and do not need to be configured either. Write
CC1P=0 in TIM1_CCER1 register to validate the polarity (and detect rising edges
only).

● Configure the timer in reset mode by writing SMS=100 in TIM1_SMCR register. Select
TI1 as the input source by writing TS=0b101 in TIM1_SMCR register.

● Start the counter by writing CEN=1 in the TIM1_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIM1_SR1 register) and an interrupt request can be sent if
enabled (depending on the TIE in the TIM1_IER register).

The following figure shows this behaviour when the auto-reload register TIM1_ARR=36h.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 47. Control circuit in trigger reset mode

 COUNTER CLOCK = CK_CNT = CK_PSC

COUNTER REGISTER 35 36 37 3834

TI2

CNT_EN

TIF

00

 COUNTER CLOCK = CK_CNT = CK_PSC

COUNTER REGISTER 01 02 03 00 01 02 0332 33 34 35 36

UG

TI1

3130

TIF

RM0016 16-bit advanced control timer (TIM1)

 155/430

Trigger gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the up-counter counts only when TI1 input is low:

1. Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0b0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits
select the input capture source only, and do not need to be configured either. Write
CC1P=1 in TIM1_CCER1 register to validate the polarity (and detect low level only).

2. Configure the timer in trigger gated mode by writing SMS=0b101 in TIM1_SMCR
register. Select TI1 as the input source by writing TS=101 in TIM1_SMCR register.

3. Enable the counter by writing CEN=1 in the TIM1_CR1 register (in trigger gated mode,
the counter doesn’t start if CEN=0, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag is set both when the counter starts or stops.

The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 48. Control circuit in trigger gated mode

Combining trigger modes with external clock mode 2

The external clock mode 2 can be used in addition to another trigger mode. In this case,
ETR is used as external clock input, and another input can be selected as trigger input (in
trigger standard mode, trigger reset mode or trigger gated mode). Take care that you must
not select ETR as TRGI (through the TS bits in TIM1_SMCR register).

In the following example, the up-counter counts at each rising edge on ETR as soon as a
rising edge has occured on TI1 (standard trigger mode with external ETR clock):

● Configure the external trigger input circuit by writing the TIM1_ETR register. In this
example, we don’t need any filter and write ETF=0b0000. Write ETPS=00 to disable
the prescaler, ETP=0 to detect rising edges on ETR and ECE=1 to enable the external
clock mode 2.

● Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0b0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits

 COUNTER CLOCK = CK_CNT = CK_PSC

COUNTER REGISTER 35 36 37 3832 33 34

TI1

3130

CNT_EN

TIF

Write TIF=0

16-bit advanced control timer (TIM1) RM0016

156/430

select the input capture source only, and do not need to be configured either. Write
CC1P=0 in TIM1_CCER1 register to select rising edge polarity.

● Configure the timer in trigger mode by writing SMS=0b110 in TIM1_SMCR register.
Select TI1 as the input source by writing TS=0b101 in TIM1SMCR register.

A rising edge on TI1 enables the counter and sets the TIF flag. Then the counter counts on
ETR rising edges.

The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input. The delay between the rising edge on ETR and the
actual reset of the counter is due to the resynchronization circuit on the ETRP signal.

Figure 49. Control circuit in external clock mode 2 + trigger mode

 COUNTER CLOCK = CK_CNT = CK_PSC

COUNTER REGISTER 35 3634

ETR

CEN

TIF

TI1

RM0016 16-bit advanced control timer (TIM1)

 157/430

17.4.6 Synchronization from TIM5/TIM6 timers

On some products, the timers are linked together internally for timer synchronization or
chaining. When one timer is configured in master mode, it can output a trigger (TRGO) to
reset, start, stop or clock the counter of any other Timer configured in slave mode.

Figure 50. Timer chaining system implementation example

The following figure presents an overview of the trigger selection and the master mode
selection blocks.

Figure 51. Trigger/master mode selection blocks

Trigger
Controller

TI1
TI2

ITR0

ITR3

TRGO

TIM5_CH1
TIM5_CH2

TIM 5Trigger
Controller

TI1
TI2

ITR0
ITR2

TRGO

TIM1_CH1
TIM1_CH2

TIM 1

Trigger
ControllerITR2

ITR3

TRGO

TIM 6

TRGO from TIM6

TRGO from TIM5

TRGO from TIM5

TRGO from TIM1

TRGO from TIM6

TRGO from TIM1

ITR2

TI1F_ED

ITR

TRC

TI1FP1

TI2FP2

From the Capture/
Compare block

ETRF

TRGI

TIMx_SMCR

TS[2:0]

TRIGGER SELECTION BLOCK

UG
CNT_EN
UEV
MATCH1

OC1REF
OC3REF
OC3REF

MASTER MODE SELECTION BLOCK

MMS[2:0]

TIMx_CR2

TRGO
TRGO from TIM5

ITR0TRGO from TIM6

OC4REF

16-bit advanced control timer (TIM1) RM0016

158/430

Using one timer as prescaler for another timer

Figure 52. Master/Slave timer example

For example, you can configure Timer A to act as a prescaler for Timer B. Refer to
Figure 52. To do this:

1. Configure Timer A in master mode so that it outputs a periodic trigger signal on each
update event UEV. To configure that a rising edge is output on TRGO1 each time an
update event is generated, write MMS=010 in the TIMx_CR2 register,.

2. Connect the TRGO1 output of Timer A to Timer B, Timer B must be configured in slave
mode using ITR1 as internal trigger. Select this through the TS bits in the TIMx_SMCR
register (writing TS=001).

3. Put the clock/trigger controller in external clock mode 1, by writing SMS=111 in the
TIMx_SMCR register. This causes Timer B to be clocked by the rising edge of the
periodic Timer A trigger signal (which corresponds to the Timer A counter overflow).

4. Finally enable both timers by setting their respective CEN bits (TIMx_CR1 register).

Note: If OCi is selected on Timer A as trigger output (MMS=1xx), its rising edge is used to clock
the counter of Timer B.

Using one timer to enable another timer

In this example, we control the enable of Timer B with the output compare 1 of Timer A.
Refer to Figure 53 for connections. Timer B counts on the divided internal clock only when
OC1REF of Timer A is high. Both counter clock frequencies are divided by 4 by the
prescaler compared to fMASTER (fCK_CNT = fMASTER/4).

1. Configure Timer A master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIMx_CR2 register).

2. Configure the Timer A OC1REF waveform (TIMx_CCMR1 register).

3. Configure Timer B to get the input trigger from Timer A (TS=001 in the TIMx_SMCR
register).

4. Configure Timer B in trigger gated mode (SMS=101 in TIMx_SMCR register).

5. Enable Timer B by writing ‘1’ in the CEN bit (TIMx_CR1 register).

6. Start Timer A by writing ‘1’ in the CEN bit (TIMx_CR1 register).

Note: The counter 2 clock is not synchronized with counter 1, this mode only affects the Timer B
counter enable signal.

TRGO1UEV ITR1

PRESCALER COUNTER

SMSTSMMS

TIMER A TIMER B

MASTER

MODE

 CONTROL

SLAVE

MODE

 CONTROL

 CK_PSC

PRESCALER COUNTER

 Clock

INPUT

 SELECTION
 TRIGGER

RM0016 16-bit advanced control timer (TIM1)

 159/430

Figure 53. Gating Timer B with OC1REF of Timer A

In the example in Figure 53, the Timer B counter and prescaler are not initialized before
being started. So they start counting from their current value. It is possible to start from a
given value by resetting both timers before starting Timer A. You can then write any value
you want in the timer counters. The timers can easily be reset by software using the UG bit
in the TIMx_EGR registers.

In the next example, we synchronize Timer A and Timer B. Timer A is the master and starts
from 0. Timer B is the slave and starts from E7h. The prescaler ratio is the same for both
timers. Timer B stops when Timer A is disabled by writing ‘0’ to the CEN bit in the TIMx_CR1
register:

1. Configure Timer A master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIMx_CR2 register).

2. Configure the Timer A OC1REF waveform (TIMx_CCMR1 register).

3. Configure Timer B to get the input trigger from Timer A (TS=001 in the TIMx_SMCR
register).

4. Configure Timer B in trigger gated mode (SMS=101 in TIMx_SMCR register).

5. Reset Timer A by writing ‘1’ in UG bit (TIMx_EGR register).

6. Reset Timer B by writing ‘1’ in UG bit (TIMx_EGR register).

7. Initialize Timer B to 0xE7 by writing ‘E7h’ in the Timer B counter (TIMx_CNTRL).

8. Enable Timer B by writing ‘1’ in the CEN bit (TIMx_CR1 register).

9. Start Timer A by writing ‘1’ in the CEN bit (TIMx_CR1 register).

10. Stop Timer A by writing ‘0’ in the CEN bit (TIMx_CR1 register).

Timer B-TIF

Write TIF=0

FC FD FE FF 00

3045 3047 3048

fMASTER

Timer A-OC1REF

Timer A-CNT

Timer B-CNT

01

3046

16-bit advanced control timer (TIM1) RM0016

160/430

Figure 54. Gating Timer B with the counter enable signal of Timer A (CNT_EN)

Using one timer to start another timer

In this example, we set the enable of Timer B with the update event of Timer A. Refer to
Figure 52 for connections. Timer B starts counting from its current value (which can be non-
zero) on the divided internal clock as soon as the update event is generated by Timer A.
When Timer B receives the trigger signal its CEN bit is automatically set and the counter
counts until we write ‘0’ to the CEN bit in the TIM1_CR1 register. Both counter clock
frequencies are divided by 4 by the prescaler compared to fMASTER (fCK_CNT = fMASTER/4).

1. Configure Timer A master mode to send its Update Event (UEV) as trigger output
(MMS=010 in the TIM1_CR2 register).

2. Configure the Timer A period (TIM1_ARR registers).

3. Configure Timer B to get the input trigger from Timer A (TS=001 in the TIM1_SMCR
register).

4. Configure Timer B in trigger mode (SMS=110 in TIM1_SMCR register).

5. Start Timer A by writing ‘1’ in the CEN bit (TIM1_CR1 register).

Timer B-TIF

Write TIF=0

75 00 01

fMASTER

Timer A-CEN = CNT_EN

Timer A-CNT

Timer B-CNT

02

Timer A-UG

AB 00 E7 E8 E9

Timer B-UG

Timer B
write CNT

RM0016 16-bit advanced control timer (TIM1)

 161/430

Figure 55. Triggering Timer B with update event of Timer A (TIMERA-UEV)

As in the previous example, you can initialize both counters before starting counting.
Figure 56 shows the behaviour with the same configuration as in the Figure 54 but in trigger
standard mode instead of trigger gated mode (SMS=110 in the TIM1_SMCR register).

Figure 56. Triggering Timer B with counter enable CNT_EN of Timer A

Timer B-TIF

Write TIF=0

FD FE FF 00 01

45 47 48

fMASTER

Timer A-UEV

Timer A-CNT

Timer B-CNT

02

46

Timer B-CEN = CNT_EN

Timer B-TIF

Write TIF=0

75 00 01

fMASTER

Timer A-CEN = CNT_EN

Timer A-CNT

Timer B-CNT

02

Timer A-UG

CD 00 E7 E8 EA

Timer B-UG

Timer B
write CNT

E9

16-bit advanced control timer (TIM1) RM0016

162/430

Starting 2 timers synchronously in response to an external trigger

In this example, we set the enable of Timer A when its TI1 input rises, and the enable of
Timer B with the enable of Timer A. Refer to Figure 52 for connections. To ensure the
counters alignment, Timer A must be configured in master/slave mode (slave with respect to
TI1, master with respect to Timer B).

1. Configure Timer A master mode to send its Enable as trigger output (MMS=001 in the
TIMx_CR2 register).

2. Configure Timer A slave mode to get the input trigger from TI1 (TS=100 in the
TIMx_SMCR register).

3. Configure Timer A in trigger mode (SMS=110 in the TIMx_SMCR register).

4. Configure the Timer A in Master/Slave mode by writing MSM=’1’ (TIMx_SMCR
register).

5. Configure Timer B to get the input trigger from Timer A (TS=001 in the TIMx_SMCR
register).

6. Configure Timer B in trigger mode (SMS=110 in the TIMx_SMCR register).

When a rising edge occurs on TI1 (Timer A), both counters starts counting synchronously
on the internal clock and both TIF flags are set.

Note: In this example both timers are initialized before starting (by setting their respective UG
bits). Both counters starts from 0, but you can easily insert an offset between them by
writing any of the counter registers (TIMx_CNT). You can see that the master/slave mode
insert a delay between CNT_EN and CK_PSC on Timer A.

Figure 57. Triggering Timer A and B with Timer A TI1 input

00 01

fMASTER

Timer A-CEN = CNT_EN

Timer A-CNT

Timer A-TI1

Timer A-CK_PSC

02 03 04 05 06 07 08 09

Timer A-TIF

00 01

Timer B-CEN = CNT_EN

Timer B-CNT

Timer B-CK_PSC

02 03 04 05 06 07 08 09

Timer B-TIF

RM0016 16-bit advanced control timer (TIM1)

 163/430

17.5 TIM1 capture/compare channels
The timer I/O pins (TIM1_CCi) can be configured either for input capture or output compare
functions. The choice made by configuring the CCiS channel selection bits in the
capture/compare channel mode register (TIM1_CCMRi), where i is the channel number.

Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), an input stage for capture (with digital filter, multiplexing and prescaler)
and an output stage (with comparator and output control).

Figure 58. Capture/compare channel 1 main circuit

The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register. In capture mode, captures are actually done in
the shadow register, which is copied into the preload register. In compare mode, the content
of the preload register is copied into the shadow register which is compared to the counter.

When the channel is configured in output mode (CCiS=0b00 in the TIM1_CCMRi register)
where i is the channel number, the TIM1_CCRi register can be accessed without any
restriction.

When the channel is configured in input mode, the sequence for reading the TIM1_CCRi
register is the same as for the counter. See Figure 59. When a capture occurs, the content
of the counter is captured into the TIM1_CCRi shadow register. Then this value is loaded
into the preload register, except during the read sequence, when the preload register is
frozen.

CC1E

Capture/Compare shadow Register

comparator

Capture/Compare Preload Register

Counter

ic1ps

CC1S[0]

CC1S[1]

capture

input
mode

S

R

read CCR1H

read CCR1L

read_in_progress

capture_transfer
CC1S[0]

CC1S[1]

S

R

write CCR1H

write CCR1L

write_in_progress

output
mode

UEV

OC1PE

(from time

compare_transfer

TIMx_CCMR1

OC1PE

base unit)

CNT>CCR1

CNT=CCR1

TIMx_EGR

CC1G

16-bit advanced control timer (TIM1) RM0016

164/430

Figure 59. 16-bit read sequence for the TIM1_CCRi register in capture mode

Figure 59 shows the sequence for reading the CCRi registers in the 16-bit timers. This
buffered value remains unchanged until the 16-bit read sequence is completed.

After a complete reading sequence, if only the TIM1_CCRiL register is read, it returns the
LS Byte of the count value at the time of the read.

If the MS byte is read after the LS byte, it no longer corresponds to the same captured value
as the LS byte.

17.5.1 Write sequence for 16-bit TIM1_CCRi registers

16-bit values are loaded in the TIM1_CCRi registers through preload registers. This must
be performed by two write instructions, one for each byte. The MS byte must be written first.

The shadow register update is blocked as soon as the MS byte has been written, and stays
blocked until the LS byte has been written. Do not use the LDW instruction, as this writes the
LS byte first, and would produce wrong results in this case.

17.5.2 Input stage

Figure 60. Channel input stage block diagram

is frozen
Read

At t0

Read Preload register
is no longer frozenAt t0 +Δt

Other
instructions

Beginning of the sequence

Sequence completed

Preload register

LS Byte

MS Byte

is buffered into
shadow register

the preload register

Other
instructions

is buffered into
shadow register

the preload register

Other
instructions

IC1

IC2

Input Filter &
EdgeDetector

TI1FP1

TRC

TRC

IC3

Input Filter &
EdgeDetector

Input Filter &
EdgeDetector

TI1FP2

TI2FP1
TI2FP2

TI3

TI1

TI2

XOR

TIM1_CH1

TIM1_CH2

TIM1_CH3

IC4Input Filter &
EdgeDetector

TI4
TIM1_CH4

TI3FP3

TRC

TRC

TI3FP4

TI4FP3
TI4FP4

to clock/trigger controller

TRCTI1F_ED

to capture/compare channels

RM0016 16-bit advanced control timer (TIM1)

 165/430

As shown in Figure 61, the input stage samples the corresponding TIi input to generate a
filtered signal TIiF. Then, an edge detector with polarity selection generates a signal (TIiFPx)
which can be used as trigger input by the clock/trigger controller or as the capture
command. It is prescaled before the capture register (ICiPS).

Figure 61. Input stage of TIM 1 channel 1

17.5.3 Input capture mode

In Input capture mode, the Capture/Compare Registers (TIM1_CCRi) are used to latch the
value of the counter after a transition detected on the corresponding ICi signal. When a
capture occurs, the corresponding CCiIF flag (TIM1_SR1 register) is set.

An interrupt can be sent if it is enabled by setting the CCiIE bit in the TIM1_IER register. If a
capture occurs while the CCiIF flag was already high, then the over-capture flag CCiOF
(TIM1_SR2 register) is set. CCiIF can be cleared by software by writing it to ‘0’ or by reading
the captured data stored in the TIMx_CCRiL register. CCiOF is cleared when you write it to
‘0’.

The following example shows how to capture the counter value in TIM1_CCR1 when TI1
input rises. To do this, use the following procedure:

1. Select the active input: For example, to link the TIM1_CCR1 register to the TI1 input,
write the CC1S bits to 0b01 in the TIM1_CCMR1 register. This configures the channel
in input mode and the TIM1_CCR1 register becomes read-only.

2. Program the input filter duration that is needed for the type of the signal to be
conntected to the timer. This is done for each TIi input using the ICiF bits in the
TIM1_CCMRi register. For example, if you know that when, the input signal toggles, it is
unstable for up to 5 fMASTER cycles, you must program the filter duration longer than 5
clock cycles. The filter bits allow you to select a duration of 8 cycles by writing the value
0b0011 in in these bits the TIMx_CCMR1 register. With this filter setting, a transition on

TI1 0

1

TIMx_CCER1

CC1P

divider
/1, /2, /4, /8

ICPS[1:0]

TI1F_ED

filter

ICF[3:0]

down-counter

TIMx_CCMR1

Edge
Detector

TI1F_rising

TI1F_falling

to clock/trigger controller

TI1FP1

11

01

TIMx_CCMR1

CC1S[1:0]

IC1TI2FP1

TRC

(from channel 2)

(from clock/trigger
controller)

10

fMASTER

TIMx_CCER1

CC1E

ICPS

TI1F

0

1

TI2F_rising

TI2F_falling
(from channel 2)

16-bit advanced control timer (TIM1) RM0016

166/430

TI1 is valid only when 8 consecutive samples with the new level have been detected
(sampled at fMASTER frequency).

3. Select the edge of the active transition on the TI1 channel by writing CC1P bit to ‘0’ in
the TIM1_CCER1 register (rising edge in this case).

4. Program the input prescaler. In our example, we want the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to 0b00 in the
TIM1_CCMR1 register).

5. Enable capture from the counter into the capture register by setting the CC1E bit in the
TIM1_CCER1 register.

6. If needed, enable the related interrupt request by setting the CC1IE bit in the TIM1_IER
register.

When an input capture occurs:

● The TIM1_CCR1 register gets the value of the counter on the active transition.

● The input capture flag (CC1IF) is set (interrupt flag). The overcapture flag CC1OF is
also set if at least two consecutive captures occured while the flag was not cleared.

● An interrupt is generated depending on the CC1IE bit.

To handle the overcapture event (CC1OF flag), it is recommended to read the data before
the overcapture flag. This is to avoid missing an overcapture which could happen after
reading the flag and before reading the data.

Note: IC interrupts can be generated by software by setting the corresponding CCiG bit in the
TIM1_EGR register.

PWM input signal measurement

This mode is a particular case of input capture mode. The procedure is the same except:

● Two ICi are mapped on the same TIi input.

● These 2 ICi are active on edges with opposite polarity.

● One of the two TIiFP is selected as trigger input and the clock/trigger controller is
configured in trigger reset mode.

Figure 62. PWM input signal measurement

0

IC1 IC2IC1IC2IC1: Period measurement

in TIM1_CCR1 register.

Reset counter.

IC2: Duty Cycle

measurement in

TIM1_CCR2 register

PWM Input
Signal

TIM1_ARR

C
o
u
n
te

r

Time

Time

value

va
lu

e

RM0016 16-bit advanced control timer (TIM1)

 167/430

For example, you can measure the period (in the TIM1_CCR1 register) and the duty cycle
(in the TIM1_CCR2 register) of the PWM applied on TI1 using the following procedure
(depending on fMASTER frequency and prescaler value):

1. Select the active input capture or trigger input for TIM1_CCR1: write the CC1S bits to
0b01 in the TIM1_CCMR1 register (TI1FP1 selected).

2. Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P bit to ‘0’ (active on rising edge).

3. Select the active input for TIM1_CCR2: write the CC2S bits to 0b10 in the
TIM1_CCMR2 register (TI1FP2 selected).

4. Select the active polarity for TI1FP2 (used for capture in TIM1_CCR2): write the CC2P
bit to ‘1’ (active on falling edge).

5. Select the valid trigger input: write the TS bits to 0b101 in the TIM1_SMCR register
(TI1FP1 selected).

6. Configure the clock/trigger controller in reset mode: write the SMS bits to ‘100’ in the
TIM1_SMCR register.

7. Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIM1_CCER1 register.

16-bit advanced control timer (TIM1) RM0016

168/430

Figure 63. PWM input signal measurement example

17.5.4 Output stage

The output stage generates an intermediate waveform called OCiREF (active high) which is
then used for reference. Break functions and polarity act at the end of the chain.

Figure 64. Channel output stage block diagram

TI1

TIM1_CNT 0000 0001 0002 0003 0004 00000004

TIM1_CCR1

TIM1_CCR2

0004

0002

IC1 Capture

period measurement

reset counter

IC2 Capture

pulse width measurement

OC1REF

OC2REF

OC3REF

DTG

DTG registers

DTG

DTG

output
control

output
control

output
control

OC1

OC2

OC3

TIM1_CH1

TIM1_CH2

TIM1_CH3

TIM1_CH3N
OC3N

TIM1_CH2N
OC2N

TIM1_CH1N
OC1N

OC4REF output
control

TIM1_CH4
OC4

BI

Polarity Selection EnableTIM1_BKIN

from capture/compare

channels

Dead time generation

RM0016 16-bit advanced control timer (TIM1)

 169/430

Figure 65. Detailed output stage of channel with complementary output (channel 1)

17.5.5 Forced output mode

In output mode (CCiS bits = 0b00 in the TIM1_CCMRi register) where i is the channel
number, each output compare signal can be forced to high or low level directly by software,
independently of any comparison between the output compare register and the counter.

To force an output compare signal to its active level, you just need to write ‘101’ in the OCiM
bits in the corresponding TIM1_CCMRi register. Thus OCiREF is forced high (OCiREF is
always active high) and the OCi output is forced to high or low level depending on the CCiP
polarity bit.

For example: CCiP=0 (OCi active high) => OCi is forced to high level.

The OCiREF signal can be forced low by writing the OCiM bits to 0b100 in the
TIMx_CCMRx register.

Anyway, the comparison between the TIM1_CCRi shadow register and the counter is still
performed and allows the flag to be set. Interrupt requests can be sent accordingly. This is
described in the Output Compare Mode section below.

17.5.6 Output compare mode

This function is used to control an output waveform or indicate when a period of time has
elapsed.

When a match is found between the capture/compare register and the counter:

● Depending on the output compare mode, the corresponding OCi output pin:

– keeps its level (OCiM=0b000),

– is set active (OCiM=0b001),

– is set inactive (OCiM=0b010)

– or toggles (OCiM=0b011)

● Sets a flag in the interrupt status register (CCiIF bit in the TIM1_SR1 register).

● Generates an interrupt if the corresponding interrupt mask is set (CCiIE bit in the
TIM1_IER register).

Output Mode
Counter > CCR1

Counter = CCR1 Controller

TIM1_CCMR1

OC1M[2:0]

OC1REF Dead-Time
Generator

OC1_DT

OC1N_DT

DTG[7:0]

TIM1_DTR

‘0’

‘0’

CC1E

TIM1_CCER1

CC1NE

0

1

CC1P

TIM1_CCER1

0

1

CC1NP

TIM1_CCER1

Output
Enable
Circuit

TIM1_CH1

Output
Enable
Circuit

CC1E TIM1_CCER1CC1NE

OSSI TIM1_BKRMOE OSSR

0x

10

11

11

01

x0

OIS1N TIM1_OISROIS1

TIM1_CH1N

ETR

16-bit advanced control timer (TIM1) RM0016

170/430

The output compare mode is defined by the OCiM bits in the TIM1_CCMRi register. The
active or inactive level polarity is defined by the CCiP bit in the TIM1_CCERi register.

The TIM1_CCRi registers can be programmed with or without preload registers using the
OCiPE bit in the TIM1_CCMRi register.

In output compare mode, the update event UEV has no effect on the OCiREF and OCi
output. The timing resolution is one count of the counter. Output compare mode can also be
used to output a single pulse.

Procedure:

1. Select the counter clock (internal, external, prescaler).

2. Write the desired data in the TIM1_ARR and TIM1_CCRi registers.

3. Set the CCiIE bit if an interrupt request is to be generated.

4. Select the output mode as follows:

– Write OCiM = 0b011 to toggle OCi output pin when CNT matches CCRi

– Write OCiPE = 0 to disable preload register

– Write CCiP = 0 to select active high polarity

– Write CCiE = 1 to enable the output

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

The TIM1_CCRi register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCiPE=’0’, else TIMx_CCRi
shadow register will be updated only at the next update event UEV). An example is given in
Figure 66.

Figure 66. Output compare mode, toggle on OC1

OC1REF=OC1

TIMx_CNT B200 B2010039

TIMx_CCR1 003A

Write B201h in the CC1R register

Match detected on OCR1

Interrupt generated if enabled

003B

B201

003A

RM0016 16-bit advanced control timer (TIM1)

 171/430

17.5.7 PWM mode

Pulse Width Modulation mode allows you to generate a signal with a frequency determined
by the value of the TIM1_ARR register and a duty cycle determined by the value of the
TIM1_CCRi register.

The PWM mode can be selected independently on each channel (one PWM per OCi output)
by writing 0b110 (PWM mode 1) or 0b111 (PWM mode 2) in the OCiM bits in the
TIM1_CCMRi register. You must enable the corresponding preload register by setting the
OCiPE bit in the TIM1_CCMRi register, and optionally enable the auto-reload preload
register (in up-counting or center-aligned modes) by setting the ARPE bit in the TIM1_CR1
register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, you have to initialize all the registers by setting the UG
bit in the TIM1_EGR register.

OCi polarity is software programmable using the CCiP bit in the TIM1_CCERi register. It can
be programmed as active high or active low. OCi output is enabled by a combination of
CCiE, MOE, OISi, OSSR and OSSI bits (TIM1_CCERi and TIM1_BKR registers). Refer to
the TIM1_CCERi register description for more details.

In PWM mode (1 or 2), TIM1_CNT and TIM1_CCRi are always compared to determine
whether TIM1_CCRi≤TIM1_CNT or TIM1_CNT≤TIM1_CCRi (depending on the direction of
the counter).

The timer is able to generate PWM in edge-aligned mode or center-aligned mode
depending on the CMS bits in the TIM1_CR1 register.

PWM edge-aligned mode

Up-counting configuration

Up-counting is active when the DIR bit in the TIM1_CR1 register is low.

In the following example, we consider the PWM mode 1. The reference PWM signal
OCiREF is high as long as TIM1_CNT <TIM1_CCRi else it becomes low. If the compare
value in TIM1_CCRi is greater than the auto-reload value (in TIM1_ARR) then OCiREF will
be held at ‘1’. If the compare value is 0 then OCiREF will be held at ‘0’. Figure 67 shows
some edge-aligned PWM waveforms in an example where TIM1_ARR=8.

16-bit advanced control timer (TIM1) RM0016

172/430

Figure 67. Edge-aligned counting mode PWM mode 1 waveforms (ARR=8)

Down-counting configuration

Down-counting is active when DIR bit in TIM1_CR1 register is high. Refer to Down-counting
mode on page 144

In PWM mode 1, the reference signal OCiREF is low as long as TIM1_CNT> TIM1_CCRi
else it becomes high. If the compare value in TIM1_CCRi is greater than the auto-reload
value in TIM1_ARR, then OCiREF will be held at ‘1’. 0% PWM is not possible in this mode.

PWM center-aligned mode

Center-aligned mode is active when the CMS bits in TIM1_CR1 register are different from
‘00’ (all the remaining configurations having the same effect on the OCiREF/OCi signals).

The compare flag is set when the counter counts up, when it counts down or both when it
counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the
TIM1_CR1 register is updated by hardware and is read-only in this mode. Refer to Center-
aligned mode (up/down counting) on page 146.

Figure 68 shows some center-aligned PWM waveforms in an example where:

● The TIM1_ARR=8,

● PWM mode is PWM mode 1,

● the flag is set (arrow symbol in Figure 68) in three different cases:

– only when the counter counts down (CMS=0b01)

– only when the counter counts up (CMS=0b10) .

– when the counter counts up and down (CMS=0b11) .

COUNTER REGISTER

‘1’

0 1 2 3 4 5 6 7 8 0 1

‘0’

 OCiREF

CCiIF

 OCiREF

CCiIF

 OCiREF

CCiIF

 OCiREF

CCiIF

CCRx = 4

CCRx = 8

CCRx > 8

CCRx = 0

RM0016 16-bit advanced control timer (TIM1)

 173/430

Figure 68. Center-aligned PWM waveforms (ARR=8)

COUNTER REGISTER

‘1’

0 1 2 3 4 5 6 7 8 7 6

‘0’

OCiREF

CCiIF

OCiREF

CCiIF

OCiREF

CCiIF

OCiREF

CCRx=4

CCRx=7

CCRx=8

CCRx=0

5 4 3 2 1 0 1

CMS=0b01

CMS=0b10

CMS=0b11

CMS=0b10 or 0b11

CMS=0b01

CMS=0b10

CMS=0b11

CCiIF

CMS=0b01

CMS=0b10

CMS=0b11

‘1’OCiREF

CCiIF

CCRx>8

CMS=0b01

CMS=0b10

CMS=0b11

16-bit advanced control timer (TIM1) RM0016

174/430

One pulse mode

One Pulse Mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the clock/trigger controller. Generating the
waveform can be done in output compare mode or PWM mode. You select One Pulse Mode
by setting the OPM bit in the TIM1_CR1 register. This makes the counter stop automatically
at the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be:

In up-counting: CNT<CCRi≤ARR (in particular, 0<CCRi),

In down-counting: CNT>CCRi.

Figure 69. Example of one pulse mode

For example you may want to generate a positive pulse on OC1 with a length of tPULSE and
after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

Let’s use IC2 as trigger 1:

● Map IC2 on TI2 by writing CC2S=0b01 in the TIM1_CCMR2 register.

● IC2 must detect a rising edge, write CC2P=’0’ in the TIM1_CCER1 register.

● Configure IC2 as trigger for the clock/trigger controller (TRGI) by writing TS=0b110 in
the TIM1_SMCR register.

● IC2 is used to start the counter by writing SMS to 0b110 in the TIM1_SMCR register
(trigger mode).

TI2

C
O

U
N

TE
R

t
0

TIMx_ARR

TIMx_CCR1

OC1

tDELAY
tPULSE

OC1REF

RM0016 16-bit advanced control timer (TIM1)

 175/430

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).

● The tDELAY is defined by the value written in the TIM1_CCR1 register.

● The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIM1_ARR - TIM1_CCR1).

● Let’s say you want to build a waveform with a transition from ‘0’ to ‘1’ when a compare
match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the auto-reload
value. To do this you enable PWM mode 2 by writing OCiM=0b111 in the
TIM1_CCMR1 register. You can optionally enable the preload registers by writing
OC1PE=’1’ in the TIM1_CCMR1 register and ARPE in the TIM1_CR1 register. In this
case you have to write the compare value in the TIM1_CCR1 register, the auto-reload
value in the TIM1_ARR register, generate an update by setting the UG bit and wait for
external trigger event on TI2. CC1P is written to ‘0’ in this example.

In our example, the DIR and CMS bits in the TIM1_CR1 register should be low.

You only want 1 pulse, so you write ‘1’ in the OPM bit in the TIM1_CR1 register to stop the
counter at the next update event (when the counter rolls over from the auto-reload value
back to 0).

Particular case: OCi fast enable:

In One Pulse Mode, the edge detection on TIi input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

If you want to output a waveform with the minimum delay, you can set the OCiFE bit in the
TIM1_CCMRi register. Then OCiREF (and OCi) will be forced in response to the stimulus,
without taking in account the comparison. Its new level will be the same as if a compare
match had occured. OCiFE acts only if the channel is configured in PWM1 or PWM2 mode.

Complementary outputs and dead-time insertion

TIM1 can output two complementary signals per channel and manage the switching-off and
the switching-on instants of the outputs. See Figure 28: TIM1 general block diagram on
page 139

This time is generally known as dead-time. Dead-times must be adjusted depending on the
characteristics of the devices connected to the outputs (ex: intrinsic delays of level-shifters,
delays due to power switches).

The polarity of the outputs can be selected (main output OCi or complementary OCi N)
independently for each output. This is done by writing to the CCi P and CCi NP bits in the
TIM1_CCERi register.

The complementary signals OCi and OCi N are activated by a combination of several
control bits: the CCi E and CCi NE bits in the TIM1_CCERi register and, if the break feature
is implemented, the MOE, OISi , OISi N, OSSI and OSSR bits in the TIM1_BKR register.
Refer to Table 34: Output control for complementary OCi and OCiN channels with break
feature on page 204 for more details. In particular, the dead-time is activated when switching
to the IDLE state (MOE falling down to 0).

Dead-time insertion is enabled by setting both CCi E and CCi NE bits, and the MOE bit if the
break circuit is present. Each channel embeds an 8-bit dead-time generator. From a

16-bit advanced control timer (TIM1) RM0016

176/430

reference waveform OCi REF, it generates 2 outputs OCi and OCi N. If OCi and OCi N are
active high:

● The OCi output signal is the same as the reference signal except for the rising edge,
which is delayed relative to the reference rising edge.

● The OCi N output signal is the opposite of the reference signal except for the rising
edge, which is delayed relative to the reference falling edge.

If the delay is greater than the width of the active output (OCi or OCi N) then the
corresponding pulse is not generated.

The following figures show the relationships between the output signals of the dead-time
generator and the reference signal OCi REF. (we suppose CCi P=0, CCi NP=0, MOE=1,
CCi E=1 and CCi NE=1 in these examples)

Figure 70. Complementary output with dead-time insertion

Figure 71. Dead-time waveforms with delay greater than the negative pulse

Figure 72. Dead-time waveforms with delay greater than the positive pulse

The dead-time delay is the same for each of the channels and is programmable with the
DTG bits in the TIM1_DTR register. Refer to Section 17.7.31: Dead-time register
(TIM1_DTR) on page 214 for delay calculation.

Re-directing OCiREF to OCi or OCiN

In output mode (forced, output compare or PWM), OCiREF can be re-directed to the OCi
output or to OCiN output by configuring the CCiE and CCiNE bits in the corresponding
TIM1_CCERi register. This means bypassing the dead-time generator

delay

delay

OCiREF

OCi

OCiN

delay

OCiREF

OCi

OCiN

delay

OCiREF

OCi

OCiN

RM0016 16-bit advanced control timer (TIM1)

 177/430

This allows you to send a specific waveform (such as PWM or static active level) on one
output while the complementary remains at its inactive level. Other alternative possibilities
are to have both outputs at inactive level or both outputs active and complementary with
dead-time.

Note: When only OCiN is enabled (CCiE=0, CCiNE=1), it is not complemented and becomes
active as soon as OCiREF is high. For example, if CCiNP=0 then OCiN=OCiREF. On the
other hand, when both OCi and OCiN are enabled (CCiE=CCiNE=1) OCi becomes active
when OCiREF is high whereas OCiN is complemented and becomes active when OCiREF
is low.

6-step PWM generation for motor control

When complementary outputs are implemented on a channel, preload bits are available on
the OCi M, CCi E and CCi NE bits. The preload bits are transferred to the active bits at the
Commutation event (COM). This allows you to program the configuration for the next step in
advance and change the configuration of all the channels at the same time. The COM event
can be generated by software by setting the COMG bit in the TIM1_EGR register or by
hardware trigger (on the rising edge of TRGI).

A flag is set when the COM event occurs (COMIF bit in the TIM1_SR register), which can
generate an interrupt (if the COMIE bit is set in the TIM1_IER register).

Figure 73 describes the behavior of the OCi and OCi N outputs when a COM event occurs,
in three different examples of programmed configurations.

Figure 73. 6-step generation, commutation event (COM) example (OSSR=1)

counter (CNT)

OCiREF

(CCRx)

OCi

OCiN

CCiE=1
CCiNE=0
OCiM=0b110 (PWM1)

Write CCiE to 0

Write COMG to 1

Commutation (COM)

CCiE=1
CCiNE=0
OCiM=0b100

OCi

OCiN

CCiE=1
CCiNE=0
OCiM=0b100 (forced inactive)

Write CCiNE to 1 CCiE=0
CCiNE=1
OCiM=0b101

OCi

OCiN

CCiE=1
CCiNE=1
OCiM=0b110 (PWM1)

Write CCiE and CxNE to 0 CCiE=1
CCiNE=0
OCiM=0b100

EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

16-bit advanced control timer (TIM1) RM0016

178/430

17.5.8 Using the break function

The break function is often used in motor control. When using the break function, the output
enable signals and inactive levels are modified according to additional control bits (MOE,
OSSR and OSSI bits in the TIM1_BKR register).

When exiting from reset, the break circuit is disabled and the MOE bit is low. You can enable
the break function by setting the BKE bit in the TIM1_BKR register. The break input polarity
can be selected by configuring the BKP bit in the same register. BKE and BKP can be
modified at the same time.

Because MOE falling edge can be asynchronous, a resynchronization circuit has been
inserted between the actual signal (acting on the outputs) and the synchronous control bit
(accessed in the TIM1_BKR register). It results in some delays between the asynchronous
and the synchronous signals. In particular, if you write MOE to 1 whereas it was low, you
must insert a delay (dummy instruction) before reading it correctly.

When a break occurs (selected level on the break input):

● The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle state
or in reset state (selected by the OSSI bit). This feature functions even if the MCU
oscillator is off.

● Each output channel is driven with the level programmed in the OISi bit in the
TIM1_OISR register as soon as MOE=0. If OSSI=0 then the timer releases the enable
output else the enable output remains high.

● When complementary outputs are implemented:

– The outputs are first put in reset state inactive state (depending on the polarity).
This is done asynchronously so that it works even if no clock is provided to the
timer.

– If the timer clock is still present, then the dead-time generator is reactivated in
order to drive the outputs with the level programmed in the OISi and OISi N bits
after a dead-time. Even in this case, OCi and OCi N cannot be driven to their
active level together. Note that because of the resynchronization on MOE, the
dead-time duration is a bit longer than usual (around 2 ck_tim clock cycles).

● The break status flag (BIF bit in the TIM1_SR1 register) is set. An interrupt can be
generated if the BIE bit in the TIM1_IER register is set.

● If the AOE bit in the TIM1_BKR register is set, the MOE bit is automatically set again at
the next update event UEV. This can be used to perform a regulation, for instance. Else,
MOE remains low until you write it to ‘1’ again. In this case, it can be used for security
and you can connect the break input to an alarm from power drivers, thermal sensors
or any security components.

Note: The break inputs are acting on level. Thus, the MOE cannot be set while the break input is
active (neither automatically nor by software). In the meantime, the status flag BIF cannot be
cleared.

The break can be generated by the break input (BKIN) which has a programmable polarity
and can be enabled or disabled by setting or resetting the BKE bit in TIM1_BKR register.

In addition to the break inputs and the output management, a write protection has been
implemented inside the break circuit to safeguard the application. It allows you to freeze the
configuration of several parameters (OCi polarities and state when disabled, OCiM
configurations, break enable and polarity). You can choose from 3 levels of protection
selected by the LOCK bits in the TIM1_BKR register. The LOCK bits can be written only
once after an MCU reset.

RM0016 16-bit advanced control timer (TIM1)

 179/430

Figure 74 shows an example of behavior of the outputs in response to a break.

Figure 74. Behavior of outputs in response to a break (channel without
complementary output)

Figure 75 shows an example of behavior of the complementary outputs (TIM1 only) in
response to a break.

Figure 75. Behavior of outputs in response to a break (TIM1 complementary
outputs)

 OCiREF

BREAK (MOE

OCi
(CCiP=0, OISi=1)

OCi
(CCiP=0, OISi=0)

OCi
(CCiP=1, OISi=1)

OCi
(CCiP=1, OISi=0)

)

delay

BREAK (MOE

OCi
(OCiN not implemented, CCiP=1, OISi=0)

OCi

OCiN
(CCiE=1, CCiP=0, OISi=0, CCiNE=1, CCiNP=0, OISiN=1)

delaydelay

delay

OCi

OCiN
(CCiE=1, CCiP=0, OISi=1, CCiNE=1, CCiNP=1, OISiN=1)

delaydelay

delay

OCi

OCiN
(CCiE=1, CCiP=0, OISi=0, CCiNE=0, CCiNP=0, OISiN=1)

)

delay

OCi

OCiN
(CCiE=1, CCiP=0, OISi=1, CCiNE=0, CCiNP=0, OISiN=0)

OCi

OCiN
(CCiE=1, CCiP=0, CCiNE=0, CCiNP=0, OISi=OISiN=0 or OISi=OISiN=1)

16-bit advanced control timer (TIM1) RM0016

180/430

17.5.9 Clearing the OCiREF signal on an external event

The OCiREF signal of a given channel can be cleared when a high level is detected on
ETRF (if OCiCE=‘1’ in the TIM1_CCMRi register, one enable bit per channel). The OCiREF
signal remains low until the next UEV update event occurs. This function can be used in
output compare mode and PWM mode only, it does not work in forced mode.

It can be connected to the output of a comparator and be used for current handling, for
instance.

For example, the OCiREF signal can be connected to the output of a comparator to be used
for current handling. In this case, the external trigger must be configured as follows:

1. The External Trigger Prescaler should be kept off: bits ETPS[1:0] in the TIM1_ETR
register set to ‘00’.

2. The external clock mode 2 must be disabled: bit ECE in the TIM1_ETR register set to
‘0’.

3. The External Trigger Polarity (ETP) and the External Trigger Filter (ETF) can be
configured as desired.

Refer to the external trigger input block diagram Figure 44 on page 152

Figure 76 shows the behavior of the OCiREF signal when the ETRF input becomes high, for
both values of the enable bit OCiCE. In this example, the timer is programmed in PWM
mode.

Figure 76. ETR activation

17.5.10 Encoder interface mode

This mode is typically used for motor control. To select Encoder Interface mode write
SMS=0b001 in the TIM1_SMCR register if the counter is counting on TI2 edges only,
SMS=0b010 if it is counting on TI1 edges only and SMS=0b011 if it is counting on both TI1
and TI2 edges.

Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the
TIM1_CCER1 register. When needed, you can program the input filter as well.

The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to
Table 33. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2
after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted,

OCiREF

counter (CNT)

OCiREF

ETRF

(OCiCE=’0’)

(OCiCE=’1’)

ETRF
becomes high

ETRF
still high

(CCRx)

RM0016 16-bit advanced control timer (TIM1)

 181/430

TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in
TIM1_CR1 register written to ‘1’). The sequence of transitions of the two inputs is evaluated
and generates count pulses as well as the direction signal. Depending on the sequence the
counter counts up or down, the DIR bit in the TIM1_CR1 register is modified by hardware
accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever
the counter is counting on TI1 only, TI2 only or both TI1 and TI2.

Encoder interface mode acts simply as an external clock with direction selection. This
means that the counter just counts continuously between 0 and the auto-reload value in the
TIM1_ARR register (0 to ARR or ARR down to 0 depending on the direction). So you must
configure TIM1_ARR before starting. In the same way, the capture, compare, prescaler,
trigger output features continue to work as normal. Encoder mode and External clock mode
2 are not compatible and must not be selected together.

In this mode, the counter is modified automatically following the speed and the direction of
the incremental encoder and its content, therefore, always represents the encoder’s
position. The count direction correspond to the rotation direction of the connected sensor.
The table summarizes the possible combinations, assuming TI1 and TI2 don’t switch at the
same time.

An external incremental encoder can be connected directly to the MCU without external
interface logic. However, comparators will normally be used to convert the encoder’s
differential outputs to digital signals. This greatly increases noise immunity. The third
encoder output which indicate the mechanical zero position, may be connected to an
external interrupt input and trigger a counter reset.

The Figure 77 gives an example of counter operation, showing count signal generation and
direction control. It also shows how input jitter is compensated where both edges are

Table 33. Counting direction versus encoder signals

Active edge

Level on
opposite

signal (TI1FP1
for TI2,

TI2FP2 for
TI1)

TI1FP1 signal TI2FP2 signal

Rising Falling Rising Falling

Counting on
TI1 only

High Down Up No count No count

Low Up Down No count No count

Counting on
TI2 only

High No count No count Up Down

Low No count No count Down Up

Counting on
TI1 and TI2

High Down Up Up Down

Low Up Down Down Up

16-bit advanced control timer (TIM1) RM0016

182/430

selected. This might occur if the sensor is positioned near to one of the switching points. For
this example we assume that the configuration is the following:

● CC1S = 0b01 (TIM1_CCMR1 register, IC1 mapped on TI1).

● CC2S = 0b01 (TIM1_CCMR2 register, IC2 mapped on TI2).

● CC1P = 0 (TIM1_CCER1 register, IC1 non-inverted, IC1=TI1).

● CC2P = 0 (TIM1_CCER2 register, IC2 non-inverted, IC2=TI2).

● SMS = 0b011 (TIM1_SMCR register, both inputs are active on both rising and falling
edges).

● CEN = 1 (TIM1_CR1 register, Counter is enabled).

Figure 77. Example of counter operation in encoder interface mode

Figure 78 gives an example of counter behaviour when IC1 polarity is inverted (same
configuration as above except CC1P=’1’).

Figure 78. Example of encoder interface mode with IC1 polarity inverted

The timer, when configured in Encoder Interface mode provides information on the sensor’s
current position. You can obtain dynamic information (speed, acceleration, decceleration) by
measuring the period between two encoder events using a second timer configured in
capture mode. The output of the encoder which indicates the mechanical zero can be used
for this purpose. Depending on the time between two events, the counter can also be read
at regular times. You can do this by latching the counter value into a third input capture

TI1

forward forwardbackwardjitter jitter

up down up

TI2

COUNTER

TI1

forward forwardbackwardjitter jitter

updown

TI2

COUNTER

down

RM0016 16-bit advanced control timer (TIM1)

 183/430

register if available (then the capture signal must be periodic and can be generated by
another timer).

17.6 TIM1 interrupts
TIM1 has 8 interrupt request sources, mapped on 2 interrupt vectors:

● Break interrupt

● Trigger interrupt

● Commutation interrupt

● Capture/Compare 4 interrupt

● Capture/Compare 3 interrupt

● Capture/Compare 2 interrupt

● Capture/Compare 1 interrupt

● Update Interrupt (ex: overflow, underflow, counter initialization)

To use the interrupt features, for each interrupt channel used, set the desired “Interrupt
Enable” bit: BIE, TIE, COMIE, CCiIE, UIE bits in the TIM1_IER register to enable interrupt
requests.

The different interrupt sources can be also generated by software using the corresponding
bits in the TIM1_EGR register.

16-bit advanced control timer (TIM1) RM0016

184/430

17.7 TIM1 registers

17.7.1 Control register 1 (TIM1_CR1)

Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0

ARPE CMS[1:0] DIR OPM URS UDIS CEN

rw rw rw rw rw rw rw rw

Bit 7 ARPE: Auto-reload preload enable

0: TIM1_ARR register is not buffered through a preload register. It can be written directly.
1: TIM1_ARR register is buffered through a preload register.

Bits 6:5 CMS[1:0]: Center-aligned mode selection

00: Edge-aligned mode. The counter counts up or down depending on the direction bit (DIR).
01: Center-aligned mode 1. The counter counts up and down alternately. Output compare interrupt
flags of channels configured in output (CCiS=00 in TIM1_CCMRx register) are set only when the
counter is counting down.
10: Center-aligned mode 2. The counter counts up and down alternately. Output compare interrupt
flags of channels configured in output (CCiS=00 in TIM1_CCMRx register) are set only when the
counter is counting up.
11: Center-aligned mode 3. The counter counts up and down alternately. Output compare interrupt
flags of channels configured in output (CCiS=00 in TIM1_CCMRx register) are set both when the
counter is counting up and down.

● It is not allowed to switch from edge-aligned mode to center-aligned mode as long as the counter
is enabled (CEN=1)

● Encoder mode (SMS=001, 010 or 011 in TIM1_SMCR register) must be disabled in center-
aligned mode.

Bit 4 DIR: Direction

0: Counter used as up-counter.
1: Counter used as down-counter.

Note: This bit is read-only when the timer is configured in Center-aligned mode or Encoder mode.

Bit 3 OPM: One pulse mode
0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the CEN bit).

Bit 2 URS: Update request source
0: When enabled by the UDIS bit, the UIF bit is set and an update interrupt request is sent when one
of the following events occurs:

– Registers are updated (counter overflow/underflow)

– UG bit is set by software

– Update event is generated through the clock/trigger controller
1: When enabled by the UDIS bit, the UIF bit is set and an update interrupt request is sent only
when:

– Registers are updated (counter overflow/underflow)

RM0016 16-bit advanced control timer (TIM1)

 185/430

17.7.2 Control register 2 (TIM1_CR2)

Address offset: 0x01

Reset value: 0x00

Bit 1 UDIS: Update disable.
0: An Update event is generated as soon as a counter overflow occurs or a software update is
generated or an hardware reset is generated by the clock/trigger mode controller. Buffered registers
are then loaded with their preload values
1: An Update event is not generated, shadow registers keep their value (ARR, PSC, CCRx). The
counter and the prescaler are re initialized if the UG bit is set or if an hardware reset is received from
the clock/trigger mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled

1: Counter enabled
Note: External clock, trigger gated mode and encoder mode can work only if the CEN bit has been

previously set by software. However trigger mode can set the CEN bit automatically by
hardware.

7 6 5 4 3 2 1 0

TI1S MMS[2:0]
Reserved

COMS
Reserved

CCPC

rw rw rw rw rw rw

Bit 7 TI1S: TI1 selection.

0: TI1 (input of the digital filter) is connected to CC1 input pin.

1: TI1 is connected to the 3 inputs CC1, CC2, CC3 (XOR combination)

Bits 6:4 MMS[2:0]: Master mode selection
These bits select the information to be sent in master mode to the ADC or to the other timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIM1_EGR register is used as trigger output (TRGO). If the reset is
generated by the trigger input (clock/trigger mode controller configured in reset mode) then the
signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter Enable signal is used as trigger output (TRGO). It is used to start several
timers or the ADC to control a window in which a slave timer or the ADC is enabled. The Counter
Enable signal is generated by a logic OR between CEN control bit and the trigger input when
configured in trigger gated mode. When the Counter Enable signal is controlled by the trigger input,
there is a delay on TRGO, except if the master/slave mode is selected (see the MSM bit description
in TIM1_SMCR register).
010: Update - The update event is selected as trigger output (TRGO).
011: Compare Pulse (MATCH1) - The trigger output send a positive pulse when the CC1IF flag is to
be set (even if it was already high), as soon as a capture or a compare match occurred (TRGO).
100: Compare - OC1REF signal is used as trigger output (TRGO).
101: Compare - OC2REF signal is used as trigger output (TRGO).
110: Compare - OC3REF signal is used as trigger output (TRGO).
111: Compare - OC4REF signal is used as trigger output (TRGO).

Bit 3 Reserved, must be kept cleared.

16-bit advanced control timer (TIM1) RM0016

186/430

Bit 2 COMS: Capture/compare control update selection
0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting only the
COMG bit.
1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting the
COMG bit or when an rising edge occurs on TRGI.

Note: This bit acts only on channels with complementary outputs.

Bit 1 Reserved, forced by hardware to 0.

Bit 0 CCPC: Capture/compare preloaded control

0: The CCiE, CCiNE, CCiP, CCiNP bits in the TIM1_CCERx register and the OCiM bit in the
TIM1_CCMRx register are not preloaded
1: CCiE, CCiNE , CCiP, CCiNP and OCiM bits are preloaded, after having been written, they are
updated only when COMG bit is set in the TIM1_EGR register.

Note: This bit acts only on channels with complementary outputs.

RM0016 16-bit advanced control timer (TIM1)

 187/430

17.7.3 Slave mode control register (TIM1_SMCR)

Address offset: 0x02

Reset value: 0x00

7 6 5 4 3 2 1 0

MSM TS[2:0] Reserved SMS[2:0]

rw rw rw rw rw rw rw

Bit 7 MSM: Master/slave mode

0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization
between TIM1 and another timer (through TRGO).

Bits 6:4 TS[2:0]: Trigger selection

This bit-field selects the trigger input (TRGI) to be used to synchronize the counter.
000: internal trigger ITR0 connected to TIM6 TRGO
001: reserved
010: internal trigger ITR2 connected to TIM5 TRGO
011: reserved
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2 (TI2FP2)
111: External Trigger input (ETRF)

Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong
edge detections at the transition.

Bit 3 Reserved, always read as 0.

Bits 2:0 SMS[2:0]: Clock/trigger/slave mode selection
When external signals are selected the active edge of the trigger signal (TRGI) is linked to the
polarity selected on the external input (see Input Control register and Control Register description).
000: Clock/trigger controller disabled- if CEN = ‘1’ then the prescaler is clocked directly by the
internal clock.
001: Encoder mode 1 - Counter counts up or down on TI2FP2 edge depending on TI1FP1 level.
010: Encoder mode 2 - Counter counts up or down on TI1FP1 edge depending on TI2FP2 level.
011: Encoder mode 3 - Counter counts up or down on both TI1FP1 and TI2FP2 edges depending on
the level of the other input.
100: Reset Mode - Rising edge of the selected trigger signal (TRGI) re-initializes the counter and
generates an update of the registers.
101: Trigger gated Mode - The counter clock is enabled when the trigger signal (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the
counter are controlled.
110: Trigger standard Mode - The counter starts at a rising edge of the trigger TRGI (but it is not
reset). Only the start of the counter is controlled.
111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

Note: Trigger gated mode must not be used if TI1F_ED is selected as the trigger input (TS=’100’).
Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the trigger gated mode
checks the level of the trigger signal.

16-bit advanced control timer (TIM1) RM0016

188/430

17.7.4 External trigger register (TIM1_ETR)

Address offset: 0x03

Reset value: 0x00

7 6 5 4 3 2 1 0

ETP ECE ETPS[1:0] ETF[3:0]

rw rw rw rw rw rw rw rw

Bit 7 ETP: External Trigger Polarity.

This bit selects whether ETR or ETR is used for trigger operations
0: ETR is non-inverted, active at high level or rising edge.
1: ETR is inverted, active at low level or falling edge.

Bit 6 ECE: External Clock Enable.

This bit enables External clock mode 2.
0: External clock mode 2 disabled.
1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF signal.

● Setting the ECE bit has the same effect as selecting the external clock mode 1 with TRGI
connected to ETRF (SMS=111 and TS=111 in the TIM1_SMCR register).

● It is possible to use simultaneously the external clock mode 2 with the following modes: trigger
standard mode, trigger reset mode and trigger gated mode. Nevertheless, TRGI must not be
connected to ETRF in this case (TS bits must not be 111 in TIM1_SMCR register).

● If external clock mode 1 and external clock mode 2 are enabled at the same time, the external
clock input will be ETRF.

Bits 5:4 ETPS: External trigger prescaler

External trigger signal ETRP frequency must be at most1/4 of fMASTER frequency. A prescaler can
be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks.
00: Prescaler OFF
01: ETRP frequency divided by 2
10: ETRP frequency divided by 4
11: ETRP frequency divided by 8

RM0016 16-bit advanced control timer (TIM1)

 189/430

Bits 3:0 ETF: External Trigger Filter.
This bit-field defines the frequency used to sample ETRP signal and the length of the digital filter
applied to ETRP. The digital filter is made of an event counter in which N events are needed to
validate a transition on the output:
0000: No filter, sampling is done at fMASTER.
0001: fSAMPLING=fMASTER, N=2.
0010: fSAMPLING=fMASTER, N=4.
0011: fSAMPLING=fMASTER, N=8.
0100: fSAMPLING=fMASTER/2, N=6.
0101: fSAMPLING=fMASTER/2, N=8.
0110: fSAMPLING=fMASTER/4, N=6.
0111: fSAMPLING=fMASTER/4, N=8.
1000: fSAMPLING=fMASTER/8, N=6.
1001: fSAMPLING=fMASTER/8, N=8.
1010: fSAMPLING=fMASTER/16, N=5.
1011: fSAMPLING=fMASTER/16, N=6.
1100: fSAMPLING=fMASTER/16, N=8.
1101: fSAMPLING=fMASTER/32, N=5.
1110: fSAMPLING=fMASTER/32, N=6.
1111: fSAMPLING=fMASTER/32, N=8.

16-bit advanced control timer (TIM1) RM0016

190/430

17.7.5 Interrupt enable register (TIM1_IER)

Address offset: 0x04

Reset value: 0x00

7 6 5 4 3 2 1 0

BIE TIE COMIE CC4IE CC3IE CC2IE CC1IE UIE

rw rw rw rw rw rw rw rw

Bit 7 BIE: Break interrupt enable

0: Break interrupt disabled.

1: Break interrupt enabled.

Bit 6 TIE: Trigger interrupt enable

0: Trigger Interrupt disabled.

1: Trigger Interrupt enabled.

Bit 5 COMIE: Commutation interrupt enable

0: Commutation interrupt disabled.

1: Commutation interrupt enabled.

Bit 4 CC4IE: Capture/compare 4 interrupt enable

0: CC4 interrupt disabled.

1: CC4 interrupt enabled.

Bit 3 CC3IE: Capture/compare 3 interrupt enable

0: CC3 interrupt disabled.

1: CC3 interrupt enabled.

Bit 2 CC2IE: Capture/compare 2 interrupt enable

0: CC2 interrupt disabled.

1: CC2 interrupt enabled.

Bit 1 CC1IE: Capture/compare 1 interrupt enable

0: CC1 interrupt disabled.

1: CC1 interrupt enabled.

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled.

1: Update interrupt enabled.

RM0016 16-bit advanced control timer (TIM1)

 191/430

17.7.6 Status register 1 (TIM1_SR1)

Address offset: 0x05

Reset Value: 0x00

7 6 5 4 3 2 1 0

BIF TIF COMIF CC4IF CC3IF CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bit 7 BIF: Break Interrupt Flag.

This flag is set by hardware as soon as the break input goes active. It can be cleared by software if
the break input is not active.
0: No break event occurred.
1: An active level has been detected on the break input.

Bit 6 TIF: Trigger Interrupt Flag.

This flag is set by hardware on trigger event (active edge detected on TRGI signal, both edges in
case trigger gated mode is selected). It is cleared by software.
0: No trigger event occurred.
1: Trigger interrupt pending.

Bit 5 COMIF: Commutation Interrupt Flag.
This flag is set by hardware on a Commutation event (COM) (when Capture/compare Control bits -
CCiE, CCiNE, OCiM - have been updated). It is cleared by software.
0: No Commutation event (COM) occurred.
1: Commutation event (COM) interrupt pending.

Bit 4 CC4IF: Capture/Compare 4 Interrupt Flag.

Refer to CC1IF description

Bit 3 CC3IF: Capture/Compare 3 Interrupt Flag.

Refer to CC1IF description

Bit 2 CC2IF: Capture/Compare 2 Interrupt Flag.

Refer to CC1IF description

16-bit advanced control timer (TIM1) RM0016

192/430

17.7.7 Status register 2 (TIM1_SR2)

Address offset: 0x06

Reset Value: 0x00

Bit 1 CC1IF: Capture/Compare 1 Interrupt Flag.
● If channel CC1 is configured as output:

This flag is set by hardware when the counter matches the compare value, with some exception in
center-aligned mode (refer to the CMS bits from TIM1_CR1 register description). It is cleared by
software.
0: No match.
1: The content of the counter TIM1_CNT has matched the content of the TIM1_CCR1 register.

Note: In center-aligned mode, the counter is considered to count up when its value is 0 and to count
down when it is equal to the ARR value (it counts up from 0 to ARR-1 and from ARR down to
1). Thus, these 2 values are not flagged for all values of the CMS bits. However, CC1IF is set
when CNT reaches the ARR value when the compare value is greater than the auto-reload
value (CCR1>ARR).

● If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the TIM1_CCR1L
register.
0: No input capture occurred.
1: The counter value has been captured in the TIM1_CCR1 register (An edge has been detected on
IC1 which matches the selected polarity).

Bit 0 UIF: Update Interrupt Flag.
This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow or underflow if UDIS=0 in the TIM1_CR1 register.

– When CNT is re-initialized by software using the UG bit in TIM1_EGR register, if URS=0
and UDIS=0 in the TIM1_CR1 register.

– When CNT is re-initialized by a trigger event (refer to the TIM1_SMCR register description),
if URS=0 and UDIS=0 in the TIM1_CR1 register.

7 6 5 4 3 2 1 0

Reserved
CC4OF CC3OF CC2OF CC1OF

Reserved
rc_w0 rc_w0 rc_w0 rc_w0

Reserved
CC3OF CC2OF CC1OF

Reserved
rc_w0 rc_w0 rc_w0

Bits 7:5 Reserved, must be kept cleared.

Bit 4 CC4OF: Capture/Compare 4 Overcapture Flag.

Refer to CC1OF description

Bit 3 CC3OF: Capture/Compare 3 Overcapture Flag.

Refer to CC1OF description

RM0016 16-bit advanced control timer (TIM1)

 193/430

17.7.8 Event generation register (TIM1_EGR)

Address offset: 0x07

Reset value: 0x00

Bit 2 CC2OF: Capture/Compare 2 Overcapture Flag.

Refer to CC1OF description

Bit 1 CC1OF: Capture/compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input capture
mode. It is cleared by software by writing it to ‘0’.

0: No overcapture has been detected.

1: The counter value has been captured in TIM1_CCR1 register while CC1IF flag was already set

Bit 0 Reserved, must be kept cleared.

7 6 5 4 3 2 1 0

BG TG COMG CC4G CC3G CC2G CC1G UG

w w w w w w w w

Bit 7 BG: Break generation

This bit is set by software in order to generate an event, it is automatically cleared by hardware.

0: No action.

1: A break event is generated. MOE bit is cleared and BIF flag is set. An interrupt is generated if
enabled by the BIE bit.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by hardware.

0: No action.

1: The TIF flag is set in TIM1_SR1 register. An interrupt is generated if enabled by the TIE bit.

Bit 5 COMG: Capture/compare control update generation

This bit can be set by software, it is automatically cleared by hardware

0: No action

1: When the CCPC bit in the TIM1_CR2 register is set, it allows to update CCiE, CCiNE CCiP,
CCiNP and OCiM bits

Note: This bit acts only on channels that have a complementary output.

Bit 4 CC4G: Capture/compare 4 generation

Refer to CC1G description

Bit 3 CC3G: Capture/compare 3 generation

Refer to CC1G description

Bit 2 CC2G: Capture/compare 2 generation

refer to CC1G description

16-bit advanced control timer (TIM1) RM0016

194/430

Bit 1 CC1G: Capture/Compare 1 Generation.
This bit is set by software in order to generate an event, it is automatically cleared by hardware.
0: No action.
1: A capture/compare event is generated on channel 1:

● If the CC1 channel is configured in output mode:

– CC1IF flag is set, and the corresponding interrupt request is sent if enabled.
● If the CC1 channel configured in input mode:

– The current value of the counter is captured in the TIM1_CCR1 register. The CC1IF flag is
set, and the corresponding interrupt request is sent if enabled. The CC1OF flag is set if the
CC1IF flag was already high.

Bit 0 UG: Update Generation.

This bit can be set by software, it is automatically cleared by hardware.
0: No action.
1: Re-initializes the counter and generates an update of the registers. Note that the prescaler
counter is also cleared. The counter is cleared if the center-aligned mode is selected or if DIR=0 (up-
counting), else it takes the auto-reload value (TIM1_ARR) if DIR=1 (down-counting).

RM0016 16-bit advanced control timer (TIM1)

 195/430

17.7.9 Capture/compare mode register 1 (TIM1_CCMR1)

Address offset: 0x08

Reset value: 0x00

The channel can be used in input (capture mode) or in output (compare mode). The
direction of the channel is defined by configuring the CC1S bits. All the other bits of this
register have a different function in input and in output mode. For a given bit, OCxx
describes its function when the channel is configured in output, ICxx describes its function
when the channel is configured in input. So be aware that the same bit can have a different
meaning for the input stage and for the output stage.

● Channel configured in output

7 6 5 4 3 2 1 0

OC1CE OC1M[2:0] OC1PE OC1FE CC1S[1:0]

rw rw rw rw rw rw rw rw

Bit 7 OC1CE: Output Compare 1 Clear Enable.
This bit is used to enable the clearing of the channel 1 output compare signal (OC1REF) by an
external event on the TIM1_TRIG pin. See Section 17.5.9 on page 180.
0: OC1REF is not affected by the ETRF input signal (derived from the TIM1_TRIG pin).
1: OC1REF is cleared as soon as a high level is detected on ETRF input signal (derived from the
TIM1_TRIG pin).

Bits 6:4 OC1M: Output Compare 1 Mode.

These bits define the behavior of the output reference signal OC1REF from which OC1 is derived.
OC1REF is active high whereas OC1 active level depends on the CC1P bit.

000: Frozen - The comparison between the output compare register TIM1_CCR1 and the counter
TIM1_CNT has no effect on the outputs.

001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter
TIM1_CNT matches the capture/compare register 1 (TIM1_CCR1).

010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter
TIM1_CNT matches the capture/compare register 1 (TIM1_CCR1).

011: Toggle - OC1REF toggles when TIM1_CNT=TIM1_CCR1.

100: Force inactive level - OC1REF is forced low.

101: Force active level - OC1REF is forced high.

110: PWM mode 1 - In up-counting, channel 1 is active as long as TIM1_CNT<TIM1_CCR1 else
inactive. In down-counting, channel 1 is inactive (OC1REF=‘0’) as long as TIM1_CNT>TIM1_CCR1
else active (OC1REF=’1’).

111: PWM mode 2 - In up-counting, channel 1 is inactive as long as TIM1_CNT<TIM1_CCR1 else
active. In down-counting, channel 1 is active as long as TIM1_CNT>TIM1_CCR1 else inactive.

● These bits can no longer be modified as long as LOCK level 3 has been programmed (LOCK bits
in TIM1_BKR register) and CC1S=’00’ (the channel is configured in output).

● In PWM mode 1 or 2, the OCiREF level changes only when the result of the comparison changes
or when the output compare mode switches from “frozen” mode to “PWM” mode. Refer to PWM
mode on page 171 for more details.

● On channels that have a complementary output, this bit field is preloaded. If the CCPC bit is set
in the TIM1_CR2 register then the OCM active bits take the new value from the preload bits only
when a commutation event (COM) is generated.

16-bit advanced control timer (TIM1) RM0016

196/430

Bit 3 OC1PE: Output Compare 1 Preload Enable.

0: Preload register on TIM1_CCR1 disabled. TIM1_CCR1 can be written at anytime, the new value
is taken in account immediately.

1: Preload register on TIM1_CCR1 enabled. Read/Write operations access the preload register.
TIM1_CCR1 preload value is loaded in the shadow register at each update event.

● These bits can no longer be modified as long as LOCK level 3 has been programmed (LOCK bits
in TIM1_BKR register) and CC1S=’00’ (the channel is configured in output).

● For correct operation, preload registers must be enabled when the timer is in PWM mode. This is
not mandatory in one pulse mode (OPM bit set in TIM1_CR1 register).

Bit 2 OC1FE: Output Compare 1 Fast Enable.

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.

0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The
minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles.

1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is set to
the compare level independently from the result of the comparison. Delay to sample the trigger input
and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if the channel is configured
in PWM1 or PWM2 mode.

Bits 1:0 CC1S[1:0]: Capture/Compare 1 Selection.

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC1 channel is configured as output.

01: CC1 channel is configured as input, IC1 is mapped on TI1FP1.

10: CC1 channel is configured as input, IC1 is mapped on TI2FP1.

11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode works only if an internal
trigger input is selected through the TS bit (TIM1_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = ’0’ in TIM1_CCER1).

RM0016 16-bit advanced control timer (TIM1)

 197/430

● Channel configured in input

7 6 5 4 3 2 1 0

IC1F[3:0] IC1PSC[1:0] CC1S[1:0]

rw rw rw rw rw rw rw rw

Bits 7:4 IC1F[3:0]: Input Capture 1 Filter.

This bit-field defines fSAMPLING, the frequency used to sample TI1 input and the length of the digital
filter applied to TI1. The digital filter is made of an event counter in which N events are needed to
validate a transition on the output:

0000: No filter, fSAMPLING= fMASTER.

0001: fSAMPLING=fMASTER, N=2.

0010: fSAMPLING=fMASTER, N=4.

0011: fSAMPLING=fMASTER, N=8.

0100: fSAMPLING=fMASTER/2, N=6.

0101: fSAMPLING=fMASTER/2, N=8.

0110: fSAMPLING=fMASTER/4, N=6.

0111: fSAMPLING=fMASTER/4, N=8.

1000: fSAMPLING=fMASTER/8, N=6.

1001: fSAMPLING=fMASTER/8, N=8.

1010: fSAMPLING=fMASTER/16, N=5.

1011: fSAMPLING=fMASTER/16, N=6.

1100: fSAMPLING=fMASTER/16, N=8.

1101: fSAMPLING=fMASTER/32, N=5.

1110: fSAMPLING=fMASTER/32, N=6.

1111: fSAMPLING=fMASTER/32, N=8.

Note: Even on channels that have a complementary output, this bit field is not preloaded and does
not take into account the content of the CCPC bit (in the TIM1_CR2 register).

Bits 3:2 IC1PSC[1:0]: Input Capture 1 Prescaler.

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).

The prescaler is reset as soon as CC1E=’0’ (TIM1_CCER register).

00: no prescaler, capture is done each time an edge is detected on the capture input.

01: capture is done once every 2 events.

10: capture is done once every 4 events.

11: capture is done once every 8 events.

Bits 1:0 CC1S[1:0]: Capture/Compare 1 Selection.

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC1 channel is configured as output.

01: CC1 channel is configured as input, IC1 is mapped on TI1FP1.

10: CC1 channel is configured as input, IC1 is mapped on TI2FP1.

11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode works only if an internal
trigger input is selected through the TS bit (TIM1_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = ’0’ in TIM1_CCER1).

16-bit advanced control timer (TIM1) RM0016

198/430

17.7.10 Capture/compare mode register 2 (TIM1_CCMR2)

Address offset: 0x09

Reset value: 0x00

● Channel configured in output

● Channel configured in input

7 6 5 4 3 2 1 0

OC2CE OC2M[2:0] OC2PE OC2FE CC2S[1:0]

rw rw rw rw rw rw rw rw

Bit 7 OC2CE: Output Compare 2 Clear Enable.

Bits 6:4 OC2M(2:0]: Output Compare 2 Mode.

Bit 3 OC2PE: Output Compare 2 Preload Enable.

Bit 2 OC2FE: Output Compare 2 Fast Enable.

Bits 1:0 CC2S[1:0]: Capture/Compare 2 Selection.

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC2 channel is configured as output.

01: CC2 channel is configured as input, IC2 is mapped on TI2FP2.

10: CC2 channel is configured as input, IC2 is mapped on TI1FP2.

11: Reserved

Note: CC2S bits are writable only when the channel is OFF (CC2E and CC2NE= ’0’ in TIM1_CCER1
and updated).

7 6 5 4 3 2 1 0

IC2F[3:0] IC2PSC[1:0] CC2S[1:0]

rw rw rw rw rw rw rw rw

Bits 7:4 IC2F: Input Capture 2 Filter.

Bits 3:2 IC2PSC(1:0]: Input Capture 2 Prescaler.

Bits 1:0 CC2S[1:0]: Capture/Compare 2 Selection.

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC2 channel is configured as output.

01: CC2 channel is configured as input, IC2 is mapped on TI2FP2.

10: CC2 channel is configured as input, IC2 is mapped on TI1FP2.

11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an internal
trigger input is selected through the TS bit (TIM1_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E and CC2NE= ’0’ in TIM1_CCER1
and updated).

RM0016 16-bit advanced control timer (TIM1)

 199/430

17.7.11 Capture/compare mode register 3 (TIM1_CCMR3)

Address offset: 0x0A

Reset value: 0x00

Refer to the above CCMR1 register description.

● Channel configured in output

7 6 5 4 3 2 1 0

OC3CE OC3M[2:0] OC3PE OC3FE CC3S[1:0]

rw rw rw rw rw rw rw rw

Bit 7 OC3CE: Output Compare 3 clear enable

Bits 6:4 OC3M[2:0]: Output Compare 3 mode

Bit 3 OC3PE: Output Compare 3 preload enable

Bit 2 OC3FE: Output Compare 3 fast enable

Bits 1:0 CC3S[1:0]: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC3 channel is configured as output.

01: CC3 channel is configured as input, IC3 is mapped on TI3FP3.

10: CC3 channel is configured as input, IC3 is mapped on TI4FP3.

11: Reserved

Note: CC3S bits are writable only when the channel is OFF (CC3E and CC3NE= ’0’ in TIM1_CCER2
and updated).

16-bit advanced control timer (TIM1) RM0016

200/430

● Channel configured in input

7 6 5 4 3 2 1 0

IC3F[3:0] IC3PSC[1:0] CC3S[1:0]

rw rw rw rw rw rw rw

Bits 7:4 IC3F: Input Capture 3 Filter.

Bits 3:2 IC3PSC[1:0]: Input Capture 3 Prescaler.

Bits 1:0 CC3S[1:0]: Capture/Compare 3 Selection.

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC3 channel is configured as output.

01: CC3 channel is configured as input, IC3 is mapped on TI3FP3.

10: CC3 channel is configured as input, IC3 is mapped on TI4FP3.

11: Reserved

Note: CC3S bits are writable only when the channel is OFF (CC3E and CC3NE= ’0’ in TIM1_CCER2
and updated).

RM0016 16-bit advanced control timer (TIM1)

 201/430

17.7.12 Capture/compare mode register 4 (TIM1_CCMR4)

Address offset: 0x0B

Reset value: 0x00

Refer to the above CCMR1 register description.

● Channel configured in output

7 6 5 4 3 2 1 0

OC4CE OC4M[2:0] OC4PE OC4FE CC4S[1:0]

rw rw rw rw rw rw rw rw

Bit 7 OC4CE: Output Compare 4 Clear Enable.

Bits 6:4 OC4M[2:0]: Output Compare 4 Mode.

Bit 3 OC4PE: Output Compare 4 Preload Enable.

Bit 2 OC4FE: Output Compare 4 Fast Enable.

Bits 1:0 CC4S[1:0]: Capture/Compare 4 Selection.

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC4 channel is configured as output.

01: CC4 channel is configured as input, IC4 is mapped on TI3FP4.

10: CC4 channel is configured as input, IC4 is mapped on TI4FP4.

11: Reserved

Note: CC4S bits are writable only when the channel is OFF (CC4E and CC4NE= ’0’ in TIM1_CCER2
and updated).

16-bit advanced control timer (TIM1) RM0016

202/430

● Channel configured in input

17.7.13 Capture/compare enable register 1 (TIM1_CCER1)

Address offset: 0x0C

Reset value: 0x00

7 6 5 4 3 2 1 0

IC4F[3:0] IC4PSC[1:0] CC4S[1:0]

rw rw rw rw rw rw rw rw

Bits 7:4 IC4F: Input Capture 4 Filter.

Bits 3:2 IC4PSC[1:0]: Input Capture 4 Prescaler.

Bits 1:0 CC4S[1:0]: Capture/Compare 4 Selection.

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC4 channel is configured as output.

01: CC4 channel is configured as input, IC4 is mapped on TI3FP4.

10: CC4 channel is configured as input, IC4 is mapped on TI1FP4.

11: Reserved

Note: CC4S bits are writable only when the channel is OFF (CC4E and CC4NE= ’0’ in TIM1_CCER2
and updated).

7 6 5 4 3 2 1 0

CC2NP CC2NE CC2P CC2E CC1NP CC1NE CC1P CC1E

rw rw rw rw rw rw rw rw

Bit 7 CC2NP: Capture/Compare 2 Complementary output polarity

Refer to CC1NP description

Bit 6 CC2NE: Capture/Compare 2 Complementary output enable

Refer to CC1NE description

Bit 5 CC2P: Capture/Compare 2 output polarity

Refer to CC1P description

Bit 4 CC2E: Capture/Compare 2 output enable

Refer to CC1E description

Bit 3 CC1NP: Capture/Compare 1 Complementary output polarity

0: OC1N active high.

1: OC1N active low.
● This bit is no longer writeable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in

TIM1_BKR register) and CC1S=”00” (the channel is configured in output).
● On channels that have a complementary output, this bit is preloaded. If the CCPC bit is set in the

TIM1_CR2 register then the CC1NP active bit takes the new value from the preload bit only when
a commutation event (COM) is generated.

RM0016 16-bit advanced control timer (TIM1)

 203/430

Bit 2 CC1NE: Capture/Compare 1 Complementary output Enable.

0: Off - OC1N is not active. OC1N level is then function of MOE, OSSI, OSSR, OIS1, OIS1N and
CC1E bits.

1: On - OC1N signal is output on the corresponding output pin depending on MOE, OSSI, OSSR,
OIS1, OIS1N and CC1E bits.

Note: On channels that have a complementary output, this bit is preloaded. If the CCPC bit is set in
the TIM1_CR2 register then the CC1NE active bit takes the new value from the preload bit only
when a commutation event (COM) is generated.

Bit 1 CC1P: Capture/Compare 1 output Polarity.
● CC1 channel configured as output:

0 : OC1 active high

1 : OC1 active low

● CC1 channel configured as input for trigger function (see Figure 61):

0 : Trigger on a high level or rising edge of TI1F

1 : Trigger on a low level or falling edge of TI1F

● CC1 channel configured as input for capture function (see Figure 61):

0 : Capture on a rising edge of TI1F or TI2F

1 : Capture on a falling edge of TI1F or TI2F

– This bit is no longer writable as soon as LOCK level 2 or 3 has been programmed (LOCK
bits in TIM1_BKR register).

– On channels that have a complementary output, this bit is preloaded. If the CCPC bit is set
in the TIM1_CR2 register then the CC1P active bit takes the new value from the preload bit
only when a commutation event (COM) is generated.

Bit 0 CC1E: Capture/Compare 1 output Enable.
● CC1 channel is configured as output:

0: Off - OC1 is not active. OC1 level is then function of MOE, OSSI, OSSR, OIS1, OIS1N and
CC1NE bits.

1: On - OC1 signal is output on the corresponding output pin depending on MOE, OSSI, OSSR,
OIS1, OIS1N and CC1NE bits.

● CC1 channel is configured as input:

This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIM1_CCR1) or not.

0: Capture disabled.

1: Capture enabled.
Note: On channels that have a complementary output, this bit is preloaded. If the CCPC bit is set in

the TIM1_CR2 register then the CC1E active bit takes the new value from the preload bit only
when a commutation event (COM) is generated.

16-bit advanced control timer (TIM1) RM0016

204/430

Note: The state of the external I/O pins connected to the OCi channels depends on the OCi
channel state and the GPIO registers.

Table 34. Output control for complementary OCi and OCiN channels with break feature

Control bits Output states

MOE bit OSSI bit
OSSR

bit
CCiE bit

CCiNE
bit

OCi output state OCiN output state

1 X

0 0 0
Output Disabled (not driven by
the timer)

Output Disabled (not driven by
the timer)

0 0 1
Output Disabled (not driven by
the timer)

OCiREF + Polarity
OCiN=OCiREF xor CCiNP

0 1 0
OCiREF + Polarity

OCi=OCiREF xor CCiP
Output Disabled (not driven by
the timer)

0 1 1
OCiREF + Polarity + dead-
time

Complementary to OCiREF
(not OCiREF) + Polarity +
dead-time

1 0 0
Output Disabled (not driven by
the timer)

Output Disabled (not driven by
the timer)

1 0 1
Off-State (output enabled with
inactive state)
OCi=CCiP

OCiREF + Polarity

OCiN=OCiREF xor CCiNP

1 1 0
OCiREF + Polarity

OCi=OCiREF xor CCiP

Off-State (output enabled with
inactive state)

OCiN=CCiNP

1 1 1
OCiREF + Polarity + dead-
time

Complementary to OCiREF
(not OCiREF) + Polarity +
dead-time

0

0

x x x

Output Disabled (not driven by the timer)
0

0

0

1 Off-State (output enabled with inactive state)

Asynchronously: OCi=CCiP, OCiN=CCiNP

Then if the clock is present: OCi=OISi and OCiN=OISiN after a
dead-time, assuming that OISi and OISiN don’t correspond to
OCi and OCiN both to active state

1

1

1

RM0016 16-bit advanced control timer (TIM1)

 205/430

17.7.14 Capture/compare enable register 2 (TIM1_CCER2)

Address offset: 0x0D

Reset value: 0x00

17.7.15 Counter high (TIM1_CNTRH)

Address offset: 0x0E

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
CC4P CC4E CC3NP CC3NE CC3P CC3E

rw rw rw rw rw rw

Bits 7:6 Reserved

Bit 5 CC4P: Capture/Compare 4 output polarity.

Refer to CC1P description

Bit 4 CC4E: Capture/Compare 4 output enable.

Refer to CC1E description

Bit 3 CC3NP: Capture/Compare 3 Complementary output polarity.

Refer to CC1NP description

Bit 2 CC3NE: Capture/Compare 3 Complementary output Enable.

Refer to CC1NE description

Bit 1 CC3P: Capture/Compare 3 output polarity.

Refer to CC1P description

Bit 0 CC3E: Capture/Compare 3 output Enable.

Refer to CC1E description

7 6 5 4 3 2 1 0

CNT[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0 CNT[15:8]: Counter value (MSB).

16-bit advanced control timer (TIM1) RM0016

206/430

17.7.16 Counter low (TIM1_CNTRL)

Address offset: 0x0F

Reset value: 0x00

17.7.17 Prescaler high (TIM1_PSCRH)

Address offset: 0x10

Reset value: 0x00

17.7.18 Prescaler low (TIM1_PSCRL)

Address offset: 0x11

Reset value: 0x00

7 6 5 4 3 2 1 0

CNT[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 CNT[7:0]: Counter Value (LSB).

7 6 5 4 3 2 1 0

PSC[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0

PSC[15:8]: Prescaler value (MSB).
The prescaler value divides the CK_PSC clock frequency.

The counter clock frequency fCK_CNT is equal to fCK_PSC / (PSCR[15:0]+1).

PSCR contain the value which will be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIM1_EGR register or through trigger
controller when configured in trigger reset mode). This means that an update event must be generated
in order that a new prescaler value can be taken into account.

7 6 5 4 3 2 1 0

PSC[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 PSC[7:0]: Prescaler value (LSB).
The prescaler value divides the CK_PSC clock frequency.
The counter clock frequency fCK_CNT is equal to fCK_PSC / (PSCR[15:0]+1).
PSCR contain the value which will be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIM1_EGR register or through trigger
controller when configured in trigger reset mode).
This means that an update event must be generated in order that a new prescaler value can be
taken into account.

RM0016 16-bit advanced control timer (TIM1)

 207/430

17.7.19 Auto-reload register high (TIM1_ARRH)

Address offset: 0x12

Reset value: 0xFF

17.7.20 Auto-reload register low (TIM1_ARRL)

Address offset: 0x13

Reset value: 0xFF

17.7.21 Repetition counter register (TIM1_RCR)

Address offset: 0x14

Reset value: 0xFF

7 6 5 4 3 2 1 0

ARR[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0 ARR[15:8]: Autoreload value (MSB).

ARR is the value to be loaded in the actual auto-reload register.
Refer to the Section 17.3: TIM1 time base unit on page 140 for more details about ARR update and
behavior.
The counter is blocked while the auto-reload value is null.

7 6 5 4 3 2 1 0

ARR[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 ARR[7:0]: Autoreload value (LSB).

7 6 5 4 3 2 1 0

REP[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 REP[7:0]: Repetition counter value.

These bits allow the user to set-up the update rate of the compare registers (i.e. periodic transfers
from preload to shadow registers) when preload registers are enabled, as well as the update
interrupt generation rate if this interrupt is enabled.
Each time the REP_CNT related down-counter reaches zero, an update event is generated and it
restarts counting from REP value. As REP_CNT is reloaded with REP value only at the repetition
update event U_RC, any write to the TIM1_RCR register will not be taken in account until the next
repetition update event.
It means in PWM mode (REP+1) corresponds to:

– the number of PWM periods in edge-aligned mode

– the number of half PWM periods in center-aligned mode.

16-bit advanced control timer (TIM1) RM0016

208/430

17.7.22 Capture/compare register 1 high (TIM1_CCR1H)

Address offset: 0x15

Reset value: 0x00

17.7.23 Capture/compare register 1 low (TIM1_CCR1L)

Address offset: 0x16

Reset value: 0x00

7 6 5 4 3 2 1 0

CCR1[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR1[15:8]: Capture/compare 1 value (MSB).

● If the CC1 channel is configured as output (CC1S bits in TIM1_CCMR1 register):
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIM1_CCMR1 register (bit
OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update
event occurs.
The active capture/compare register contains the value to be compared to the counter TIM1_CNT
and signalled on OC1 output.

● If the CC1 channel is configured as input (CC1S bits in TIM1_CCMR1 register):
CCR1 is the counter value transferred by the last input capture 1 event (IC1). It is read-only in this
case.

7 6 5 4 3 2 1 0

CCR1[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR1[7:0]: Capture/Compare 1 Value (LSB).

RM0016 16-bit advanced control timer (TIM1)

 209/430

17.7.24 Capture/compare register 2 high (TIM1_CCR2H)

Address offset: 0x17

Reset value: 0x00

17.7.25 Capture/compare register 2 low (TIM1_CCR2L)

Address offset: 0x18

Reset value: 0x00

7 6 5 4 3 2 1 0

CCR2[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR2[15:8]: Capture/Compare 2 Value (MSB).

● If the CC2 channel is configured as output (CC2S bits in TIM1_CCMR2 register):
CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIM1_CCMR2 register (bit
OC2PE). Else the preload value is copied in the active capture/compare 2 register when an update
event occurs.
The active capture/compare register contains the value to be compared to the counter TIM1_CNT
and signalled on OC2 output.

● If the CC2 channel is configured as input (CC2S bits in TIM1_CCMR2 register):
CCR2 is the counter value transferred by the last input capture 2 event (IC2). It is read-only in this
case.

7 6 5 4 3 2 1 0

CCR2[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR2[7:0]: Capture/Compare Value (LSB).

16-bit advanced control timer (TIM1) RM0016

210/430

17.7.26 Capture/compare register 3 high (TIM1_CCR3H)

Address offset: 0x19

Reset value: 0x00

17.7.27 Capture/compare register 3 low (TIM1_CCR3L)

Address offset: 0x1A

Reset value: 0x00

7 6 5 4 3 2 1 0

CCR3[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR3[15:8]: Capture/Compare Value (MSB).

● If the CC3 channel is configured as output (CC3S bits in TIM1_CCMR3 register):
CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIM1_CCMR3 register (bit
OC3PE). Else the preload value is copied in the active capture/compare 3 register when an update
event occurs.
The active capture/compare register contains the value to be compared to the counter TIM1_CNT
and signalled on OC3 output.

● If the CC3 channel is configured as input (CC3S bits in TIM1_CCMR3 register):
CCR3 is the counter value transferred by the last input capture 3 event (IC3).

7 6 5 4 3 2 1 0

CCR3[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR3[7:0]: Capture/Compare Value (LSB).

RM0016 16-bit advanced control timer (TIM1)

 211/430

17.7.28 Capture/compare register 4 high (TIM1_CCR4H)

Address offset: 0x1B

Reset value: 0x00

17.7.29 Capture/compare register 4 low (TIM1_CCR4L)

Address offset: 0x1C

Reset value: 0x00

7 6 5 4 3 2 1 0

CCR4[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR4[15:8]: Capture/Compare Value (MSB).

● If the CC4 channel is configured as output (CC4S bits in TIM1_CCMR4 register):
CCR4 is the value to be loaded in the actual capture/compare 3 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIM1_CCMR4 register (bit
OC4PE). Else the preload value is copied in the active capture/compare 3 register when an update
event occurs.
The active capture/compare register contains the value to be compared to the counter TIM1_CNT
and signalled on OC4 output.

● If the CC4 channel is configured as input (CC4S bits in TIM1_CCMR4 register):
CCR4 is the counter value transferred by the last input capture 4 event (IC4).

7 6 5 4 3 2 1 0

CCR4[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR4[7:0]: Capture/Compare Value (LSB).

16-bit advanced control timer (TIM1) RM0016

212/430

17.7.30 Break register (TIM1_BKR)

Address offset: 0x1D

Reset value: 0x00

7 6 5 4 3 2 1 0

MOE AOE BKP BKE OSSR OSSI LOCK

rw rw rw rw rw rw rw rw

Bit 7 MOE: Main Output Enable.

This bit is cleared asynchronously by hardware as soon as the break input is active. It is set by
software or automatically depending on the AOE bit. It is acting only on the channels which are
configured in output.

0: OC and OCN outputs are disabled or forced to idle state.

1: OC and OCN outputs are enabled if their respective enable bits are set (CCiE in TIM1_CCERx
registers).

See OC/OCN enable description for more details (Section 17.7.13 on page 202).

Bit 6 AOE: Automatic Output Enable.

0: MOE can be set only by software

1: MOE can be set by software or automatically at the next update event (if the break input is not be
active)

Note: This bit can no longer be modified as long as LOCK level 1 has been programmed (LOCK bits
in the TIM1_BKR register).

Bit 5 BKP: Break polarity.

0: Break input BKIN is active low

1: Break input BKIN is active high
Note: This bit can no longer be modified as long as LOCK level 1 has been programmed (LOCK bits

in the TIM1_BKR register).

Bit 4 BKE: Break enable.

0: Break input (BKIN) disabled

1: Break input (BKIN) enabled
Note: This bit can no longer be modified as long as LOCK level 1 has been programmed (LOCK bits

in the TIM1_BKR register).

Bit 3 OSSR: Off-State Selection for Run mode.

This bit is used when MOE=1 on channels with a complementary output which are configured as
outputs.
See OC/OCN enable description for more details (Section 17.7.13: Capture/compare enable
register 1 (TIM1_CCER1) on page 202).
0 : When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0).
1 : When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCiE=1 or
CCiNE=1. Then, OC/OCN enable output signal=1

Note: This bit can no longer be modified as soon as the LOCK level 2 has been programmed (LOCK
bits in TIM1_BKR register).

RM0016 16-bit advanced control timer (TIM1)

 213/430

Note: As the bits AOE, BKP, BKE, OSSR and OSSI can be write-locked depending on the LOCK
configuration, it can be necessary to configure all of them during the first write access to the
TIM1_BKR register.

Bit 2 OSSI: Off-State Selection for Idle mode.

This bit is used when MOE=0 on channels configured as outputs.

See OC enable description for more details (Section 17.7.13 on page 202).

0: When inactive, OCi outputs are disabled (OCi enable output signal=0).

1: When inactive, OCi outputs are forced first with their idle level as soon as CCiE=1 (OC enable
output signal=1)

Note: This bit can no longer be modified as soon as the LOCK level 2 has been programmed (LOCK
bits in the TIM1_BKR register).

Bits 1:0 LOCK[1:0]: Lock configuration.

These bits offer a write protection against software errors.

00: LOCK OFF - No bits are write protected.

01: LOCK Level 1 = OISi bit in TIM1_OISR register and BKE/BKP/AOE bits in TIM1_BKR register
can no longer be written.

10: LOCK Level 2 = LOCK Level 1 + CC Polarity bits (CCiP bits in TIM1_CCERx registers, as long
as the related channel is configured in output through the CCiS bits) as well as the OSSR and OSSI
bits can no longer be written.

11: LOCK Level 3 = LOCK Level 2 + CC Control bits (OCiM and OCiPE bits in TIM1_CCMRx
registers, as long as the related channel is configured in output through the CCiS bits) can no longer
be written.

Note: The LOCK bits can be written only once after the reset. Once the TIM1_BKR register has been
written, their content is frozen until the next reset.

16-bit advanced control timer (TIM1) RM0016

214/430

17.7.31 Dead-time register (TIM1_DTR)

Address offset: 0x1E

Reset value: 0x00

7 6 5 4 3 2 1 0

DTG7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 DTG[7:0]: Dead-Time Generator set-up.

This bit-field defines the duration of the dead-time inserted between the complementary outputs. DT
corresponds to this duration. tCK_PSC is the TIM1 clock pulse.

DTG[7:5]=0xx => DT=DTG[7:0]x tdtg with tdtg=tCK_PSC. (f1)

DTG[7:5]=10x => DT=(64+DTG[5:0])x tdtg with tdtg=2xtCK_PSC. (f2)

DTG[7:5]=110 => DT=(32+DTG[4:0])x tdtg with tdtg=8xtCK_PSC. (f3)

DTG[7:5]=111 => DT=(32+DTG[4:0])x tdtg with tdtg=16xtCK_PSC. (f4)

Example:

If tCK_PSC=125 ns (8 MHz), dead-time possible values are:

DTG[7:0] = 0 to 7Fh from 0 to 15875 ns in 125 ns steps (refer to f1),

DTG[7:0] = 80h to BFh from 16 µs to 31750 ns in 250 ns steps (refer to f2),

DTG[7:0] = C0h to DFh from 32 µs to 63 µs in 1µs steps (refer to f3),

DTG[7:0] = E0h to FFh from 64 µs to 126 µs in 2 µs steps (refer to f4),

Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK
bits in the TIM1_BKR register).

RM0016 16-bit advanced control timer (TIM1)

 215/430

17.7.32 Output idle state register (TIM1_OISR)

Address offset: 0x1F

Reset value: 0x00

17.7.33 TIM1 register map and reset values

7 6 5 4 3 2 1 0

Reserved
OIS4 OIS3N OIS3 OIS2N OIS2 OIS1N OIS1

rw rw rw rw rw rw rw

Bit 6 OIS4: Output Idle state 4 (OC4 output).

Refer to OIS1 bit

Bit 5 OIS3N: Output Idle state 3 (OC3N output).

Refer to OIS1N bit

Bit 4 OIS3: Output Idle state 3 (OC3 output).

Refer to OIS1 bit

Bit 3 OIS2N: Output Idle state 2 (OC2N output).

Refer to OIS1N bit

Bit 2 OIS2: Output Idle state 2 (OC2 output).

Refer to OIS1 bit

Bit 1 OIS1N: Output Idle state 1 (OC1N output).

0: OC1N=0 after a dead-time when MOE=0

1: OC1N=1 after a dead-time when MOE=0

Note: This bit can no longer be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in the TIM1_BKR register).

Bit 0 OIS1: Output Idle state 1 (OC1 output).

0: OC1=0 (after a dead-time if OC1N is implemented) when MOE=0

1: OC1=1 (after a dead-time if OC1N is implemented) when MOE=0

Note: This bit can no longer be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in the TIM1_BKR register).

Table 35. TIM1 register map

Address
offset

Register Name 7 6 5 4 3 2 1 0

0x00
TIM1_CR1
Reset Value

ARPE
0

CMS1
0

CMS0
0

DIR
0

OPM
0

URS
0

UDIS
0

CEN
0

0x01
TIM1_CR2
Reset Value

TI1S
0

MMS2
0

MMS1
0

MMS0
0

-
0

COMS
0

-
0

CCPC
0

0x02
TIM1_SMCR
Reset Value

MSM
0

TS2
0

TS1
0

TS0
0

-
0

SMS2
0

SMS1
0

SMS0
0

16-bit advanced control timer (TIM1) RM0016

216/430

0x03
TIM1_ETR
Reset Value

ETP
0

ECE
0

ETPS1
0

ETPS0
0

EFT3
0

EFT2
0

EFT1
0

EFT0
0

0x04
TIM1_IER

Reset Value
BIE
0

TIE
0

COMIE
0

CC4IE
0

CC3IE
0

CC2IE
0

CC1IE
0

UIE
0

0x05
TIM1_SR1

Reset Value
BIF
0

TIF
0

COMIF
0

CC4IF
0

CC3IF
0

CC2IF
0

CC1IF
0

UIF
0

0x06
TIM1_SR2

Reset Value
-
0

-
0

-
0

CC4OF
0

CC3OF
0

CC2OF
0

CC1OF
0

-
0

0x07
TIM1_EGR
Reset Value

BG
0

TG
0

COMG
0

CC4G
0

CC3G
0

CC2G
0

CC1G
0

UG
0

0x08

TIM1_CCMR1
(output mode)
Reset Value

OC1CE

0

OC1M2

0

OC1M1

0

OC1M0

0

OC1PE

0

OC1FE

0

CC1S1

0

CC1S0

0

TIM1_CCMR1
(input mode)
Reset value

IC1F3

0

IC1F2

0

IC1F1

0

IC1F0

0

IC1PSC1

0

IC1PSC0

0

CC1S1

0

CC1S0

0

0x09

TIM1_ CCMR2
(output mode)

OC2CE

0

OC2M2

0

OC2M1

0

OC2M0

0

OC2PE

0

OC2FE

0

CC2S1

0

CC2S0

0

TIM1_CCMR2
(input mode)

IC2F3

0

IC2F2

0

IC2F1

0

IC2F0

0

IC2PSC1

0

IC2PSC0

0

CC2S1

0

CC2S0

0

0x0A

TIM1_CCMR3
(output mode)

OC3CE

0

OC3M2

0

OC3M1

0

OC3M0

0

OC3PE

0

OC3FE

0

CC3S1

0

CC3S0

0

TIM1_CCMR3
(input mode)

IC3F3

0

IC3F2

0

IC3F1

0

IC3F0

0

IC3PSC1

0

IC3PSC0

0

CC3S1

0

CC3S0

0

0x0Bh

TIM1_CCMR4
(output mode)

OC4CE

0

OC4M2

0

OC4M1

0

OC4M0

0

OC4PE

0

OC4FE

0

CC4S1

0

CC4S0

0

TIM1_CCMR4
(input mode)

IC4F3

0

IC4F2

0

IC4F1

0

IC4F0

0

IC4PSC1

0

IC4PSC0

0

CC4S1

0

CC4S0

0

0x0Ch TIM1_CCER1 CC2NP
0

CC2NE
0

CC2P
0

CC2E
0

CC1NP
0

CC1NE
0

CC1P
0

CC1E
0

0x0Dh TIM1_CCER2 -
0

-
0

CC4P
0

CC4E
0

CC3NP
0

CC3NE
0

CC3P
0

CC3E
0

0x0Eh TIM1_CNTRH CNT15
0

CNT14
0

CNT13
0

CNT12
0

CNT11
0

CNT10
0

CNT9
0

CNT8
0

0x0Fh TIM1_CNTRL CNT7
0

CNT6
0

CNT5
0

CNT4
0

CNT3
0

CNT2
0

CNT1
0

CNT0
0

0x10h TIM1_PSCRH PSC15
0

PSC14
0

PSC13
0

PSC12
0

PSC11
0

PSC10
0

PSC9
0

PSC8
0

0x11h TIM1_PSCRL PSC7
0

PSC6
0

PSC5
0

PSC4
0

PSC3
0

PSC2
0

PSC1
0

PSC0
0

0x12h TIM1_ARRH ARR15
1

ARR14
1

ARR13
1

ARR12
1

ARR11
1

ARR10
1

ARR9
1

ARR8
1

Table 35. TIM1 register map (continued)

Address
offset

Register Name 7 6 5 4 3 2 1 0

RM0016 16-bit advanced control timer (TIM1)

 217/430

0x13h TIM1_ARRL ARR7
1

ARR6
1

ARR5
1

ARR4
1

ARR3
1

ARR2
1

ARR1
1

ARR0
1

0x14h TIM1_RCR REP7
0

REP6
0

REP5
0

REP4
0

REP3
0

REP2
0

REP1
0

REP0
0

0x15h TIM1_CCR1H CCR115
0

CCR114
0

CCR113
0

CCR112
0

CCR111
0

CCR110
0

CCR19
0

CCR18
0

0x16h TIM1_CCR1L CCR17
0

CCR16
0

CCR15
0

CCR14
0

CCR13
0

CCR12
0

CCR11
0

CCR10
0

0x17h TIM1_CCR2H CCR215
0

CCR214
0

CCR213
0

CCR212
0

CCR211
0

CCR210
0

CCR29
0

CCR28
0

0x18h TIM1_CCR2L CCR27
0

CCR26
0

CCR25
0

CCR24
0

CCR23
0

CCR22
0

CCR21
0

CCR20
0

0x19h TIM1_CCR3H CCR315
0

CCR314
0

CCR313
0

CCR312
0

CCR311
0

CCR310
0

CCR39
0

CCR38
0

0x1Ah TIM1_CCR3L CCR37
0

CCR36
0

CCR35
0

CCR34
0

CCR33
0

CCR32
0

CCR31
0

CCR30
0

0x1Bh TIM1_CCR4H CCR415
0

CCR414
0

CCR413
0

CCR412
0

CCR411
0

CCR410
0

CCR49
0

CCR48
0

0x1Ch TIM1_CCR4L CCR47
0

CCR46
0

CCR45
0

CCR44
0

CCR43
0

CCR42
0

CCR41
0

CCR40
0

0x1Dh TIM1_BKR MOE
0

AOE
0

BKP
0

BKE
0

OSSR
0

OSSI
0

LOCK
0

LOCK
0

0x1Eh TIM1_DTR DTG7
0

DTG6
0

DTG5
0

DTG4
0

DTG3
0

DTG2
0

DTG1
0

DTG0
0

0x1Fh TIM1_OISR -
0

OIS4
0

OIS3N
0

OIS3
0

OIS2N
0

OIS2
0

OIS1N
0

OIS1
0

Table 35. TIM1 register map (continued)

Address
offset

Register Name 7 6 5 4 3 2 1 0

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

218/430

18 16-bit general purpose timers (TIM2, TIM3, TIM5)

18.1 Introduction
This chapter describes TIM2 and TIM3 which are identical timers, with the exception that
TIM2 has three channels and TIM3 has two channels. TIM5 is identical to TIM2 except that
it has two addtional registers to support timer synchronization and chaining.

Each timer consists of a 16-bit up-counting auto-reload counter driven by a programmable
prescaler.

It may be used for a variety of purposes, including:

● Time base generation

● Measuring the pulse lengths of input signals (input capture)

● Generating output waveforms (output compare, PWM and One Pulse Mode)

● Interrupt capability on various events (capture, compare, overflow)

● Synchronization with other timers or external signals (external clock, reset, trigger and
enable) (in devices with TIM5)

The timer clock can be sourced from internal clocks.

Only the main features of the general purpose timers are given in this chapter.
Refer to the corresponding paragraphs of Section 17: 16-bit advanced control timer (TIM1)
on page 137 for more details on each feature.

18.2 TIM2/TIM3 main features
TIM2/TIM3 features include:

● 16-bit up counting auto-reload counter.

● 4-bit programmable prescaler allowing the counter clock frequency to be divided “on
the fly” by any power of 2 from 1 to 32768.

● 3 independent channels for:

– Input capture

– Output compare

– PWM generation (edge-aligned Mode)

– One Pulse Mode output

● Interrupt request generation on the following events:

– Update: counter overflow, counter initialization (by software)

– Input capture

– Output compare

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

 219/430

18.3 TIM5 main features
TIM5 features include:

● 16-bit up counting auto-reload counter.

● 4-bit programmable prescaler allowing the counter clock frequency to be divided “on
the fly” by any power of 2 from 1 to 32768.

● 3 independent channels for:

– Input capture

– Output compare

– PWM generation (edge-aligned Mode)

– One Pulse Mode output

● Synchronization circuit to control the timer with external signals and to interconnect
several timers

● Interrupt generation on the following events:

– Update: counter overflow, counter initialization (by software)

– Input capture

– Output compare

18.4 TIM2/TIM3/TIM5 functional description

Figure 79. TIM2/TIM3 block diagram

Prescaler AutoReload RegisterUP-DOWN COUNTER

Capture/Compare 1 Register

Capture/Compare 2 Register

UEV

fMASTER

OC1REF

OC2REF

CK_PSC

IC1

IC2
Prescaler

Prescaler

IC2PS

IC1PS

CC1I

CC2I

TIMx_CH2

OC1

OC2

CK_CNT

UEV

TIME BASE UNIT

INPUT OUTPUT

CAPTURE COMPARE ARRAY

TI1

TI2
TIMx_CH2

TIMx_CH1

 STAGESTAGE

TIMx_CH1

Reg

event

Legend:

Preload registers transferred
to shadow registers on update

interrupt

event (UEV) according to
control bit

Capture/Compare 3 Register
OC3REFIC3

Prescaler
IC3PS

CC3I

TIMx_CH3
OC3

UEV
TI3

TIMx_CH3

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

220/430

Figure 80. TIM5 block diagram

18.4.1 Time base unit

The timer has a Time base unit that includes:

● 16-bit up counter

● 16-bit auto-reload register

● 4-bit programmable prescaler

There is no repetition counter.

The clock source for is the internal clock (fMASTER). It is connected directly to the CK_PSC
clock that feeds the prescaler driving the counter clock CK_CNT.

Figure 81. Time base unit

Prescaler AutoReload RegisterUP-DOWN COUNTER

Capture/Compare 1 Register

Capture/Compare 2 Register

UEV

fMASTER

OC1REF

OC2REF

CK_PSC

IC1

IC2
Prescaler

Prescaler

IC2PS

IC1PS

CC1I

CC2I

TIMx_CH2

OC1

OC2

CK_CNT

UEV

TIME BASE UNIT

CLOCK/TRIGGER CONTROLLER

INPUT OUTPUT

CAPTURE COMPARE ARRAY

TI1

TI2
TIMx_CH2

TIMx_CH1

 STAGESTAGE

TIMx_CH1

INTx
TRGO from other TIM timers

TRGO to TIM1/TIM6 timers

Reg

event

Legend:

Preload registers transferred
to shadow registers on update

interrupt

event (UEV) according to
control bit

TRC

Capture/Compare 3 Register
OC3REFIC3

Prescaler
IC3PS

CC3I

TIMx_CH3
OC3

UEV
TI3

TIMx_CH3

Clock/reset/enable

Prescaler

Auto-Reload Register

16-bit Counter
CK_PSC CK_CNT

TIMx_PSCR TIMx_CNTRH, CNTRL

TIMx_ARRH, ARRL

UEV
UIF

UEV

Reg

event

Legend:

Preload registers transferred
to shadow registers on update

control bit

interrupt

event (UEV) according to

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

 221/430

For more details refer to Section 17.3: TIM1 time base unit on page 140.

Prescaler

The prescaler implementation is as follows:

● The prescaler is based on a 16-bit counter controlled through a 4-bit register (in
TIMx_PSCR register). It can be changed on the fly as this control register is buffered. It
can divide the counter clock frequency by any power of 2 from 1 to 32768.

The counter clock frequency is calculated as follows:

fCK_CNT = fCK_PSC/2(PSCR[3:0])

The prescaler value is loaded through a preload register. The shadow register, which
contains the current value to be used is loaded as soon as the LS Byte has been written.

The new prescaler value is taken into account in the following period (after the next counter
update event).

Read operations to the TIMx_PSCR registers access the preload registers, so no special
care needs to be taken to read them.

Counter operation

Refer to Section 17.3.4: Up-counting mode on page 142.

18.4.2 Clock/trigger controller

A clock/trigger controller and the associated TIMx_CR2 and TIMx_SMCR registers are not
implemented in TIM2/TIM3, only in TIM5. Refer to Section 17.4: TIM1 clock/trigger controller
on page 150

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

222/430

18.4.3 Capture/compare channels

Input stage

Refer to Section 17.5: TIM1 capture/compare channels on page 163.

There are two input channels, as shown in Figure 82: Input stage block diagram.

Figure 82. Input stage block diagram

Figure 83. Input stage of TIM 2 channel 1

IC1

IC2

Input Filter &
Edge Detector

TI1FP1

TRC

TRC

TI1FP2

TI2FP1
TI2FP2

TI1

TI2

XOR

TIMx_CH1

TIMx_CH2

to clock/trigger controller

TRCTI1F_ED

to capture/compare channels
Input Filter &
Edge Detector

IC3TI3TIMx_CH3 Input Filter &
Edge Detector

TI1 0

1

TIM2_CCER1

CC1P

divider
/1, /2, /4, /8

ICPS[1:0]

TI1F_ED

filter

ICF[3:0]

down-counter

TIM2_CCMR1

Edge
Detector

TI1F_rising

TI1F_falling

to the clock/trigger controller

TI1FP1

11

01

TIM2_CCMR1

CC1S[1:0]

IC1TI2FP1

TRC

(from channel 2)

(from clock/trigger
controller)

10

fMASTER

TIM2_CCER1

CC1E

ICPS

TI1F

0

1

TI2F_rising

TI2F_falling
(from channel 2)

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

 223/430

Output stage

Refer to Section 17.5.4: Output stage on page 168, Section 17.5.5: Forced output mode on
page 169, Section 17.5.7: PWM mode on page 171.

As shown in Figure 84. TIMx outputs have no deadtime or complementary outputs.

Figure 84. Output stage

The output stage generates an intermediate waveform which is then used for reference:
OCxREF (active high). Polarity acts at the end of the chain (see Figure 85).

Figure 85. Output stage of channel 1

18.5 TIM2/TIM3/TIM5 interrupts
The timers have 4 interrupt request sources:

● Capture/Compare 3 Interrupt

● Capture/Compare 2 Interrupt

● Capture/Compare 1 Interrupt

● Update Interrupt

● Trigger interrupt (TIM5 only)

To use the interrupt features, for each interrupt channel used, set the desired CC3IE and/or
CC2IE and/or CC1IE bits in the TIMx_IER register to enable interrupt requests.

The different interrupt sources can be also generated by software using the corresponding
bits in the TIMx_EGR register.

OC1REF

OC2REF

OC3REF

output
control

output
control

output
control

TIMx_CH1
OC1

from capture/compare

channels
TIMx_CH2

OC2

TIMx_CH3
OC3

Output Mode
Counter > CCR1

Counter = CCR1 Controller

TIMx_CCMR1

OC1M[2:0]

OC1REF

0

1

CC1P

TIMx_CCER1

Output
Enable
Circuit

OC1

CC1E TIMx_CCER1

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

224/430

18.6 TIM2/TIM3/TIM5 registers

18.6.1 Control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0

ARPE
Reserved

OPM URS UDIS CEN

rw rw rw rw rw

Bit 7 ARPE: Auto-Reload Preload Enable

0: TIMx_ARR register is not buffered through a preload register. It can be written directly.

1: TIMx_ARR register is buffered through a preload register.

Bits 6:4 Reserved

Bit 3 OPM: One Pulse Mode

0: Counter is not stopped at update event

1: Counter stops counting at the next update event (clearing the CEN bit)

Bit 2 URS: Update Request Source

0: When enabled, an update interrupt request is sent as soon as registers are updated (counter
overflow)

1: When enabled, an update interrupt request is sent only when the counter reaches the overflow.

Bit 1 UDIS: Update Disable

0: An Update event is generated as soon as a counter overflow occurs or a software update is
generated or an hardware reset is generated by the clock/trigger mode controller. Buffered registers
are then loaded with their preload values

1: An Update event is not generated, shadow registers keep their value (ARR, PSC, CCRx). The
counter and the prescaler are re-initialized if the UG bit is set .

Bit 0 CEN: Counter Enable.

0: Counter disabled

1: Counter enabled

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

 225/430

18.6.2 Control register 2 (TIM5_CR2)

Address offset: 0x01

Reset value: 0x00

Note: This register is only available in TIM5, see Table 38 on page 243.

7 6 5 4 3 2 1 0

Reserved
MMS[2:0]

Reserved
rw rw rw

Bit 7 Reserved, must be kept cleared.

Bits 6:4 MMS[2:0]: Master mode selection.

These bits select the information to be sent in master mode to TIM1 and TIM2for synchronization
(TRGO). The combination is as follows:

000: Reset - the UG bit from the TIM3_EGR register is used as trigger output (TRGO). If the reset is
generated by the trigger input (clock/trigger mode controller configured in trigger reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter Enable signal is used as trigger output (TRGO). It is used to start several
timers at the same time or to control a window in which a slave timer is enabled. The Counter Enable
signal is generated by a logic OR between CEN control bit and the trigger input when configured in
gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on
TRGO, except if the master/slave mode is selected (see the MSM bit description in TIM3_SMCR
register).
010: Update - The update event is selected as trigger output (TRGO).
011: Reserved
100: Reserved
101: Reserved
111: Reserved

Bits 3:0 Reserved, must be kept cleared.

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

226/430

18.6.3 Slave mode control register (TIM5_SMCR)

Address offset: 0x02

Reset value: 0x00

Note: This register is only available in TIM5, see Table 38 on page 243.

7 6 5 4 3 2 1 0

MSM TS[2:0]
Reserved

SMS[2:0]

rw rw rw rw rw rw rw

Bit 7 MSM Master/slave mode.
0: No action

1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization
between timers (through TRGO).

Bits 6:4 TS[2:0] Trigger Selection.
This bit-field selects the trigger input to be used to synchronize the counter.

000: internal trigger ITR0 connected to TIM6 TRGO
001: reserved
010: reserved
011: internal trigger ITR3 connected to TIM1 TRGO
100: reserved
101: reserved
110: reserved
111: reserved
Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid
wrong edge detections at the transition.

Bit 3 Reserved, always read as 0.

Bits 2:0 SMS[2:0] Clock/trigger/slave mode selection.

When external signals are selected, the active edge of the trigger signal (TRGI) is linked to the polarity
selected on the external input (see Input Control register and Control Register description).

000: Clock/trigger controler disabled - if CEN = ‘1’ then the prescaler is clocked directly by the
internal clock.
001: Reserved.
010: Reserved.
011: Reserved.
100: Trigger reset mode - Rising edge of the selected trigger signal (TRGI) reinitializes the counter
and generates an update of the registers.
101: Gated Mode - The counter clock is enabled when the trigger signal (TRGI) is high. The counter
stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are
controlled.
110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only
the start of the counter is controlled.
111: External clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

 227/430

18.6.4 Interrupt enable register (TIMx_IER)

Address offset: 0x01 (TIM2/3), 0x03 (TIM5)

Reset value: 0x00

18.6.5 Status register 1 (TIMx_SR1)

Address offset: 0x02 (TIM2/3), 0x04 (TIM5)

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
TIE

Reserved
CC2IE CC2IE CC1IE UIE

rw rw rw rw rw

Bits 7 Reserved

Bit 6 TIE: Trigger Interrupt Enable.

0: Trigger Interrupt disabled.

1: Trigger Interrupt enabled.

Note: In TIM2/TIM3 this bit is reserved.

Bits 5:4 Reserved, must be kept cleared.

Bit 3 CC3IE: Capture/Compare 3 Interrupt Enable

0: CC3 Interrupt disabled

1: CC3 Interrupt enabled

Bit 2 CC2IE: Capture/Compare 2 Interrupt Enable

0: CC2 Interrupt disabled

1: CC2 Interrupt enabled

Bit 1 CC1IE: Capture/Compare 1 Interrupt Enable

0: CC1 Interrupt disabled

1: CC1 Interrupt enabled

Bit 0 UIE: Update Interrupt Enable.

0: Update Interrupt disabled

1: Update Interrupt enabled

7 6 5 4 3 2 1 0

Reserved
TIF

Reserved
CC3IF CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bit 7 Reserved

Bit 6 TIF: Trigger Interrupt Flag.

This flag is set by hardware on trigger event (active edge detected on TRGI signal, both edges in
case gated mode is selected). It is cleared by software.

0: No trigger event occurred.

1: Trigger interrupt pending.
Note: In TIM2/TIM3 this bit is reserved.

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

228/430

18.6.6 Status register 2 (TIMx_SR2)

Address offset: 0x03 (TIM2/3), 0x05 (TIM5)

Reset value: 0x00

Bits 5:4 Reserved, must be kept cleared.

Bit 2 CC2IF: Capture/Compare 2 Interrupt Flag

Refer to CC1IF description

Bit 1 CC1IF: Capture/Compare 1 Interrupt Flag
If channel CC1 is configured as output:

This flag is set by hardware when the counter matches the compare value. It is cleared by software.
0: No match.
1: The content of the counter TIMx_CNT has matched the content of the TIMx_CCR1 register.

If channel CC1 is configured as input:

This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1L
register.

0: No input capture occurred.

1: The counter value has been captured in TIMx_CCR1 register (An edge has been detected on IC1
which matches the selected polarity).

Bit 0 UIF: Update Interrupt Flag

This bit is set by hardware on an update event. It is cleared by software.

0: No update occurred.

1: Update interrupt pending. This bit is set by hardware when the registers are updated:

–At overflow if UDIS=0 in the TIMx_CR1 register.
–When CNT is re-initialized by software using the UG bit in TIMx_EGR register, if URS=0 and

UDIS=0 in the TIMx_CR1 register.

7 6 5 4 3 2 1 0

Reserved
CC3OF CC2OF CC1OF

Reserved
rc_w0 rc_w0 rc_w0

Bits 7:4 Reserved

Bit 3 CC3OF: Capture/Compare 3 Overcapture Flag

Refer to CC1OF description

Bit 2 CC2OF: Capture/Compare 2 Overcapture Flag

Refer to CC1OF description

Bit 1 CC1OF: Capture/Compare 1 Overcapture Flag

This flag is set by hardware only when the corresponding channel is configured in input capture
mode. It is cleared by software by writing it to ‘0’.

0: No overcapture has been detected.

1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set

Bit 0 Reserved, forced by hardware to 0.

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

 229/430

18.6.7 Event generation register (TIMx_EGR)

Address offset: 0x04 (TIM2/3), 0x06 (TIM5)

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
TG

Reserved
CC3G CC2G CC1G UG

w w w w w

Bit 7 Reserved.

Bit 6 TG: Trigger Generation.

This bit is set by software in order to generate an event, it is automatically cleared by hardware.

0: No action.

1: The TIF flag is set in TIM1_SR1 register. An interrupt is generated if enabled by the TIE bit.

Note: In TIM2/TIM3 this bit is reserved.

Bits 5:4 Reserved.

Bit 3 CC3G: Capture/Compare 3 Generation

Refer to CC1G description

Bit 2 CC2G: Capture/Compare 2 Generation.

Refer to CC1G description

Bit 1 CC1G: Capture/Compare 1 Generation.

This bit is set by software in order to generate an event, it is automatically cleared by hardware.
0: No action

1: A capture/compare event is generated on channel 1:

–If the CC1 channel is configured in output mode:
CC1IF flag is set, and the corresponding interrupt request is sent if enabled.

–If the CC1 channel configured in input mode:

The current value of the counter is captured in the TIMx_CCR1 register. The CC1IF flag is set, and
the corresponding interrupt request is sent if enabled. The CC1OF flag is set if the CC1IF flag was
already high.

Bit 0 UG: Update Generation

This bit can be set by software, it is automatically cleared by hardware.

0: No action

1: Re-initializes the counter and generates an update of the registers. Note that the prescaler
counter is cleared too.

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

230/430

18.6.8 Capture/compare mode register 1 (TIMx_CCMR1)

The channel can be used in input (capture mode) or in output (compare mode). The
direction of the channel is defined by configuring the CC1S bits. All the other bits of this
register have a different function in input and in output mode. For a given bit, OCxx
describes its function when the channel is configured in output, ICxx describes its function
when the channel is configured in input. So be aware that the same bit can have a different
meaning for the input stage and for the output stage.

Address offset: 0x05 (TIM2/3), 0x07 (TIM5)

Reset value: 0x00

● Channel configured in output

7 6 5 4 3 2 1 0

Reserved
OC1M[2:0] OC1PE

Reserved
CC1S[1:0]

rw rw rw rw rw rw

Bit 7 Reserved

Bits 6:4 OC1M[2:0]: Output Compare 1 Mode

These bits defines the behavior of the output reference signal OC1REF from which OC1 is derived.
OC1REF is active high whereas OC1 active level depends on the CC1P bit.

000 : Frozen - The comparison between the output compare register TIMx_CCR1 and the counter
TIMx_CNT has no effect on the outputs.

001 : Set channel 1 to active level on match. OC1REF signal is forced high when the counter
TIMx_CNT matchs the capture/compare register 1 (TIMx_CCR1).

010 : Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter
TIMx_CNT matchs the capture/compare register 1 (TIMx_CCR1).

011 : Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.

100 : Force inactive level - OC1REF is forced low.

101 : Force active level - OC1REF is forced high.

110 : PWM mode 1 - In up-counting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1 else
inactive. In down-counting, channel 1 is inactive (OC1REF=‘0’) as long as TIMx_CNT>TIMx_CCR1
else active (OC1REF=’1’).

111 : PWM mode 2 - In up-counting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1 else
active.

Note: In PWM mode 1 or 2, the OCiREF level changes only when the result of the comparison
changes or when the output compare mode switches from “frozen” mode to “PWM” mode.
Refer to Section 17.5.7 on page 171 for more details.

Bit 3 OC1PE: Output Compare 1 Preload Enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value
is taken in account immediately.

1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register.
TIMx_CCR1 preload value is loaded in the shadow register at each update event.

Note: For correct operation, preload registers must be enabled when the timer is in PWM mode. This
is not mandatory in one pulse mode (OPM bit set in TIMx_CR1 register).

Bit 2 Reserved.

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

 231/430

● Channel configured in input

Bits 1:0 CC1S[1:0]: Capture/Compare 1 Selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC1 channel is configured as output.

01: CC1 channel is configured as input, IC1 is mapped on TI1FP1.

10: CC1 channel is configured as input, IC1 is mapped on TI2FP1.

11: Reserved

Note: CC1S bits are writable only when the channel is OFF (CC1E= ’0’ in TIMx_CCER1 and
updated).

7 6 5 4 3 2 1 0

IC1F[3:0] IC1PSC[1:0] CC1S[1:0]

rw rw rw rw rw rw rw rw

Bits 7:4 IC1F[3:0]: Input Capture 1 Filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied
to TI1. The digital filter is made of an event counter in which N events are needed to validate a
transition on the output:

0000: No filter, sampling is done at fMASTER.

0001: fSAMPLING= fMASTER, N=2.

0010: fSAMPLING= fMASTER, N=4.

0011: fSAMPLING= fMASTER, N=8.

0100: fSAMPLING= fMASTER/2, N=6.

0101: fSAMPLING= fMASTER/2, N=8.

0110: fSAMPLING= fMASTER/4, N=6.

0111: fSAMPLING= fMASTER/4, N=8.

1000: fSAMPLING= fMASTER/8, N=6.

1001: fSAMPLING= fMASTER/8, N=8.

1010: fSAMPLING= fMASTER/16, N=5.

1011: fSAMPLING= fMASTER/16, N=6.

1100: fSAMPLING= fMASTER/16, N=8.

1101: fSAMPLING= fMASTER/32, N=5.

1110: fSAMPLING= fMASTER/32, N=6.

1111: fSAMPLING= fMASTER/32, N=8.

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

232/430

18.6.9 Capture/compare mode register 2 (TIMx_CCMR2)

Note: Refer to Capture/compare mode register 1 (TIM1_CCMR1) on page 195 for details on using
these bits.

Address offset: 0x06 (TIM2/3), 0x08 (TIM5)

Reset value: 0x00

● Channel configured in output

Bits 3:2 IC1PSC[1:0]: Input Capture 1 Prescaler

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).

The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register).

00: no prescaler, capture is done each time an edge is detected on the capture input.

01: Capture is done once every 2 events.

10: Capture is done once every 4 events.

11: Capture is done once every 8 events.
Note: The internal event counter is not reset when IC1PSC is changed on the fly. In this case the old

value is used until the next capture occurs. To force a new value to be taken in account
immediately, you can clear the CC1E bit and set it again.

Bits 1:0 CC1S[1:0]: Capture/Compare 1 Selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC1 channel is configured as output.

01: CC1 channel is configured as input, IC1 is mapped on TI1FP1.

10: CC1 channel is configured as input, IC1 is mapped on TI2FP1.

11: Reserved

Note: CC1S bits are writable only when the channel is OFF (CC1E= ’0’ in TIMx_CCER1 and
updated).

7 6 5 4 3 2 1 0

Reserved
OC2M[2:0] OC2PE

Reserved
CC2S[1:0]

rw rw rw rw rw

Bit 7 Reserved

Bits 6:4 OC2M[2:0]: Output Compare 2 Mode

Bit 3 OC2PE: Output Compare 2 Preload Enable

Bit 2 Reserved.

Bits 1:0 CC2S[1:0]: Capture/Compare 2 Selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC2 channel is configured as output.

01: CC2 channel is configured as input, IC2 is mapped on TI2FP2.

10: CC2 channel is configured as input, IC2 is mapped on TI1FP2.

11: Reserved

Note: CC2S bits are writable only when the channel is OFF (CC2E = ’0’ in TIMx_CCER1).

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

 233/430

● Channel configured in input

7 6 5 4 3 2 1 0

IC2F[3:0] IC2PSC[1:0] CC2S[1:0]

rw rw rw rw rw rw rw rw

Bits 7:4 IC2F[3:0]: Input Capture 2 Filter

Bits 3:2 IC2PCS[1:0]: Input Capture 2 Prescaler

Bits 1:0 CC2S[1:0]: Capture/Compare 2 Selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC2 channel is configured as output.

01: CC2 channel is configured as input, IC2 is mapped on TI2FP2.

10: CC2 channel is configured as input, IC2 is mapped on TI1FP2.

11: Reserved

Note: CC2S bits are writable only when the channel is OFF (CC2E = ’0’ in TIMx_CCER1).

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

234/430

18.6.10 Capture/compare mode register 3 (TIMx_CCMR3)

Refer to Capture/compare mode register 1 (TIM1_CCMR1) on page 195 for details on using
these bits.

Address offset: 0x07 (TIM2), 0x09 (TIM5)

Reset value: 0x00

● Channel configured in output

Note: This register is not available in TIM3.

● Channel configured in input

Note: This register is not available in TIM3.

7 6 5 4 3 2 1 0

Reserved
OC3M[2:0] OC3PE

Reserved
CC3S[1:0]

rw rw rw rw rw rw

Bit 7 Reserved

Bits 6:4 OC3M[2:0]: Output Compare 3 Mode

Bit 3 OC3PE: Output Compare 3 Preload Enable

Bit 2 Reserved

Bits 1:0 CC3S[1:0]: Capture/Compare 3 Selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC3 channel is configured as output

01: CC3 channel is configured as input, IC3 is mapped on TI3FP3

10: Reserved

11: Reserved
Note: CC3S bits are writable only when the channel is OFF (CC3E = ’0’ in TIMx_CCER2).

7 6 5 4 3 2 1 0

IC3F[3:0] IC3PSC[1:0] CC3S[1:0]

rw rw rw rw rw rw rw rw

Bits 7:4 IC3F[3:0] Input Capture 3 Filter

Bits 3:2 IC3PSC(1:0]: Input Capture 3 Prescaler

Bits 1:0 CC3S[1:0]: Capture/Compare 3 Selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC3 channel is configured as output

01: CC3 channel is configured as input, IC3 is mapped on TI3FP3

10: Reserved

11: Reserved
Note: CC3S bits are writable only when the channel is OFF (CC3E = ’0’ in TIMx_CCER2).

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

 235/430

18.6.11 Capture/compare enable register 1 (TIMx_CCER1)

Address offset: 0x08 (TIM2), 0x07 (TIM3), 0x0A (TIM5)

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
CC2P CC2E

Reserved
CC1P CC1E

rw rw rw rw

Bits 6:7 Reserved

Bit 5 CC2P: Capture/Compare 2 output Polarity

refer to CC1P description

Bit 4 CC2E: Capture/Compare 2 output Enable

refer to CC1E description

Bits 2:3 Reserved

Bit 1 CC1P: Capture/Compare 1 output Polarity

CC1 channel configured as output:

0 : OC1 active high

1 : OC1 active low

CC1 channel configured as input for capture function (see Figure 61):

0 : Capture is done on a rising edge of TI1F or TI2F

1 : Capture is done on a falling edge of TI1F or TI2F

Bit 0 CC1E: Capture/Compare 1 output Enable.

CC1 channel configured as output:

0 : Off - OC1 is not active.

1 : On - OC1 signal is output on the corresponding output pin.

CC1 channel configured as input:

In this case this bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.

0 : Capture disabled.

1 : Capture enabled.

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

236/430

18.6.12 Capture/compare enable register 2 (TIMx_CCER2)

Address offset: 0x09 (TIM2), 0x0B (TIM5)

Reset value: 0x00

Note: This register is not available in TIM3.

18.6.13 Counter high (TIMx_CNTRH)

Address offset: 0x0A (TIM2), 0x08 (TIM3), 0x0C (TIM5)

Reset value: 0x00

18.6.14 Counter low (TIMx_CNTRL)

Address offset: 0x0B (TIM2), 0x09 (TIM3), 0x0D (TIM5)

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
CC3P CC3E

rw rw

Bits 7:2 Reserved

Bit 1 CC3P: Capture/Compare 3 output Polarity

Refer to CC1P description

Bit 0 CC3E: Capture/Compare 3 output Enable

Refer to CC1E description

7 6 5 4 3 2 1 0

CNT[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0 CNT[15:8]: Counter value (MSB)

7 6 5 4 3 2 1 0

CNT[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 CNT[7:0]: Counter value (LSB)

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

 237/430

18.6.15 Prescaler register (TIMx_PSCR)

Address offset: 0x0C (TIM2), 0x0A (TIM3), 0x0E (TIM5)

Reset value: 0x00

18.6.16 Auto-reload register high (TIMx_ARRH)

Address offset: 0x0D (TIM2), 0x0B (TIM3), 0x0F (TIM5)

Reset value: 0xFF

18.6.17 Auto-reload register low (TIMx_ARRL)

Address offset: 0x0E (TIM2), 0x0C (TIM3), 0x10 (TIM5)

Reset value: 0xFF

7 6 5 4 3 2 1 0

Reserved
PSC[3:0]

rw rw rw rw

Bits 7:3 Reserved

Bits 2:0 PSC[3:0]: Prescaler value

The prescaler value divides the CK_PSC clock frequency.
The counter clock frequency fCK_CNT is equal to fCK_PSC / 2(PSC[3:0]). PSC[7:4] are forced to 0 by
hardware.
PSCR contains the value which will be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register).
This means that an update event must be generated in order that a new prescaler value can be
taken into account.

7 6 5 4 3 2 1 0

ARR[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0 ARR[15:8]: Autoreload value (MSB)
ARR is the value to be loaded in the actual auto-reload register.
Refer to the Section 17.3: TIM1 time base unit on page 140 for more details about ARR update and
behavior.
The counter is blocked while the auto-reload value is 0.

7 6 5 4 3 2 1 0

ARR[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 ARR[7:0]: Autoreload value (LSB)

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

238/430

18.6.18 Capture/compare register 1 high (TIMx_CCR1H)

Address offset: 0x0F (TIM2), 0x0D (TIM3), 0x11 (TIM5)

Reset value: 0x00

18.6.19 Capture/compare register 1 low (TIMx_CCR1L)

Address offset: 0x10 (TIM2), 0x0E (TIM3), 0x12 (TIM5)

Reset value: 0x00

7 6 5 4 3 2 1 0

CCR1[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR1[15:8]: Capture/compare 1 value (MSB).

If the CC1 channel is configured as output (CC1S bits in TIMx_CCMR1 register):
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit
OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update
event occurs.
The active capture/compare register contains the value to be compared to the counter TIMx_CNT
and signalled on OC1 output.
If the CC1 channel is configured as input (CC1S bits in TIMx_CCMR1 register):
CCR1 is the counter value transferred by the last input capture 1 event (IC1). It is read-only in this
case.

7 6 5 4 3 2 1 0

CCR1[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR1[7:0]: Capture/compare 1 value (LSB)

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

 239/430

18.6.20 Capture/compare register 2 high (TIMx_CCR2H)

Address offset: 0x11 (TIM2), 0x0F (TIM3), 0x13 (TIM5)

Reset value: 0x00

18.6.21 Capture/compare register 2 low (TIMx_CCR2L)

Address offset: 0x12 (TIM2), 0x10 (TIM3), 0x14 (TIM5)

Reset value: 0x00

7 6 5 4 3 2 1 0

CCR2[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR2[15:8]: Capture/compare 2 value (MSB)

If the CC2 channel is configured as output (CC2S bits in TIMx_CCMR2 register):
CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit
OC2PE). Else the preload value is copied in the active capture/compare 2 register when an update
event occurs.
The active capture/compare register contains the value to be compared to the counter TIMx_CNT
and signalled on OC2 output.
If the CC2 channel is configured as input (CC2S bits in TIMx_CCMR2 register):
CCR2 is the counter value transferred by the last input capture 2 event (IC2).

7 6 5 4 3 2 1 0

CCR2[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR2[7:0]: Capture/compare value (LSB)

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

240/430

18.6.22 Capture/compare register 3 high (TIMx_CCR3H)

Address offset: 0x13 (TIM2), 0x15 (TIM5)

Reset value: 0x00

Note: This register is not available in TIM3.

18.6.23 Capture/compare register 3 low (TIMx_CCR3L)

Address offset: 0x14 (TIM2), 0x16 (TIM5)

Reset value: 0x00

Note: This register is not available in TIM3.

7 6 5 4 3 2 1 0

CCR3[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR3[15:8]: Capture/Compare value (MSB)
If the CC3 channel is configured as output (CC3S bits in TIMx_CCMR3 register):
CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register (bit
OC3PE). Else the preload value is copied in the active capture/compare 3 register when an update
event occurs.
The active capture/compare register contains the value to be compared to the counter TIMx_CNT
and signalled on OC3 output.
If the CC3 channel is configured as input (CC3S bits in TIMx_CCMR3 register):
CCR3 is the counter value transferred by the last input capture 3 event (IC3).

7 6 5 4 3 2 1 0

CCR3[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR3[7:0]: Capture/compare value (LSB)

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

 241/430

18.6.24 TIM2/TIM3/TIM5 register map and reset values

Table 36. TIM2 register map

Address

offset
Register name 7 6 5 4 3 2 1 0

0x00
TIM2_CR1
Reset Value

ARPE
0

-
0

-
0

-
0

OPM
0

URS
0

UDIS
0

CEN
0

0x01
TIM2_IER

Reset Value
-
0

-
0

-
0

-
0

CC3IE
0

CC2IE
0

CC1IE
0

UIE
0

0x02
TIM2_SR1

Reset Value
-
0

-
0

-
0

-
0

CC3IF
0

CC2IF
0

CC1IF
0

UIF
0

0x03
TIM2_SR2

Reset Value
-
0

-
0

-
0

-
0

CC3OF
0

CC2OF
0

CC1OF
0

-
0

0x04
TIM2_EGR
Reset Value

-
0

-
0

-
0

-
0

CC3G
0

CC2G
0

CC1G
0

UG
0

0x05

TIM2_CCMR1
(output mode)
Reset Value

-

0

OC1M2

0

OC1M1

0

OC1M0

0

OC1PE

0

-

0

CC1S1

0

CC1S0

0

TIM2_CCMR1
(input mode)
Reset value

IC1F3

0

IC1F2

0

IC1F1

0

IC1F0

0

IC1PSC1

0

IC1PSC0

0

CC1S1

0

CC1S0

0

0x06

TIM2_ CCMR2
(output mode)
Reset Value

-

0

OC2M2

0

OC2M1

0

OC2M0

0

OC2PE

0

-

0

CC2S1

0

CC2S0

0

TIM2_CCMR2
(input mode)
Reset Value

IC2F3

0

IC2F2

0

IC2F1

0

IC2F0

0

IC2PSC1

0

IC2PSC0

0

CC2S1

0

CC2S0

0

0x07

TIM2_CCMR3
(output mode)
Reset Value

-

0

OC3M2

0

OC3M1

0

OC3M0

0

OC3PE

0

-

0

CC3S1

0

CC3S0

0

TIM2_CCMR3
(input mode)
Reset Value

IC3F3

0

IC3F2

0

IC3F1

0

IC3F0

0

IC3PSC1

0

IC3PSC0

0

CC3S1

0

CC3S0

0

0x08
TIM2_CCER1
Reset Value

-
0

-
0

CC2P
0

CC2E
0

-
0

-
0

CC1P
0

CC1E
0

0x09
TIM2_CCER2
Reset Value

-
0

-
0

-
0

-
0

-
0

-
0

CC3P
0

CC3E
0

0x0A
TIM2_CNTRH
Reset Value

CNT15
0

CNT14
0

CNT13
0

CNT12
0

CNT11
0

CNT10
0

CNT9
0

CNT8
0

0x0B
TIM2_CNTRL
Reset Value

CNT7
0

CNT6
0

CNT5
0

CNT4
0

CNT3
0

CNT2
0

CNT1
0

CNT0
0

0x0C
TIM2_PSCR
Reset Value

-
0

-
0

-
0

-
0

PSC3
0

PSC2
0

PSC1
0

PSC0
0

0x0D
TIM2_ARRH
Reset Value

ARR15
1

ARR14
1

ARR13
1

ARR12
1

ARR11
1

ARR10
1

ARR9
1

ARR8
1

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

242/430

0x0E
TIM2_ARRL
Reset Value

ARR7
1

ARR6
1

ARR5
1

ARR4
1

ARR3
1

ARR2
1

ARR1
1

ARR0
1

0x0F
TIM2_CCR1H
Reset Value

CCR115
0

CCR114
0

CCR113
0

CCR112
0

CCR111
0

CCR110
0

CCR19
0

CCR18
0

0x10
TIM2_CCR1L
Reset Value

CCR17
0

CCR16
0

CCR15
0

CCR14
0

CCR13
0

CCR12
0

CCR11
0

CCR10
0

0x11
TIM2_CCR2H
Reset Value

CCR215
0

CCR214
0

CCR213
0

CCR212
0

CCR211
0

CCR210
0

CCR29
0

CCR28
0

0x12
TIM2_CCR2L
Reset Value

CCR27
0

CCR26
0

CCR25
0

CCR24
0

CCR23
0

CCR22
0

CCR21
0

CCR20
0

0x13
TIM2_CCR3H
Reset Value

CCR315
0

CCR314
0

CCR313
0

CCR312
0

CCR311
0

CCR310
0

CCR39
0

CCR38
0

0x14
TIM2_CCR3L
Reset Value

CCR37
0

CCR36
0

CCR35
0

CCR34
0

CCR33
0

CCR32
0

CCR31
0

CCR30
0

Table 36. TIM2 register map (continued)

Address

offset
Register name 7 6 5 4 3 2 1 0

Table 37. TIM3 register map

Address

offset
Register name 7 6 5 4 3 2 1 0

0x00
TIM3_CR1
Reset Value

ARPE
0

-
0

-
0

-
0

OPM
0

URS
0

UDIS
0

CEN
0

0x01
TIM3_IER

Reset Value
-
0 0

-
0

-
0

-
0

CC2IE
0

CC1IE
0

UIE
0

0x02
TIM3_SR1

Reset Value
-
0 0

-
0

-
0

-
0

CC2IF
0

CC1IF
0

UIF
0

0x03
TIM3_SR2

Reset Value
-
0

-
0

-
0

-
0

-
0

CC2OF
0

CC1OF
0

-
0

0x04
TIM3_EGR
Reset Value

-
0 0

-
0

-
0

-
0

CC2G
0

CC1G
0

UG
0

0x05

TIM3_CCMR1
(output mode)
Reset Value

-

0

OC1M2

0

OC1M1

0

OC1M0

0

OC1PE

0

-

0

CC1S1

0

CC1S0

0

TIM3_CCMR1
(input mode)
Reset value

IC1F3

0

IC1F2

0

IC1F1

0

IC1F0

0

IC1PSC1

0

IC1PSC0

0

CC1S1

0

CC1S0

0

0x06

TIM3_ CCMR2
(output mode)
Reset Value

-

0

OC2M2

0

OC2M1

0

OC2M0

0

OC2PE

0

-

0

CC2S1

0

CC2S0

0

TIM3_CCMR2
(input mode)
Reset Value

IC2F3

0

IC2F2

0

IC2F1

0

IC2F0

0

IC2PSC1

0

IC2PSC0

0

CC2S1

0

CC2S0

0

0x07
TIM3_CCER1
Reset Value

-
0

-
0

CC2P
0

CC2E
0

-
0

-
0

CC1P
0

CC1E
0

RM0016 16-bit general purpose timers (TIM2, TIM3, TIM5)

 243/430

0x08
TIM3_CNTRH
Reset Value

CNT15
0

CNT14
0

CNT13
0

CNT12
0

CNT11
0

CNT10
0

CNT9
0

CNT8
0

0x09
TIM3_CNTRL
Reset Value

CNT7
0

CNT6
0

CNT5
0

CNT4
0

CNT3
0

CNT2
0

CNT1
0

CNT0
0

0x0A
TIM3_PSCR
Reset Value

-
0

-
0

-
0

-
0

PSC3
0

PSC2
0

PSC1
0

PSC0
0

0x0B
TIM3_ARRH
Reset Value

ARR15
1

ARR14
1

ARR13
1

ARR12
1

ARR11
1

ARR10
1

ARR9
1

ARR8
1

0x0C
TIM3_ARRL
Reset Value

ARR7
1

ARR6
1

ARR5
1

ARR4
1

ARR3
1

ARR2
1

ARR1
1

ARR0
1

0x0D
TIM3_CCR1H
Reset Value

CCR115
0

CCR114
0

CCR113
0

CCR112
0

CCR111
0

CCR110
0

CCR19
0

CCR18
0

0x0E
TIM3_CCR1L
Reset Value

CCR17
0

CCR16
0

CCR15
0

CCR14
0

CCR13
0

CCR12
0

CCR11
0

CCR10
0

0x0F
TIM3_CCR2H
Reset Value

CCR215
0

CCR214
0

CCR213
0

CCR212
0

CCR211
0

CCR210
0

CCR29
0

CCR28
0

0x10h
TIM3_CCR2L
Reset Value

CCR27
0

CCR26
0

CCR25
0

CCR24
0

CCR23
0

CCR22
0

CCR21
0

CCR20
0

Table 37. TIM3 register map (continued)

Address

offset
Register name 7 6 5 4 3 2 1 0

Table 38. TIM5 register map

Address Register name 7 6 5 4 3 2 1 0

0x00
TIM5_CR1
Reset Value

ARPE
0

-
0

-
0

-
0

OPM
0

URS
0

UDIS
0

CEN
0

0x01
TIM5_CR2
Reset Value

TI1S
0

MMS2
0

MMS1
0

MMS0
0

-
0

COMS
0

-
0

CCPC
0

0x02
TIM5_SMCR
Reset Value

MSM
0

TS2
0

TS1
0

TS0
0

-
0

SMS2
0

SMS1
0

SMS0
0

0x03
TIM5_IER

Reset Value
-
0

TIE
0

-
0

-
0

CC3IE
0

CC2IE
0

CC1IE
0

UIE
0

0x04
TIM5_SR1

Reset Value
-
0

TIF
0

-
0

-
0

CC3IF
0

CC2IF
0

CC1IF
0

UIF
0

0x05
TIM5_SR2

Reset Value
-
0

-
0

-
0

-
0

CC3OF
0

CC2OF
0

CC1OF
0

-
0

0x06
TIM5_EGR
Reset Value

-
0

TG
0

-
0

-
0

CC3G
0

CC2G
0

CC1G
0

UG
0

0x07

TIM5_CCMR1
(output mode)
Reset Value

-

0

OC1M2

0

OC1M1

0

OC1M0

0

OC1PE

0

-

0

CC1S1

0

CC1S0

0

TIM5_CCMR1
(input mode)
Reset value

IC1F3

0

IC1F2

0

IC1F1

0

IC1F0

0

IC1PSC1

0

IC1PSC0

0

CC1S1

0

CC1S0

0

16-bit general purpose timers (TIM2, TIM3, TIM5) RM0016

244/430

0x08

TIM5_ CCMR2
(output mode)
Reset Value

-

0

OC2M2

0

OC2M1

0

OC2M0

0

OC2PE

0

-

0

CC2S1

0

CC2S0

0

TIM5_CCMR2
(input mode)
Reset Value

IC2F3

0

IC2F2

0

IC2F1

0

IC2F0

0

IC2PSC1

0

IC2PSC0

0

CC2S1

0

CC2S0

0

0x09

TIM5_CCMR3
(output mode)
Reset Value

-

0

OC3M2

0

OC3M1

0

OC3M0

0

OC3PE

0

-

0

CC3S1

0

CC3S0

0

TIM5_CCMR3
(input mode)
Reset Value

IC3F3

0

IC3F2

0

IC3F1

0

IC3F0

0

IC3PSC1

0

IC3PSC0

0

CC3S1

0

CC3S0

0

0x0A
TIM5_CCER1
Reset Value

-
0

-
0

CC2P
0

CC2E
0

-
0

-
0

CC1P
0

CC1E
0

0x0B
TIM5_CCER2
Reset Value

-
0

-
0

-
0

-
0

-
0

-
0

CC3P
0

CC3E
0

0x0C
TIM5_CNTRH
Reset Value

CNT15
0

CNT14
0

CNT13
0

CNT12
0

CNT11
0

CNT10
0

CNT9
0

CNT8
0

0x0D
TIM5_CNTRL
Reset Value

CNT7
0

CNT6
0

CNT5
0

CNT4
0

CNT3
0

CNT2
0

CNT1
0

CNT0
0

0x0E
TIM5_PSCR
Reset Value

-
0

-
0

-
0

-
0

PSC3
0

PSC2
0

PSC1
0

PSC0
0

0x0F
TIM5_ARRH
Reset Value

ARR15
1

ARR14
1

ARR13
1

ARR12
1

ARR11
1

ARR10
1

ARR9
1

ARR8
1

0x10
TIM5_ARRL
Reset Value

ARR7
1

ARR6
1

ARR5
1

ARR4
1

ARR3
1

ARR2
1

ARR1
1

ARR0
1

0x11
TIM5_CCR1H
Reset Value

CCR115
0

CCR114
0

CCR113
0

CCR112
0

CCR111
0

CCR110
0

CCR19
0

CCR18
0

0x12
TIM5_CCR1L
Reset Value

CCR17
0

CCR16
0

CCR15
0

CCR14
0

CCR13
0

CCR12
0

CCR11
0

CCR10
0

0x13
TIM5_CCR2H
Reset Value

CCR215
0

CCR214
0

CCR213
0

CCR212
0

CCR211
0

CCR210
0

CCR29
0

CCR28
0

0x14
TIM5_CCR2L
Reset Value

CCR27
0

CCR26
0

CCR25
0

CCR24
0

CCR23
0

CCR22
0

CCR21
0

CCR20
0

0x15
TIM5_CCR3H
Reset Value

CCR315
0

CCR314
0

CCR313
0

CCR312
0

CCR311
0

CCR310
0

CCR39
0

CCR38
0

0x16
TIM5_CCR3L
Reset Value

CCR37
0

CCR36
0

CCR35
0

CCR34
0

CCR33
0

CCR32
0

CCR31
0

CCR30
0

Table 38. TIM5 register map (continued)

Address Register name 7 6 5 4 3 2 1 0

RM0016 8-bit basic timer (TIM4, TIM6)

 245/430

19 8-bit basic timer (TIM4, TIM6)

19.1 Introduction
The timer consists of an 8-bit auto-reload up-counter driven by a programmable prescaler. It
can be used for time base generation, with interrupt generation on timer overflow.

TIM6 is implemented with the clock/trigger controller for timer synchronization and chaining.

Refer to Section 17.3 on page 140 for the general description of the timer features.

Figure 86. TIM4 block diagram

Figure 87. TIM6 block diagram

Prescaler

AutoReload Register

UP-COUNTER

UEV

Stop or Clear

UIF

Reg

event

Legend:

Preload registers transferred
to shadow registers on update

interrupt

CK_PSC CK_CNTfMASTER

UEV

control bit
event (UEV) according to

TIME BASE UNIT

Prescaler

AutoReload Register

UP-COUNTER

UEV UIF

Reg

event

Legend:

Preload registers transferred
to shadow registers on update

interrupt

CK_PSC CK_CNT

fMASTER

TGI
TIM4_TRGO

to TIM1/TIM5 timers

ITR = TRC= TRGI
TRGO from TIM2 (ITR2)

TRGO from TIM1 (ITR3)

UEV

control bit
event (UEV) according to

CLOCK/TRIGGER CONTROLLER

TIME BASE UNIT

TRGO from TIM1 (ITR1)

8-bit basic timer (TIM4, TIM6) RM0016

246/430

19.2 TIM4 main features
The main features include:

● 8-bit up counter auto-reload counter

● 3-bit programmable prescaler allowing dividing (also “on the fly”) the counter clock
frequency by 1, 2, 4, 8, 16, 32, 64 and 128.

● Interrupt generation

– On counter update: counter overflow

–

19.3 TIM6 main features
The main features include:

● 8-bit up counter auto-reload counter

● 3-bit programmable prescaler allowing dividing (also “on the fly”) the counter clock
frequency by 1, 2, 4, 8, 16, 32, 64 and 128.

● Synchronization circuit to control the timer with external signals and to interconnect
several timers

● Interrupt generation

– On counter update: counter overflow

– On trigger input

19.4 TIM4/TIM6 interrupts
The timer has 2 interrupt request sources:

● Update Interrupt (overflow, counter initialization)

● Trigger input (TIM5 only)

19.5 TIM4/TIM6 clock selection
The clock source for the timer is the internal clock (fMASTER). It is connected directly to the
CK_PSC clock that feeds the prescaler driving the counter clock CK_CNT.

Prescaler

The prescaler implementation is as follows:

● The prescaler is based on a 7-bit counter controlled through a 3-bit register (in the
TIMx_PSCR register). It can be changed on the fly as this control register is buffered. It
can divide the counter clock frequency by any power of 2 from 1 to 128.

The counter clock frequency is calculated as follows:

fCK_CNT = fCK_PSC/2(PSCR[2:0])

The prescaler value is loaded through a preload register. The shadow register, which
contains the current value to be used is loaded as soon as the LS Byte has been written.

Read operations to the TIMx_PSCR registers access the preload registers, so no special
care needs to be taken to read them.

RM0016 8-bit basic timer (TIM4, TIM6)

 247/430

19.6 TIM4/TIM6 registers

19.6.1 Control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0

ARPE
Reserved

OPM URS UDIS CEN

rw rw rw rw rw

Bit 7 ARPE: Auto-Reload Preload Enable.

0: TIM4_ARR register is not buffered through a preload register. It can be written directly.

1: TIM4_ARR register is buffered through a preload register.

Bits 6:4 Reserved, must be kept cleared.

Bit 3 OPM: One Pulse Mode.

0: Counter is not stopped at update event

1: Counter stops counting at the next update event (clearing the CEN bit).

Bit 2 URS: Update Request Source.

0: When enabled, an update interrupt request is sent as soon as registers are updated (counter
overflow)

1: When enabled, an update interrupt request is sent only when the counter reaches the
overflow/underflow.

Bit 1 UDIS: Update disable.

0: An Update event is generated as soon as a counter overflow occurs or a software update is
generated. Buffered registers are then loaded with their preload values

1: An Update event is not generated, shadow registers keep their value (ARR, PSC). The counter
and the prescaler are re-initialized if the UG bit is set .

Bit 0 CEN: Counter enable.

0: Counter disable.

1: Counter enable.

8-bit basic timer (TIM4, TIM6) RM0016

248/430

19.6.2 Control register 2 (TIM6_CR2)

Address offset: 0x01

Reset value: 0x00

Note: This register is not available in TIM4.

7 6 5 4 3 2 1 0

Reserved
MMS[2:0]

Reserved
rw rw rw

Bit 7 Reserved, must be kept cleared.

Bits 6:4 MMS[2:0]: Master mode selection.

These bits select the information to be sent in master mode to for synchronization (TRGO). The
combination is as follows:

000: Reset - the UG bit from the TIM6_EGR register is used as trigger output (TRGO). If the reset is
generated by the trigger input (clock/trigger mode controller configured in trigger reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter Enable signal is used as trigger output (TRGO). It is used to start several
timers at the same time or to control a window in which a slave timer is enabled. The Counter Enable
signal is generated by a logic OR between CEN control bit and the trigger input when configured in
gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on
TRGO, except if the master/slave mode is selected (see the MSM bit description in the TIM4_SMCR
register).
010: Update - The update event is selected as trigger output (TRGO).
011: Reserved
100: Reserved
101: Reserved
111: Reserved

Bits 3:0 Reserved, must be kept cleared.

RM0016 8-bit basic timer (TIM4, TIM6)

 249/430

19.6.3 Slave mode control register (TIM6_SMCR)

Address offset: 0x02

Reset value: 0x00

Note: This register is not available in TIM4.

7 6 5 4 3 2 1 0

MSM TS[2:0]
Reserved

SMS[2:0]

rw rw rw rw rw rw rw

Bit 7 MSM: Master/slave mode.
0: No action

1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization
between timers (through TRGO).

Bits 6:4 TS[2:0]: Trigger selection.
This bit-field selects the trigger input to be used to synchronize the counter.

000: reserved
001: reserved
010: internal trigger ITR2 connected to TIM5 TRGO
011: internal trigger ITR3 connected to TIM1 TRGO
100: reserved
101: reserved
110: reserved
111: reserved
Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid
wrong edge detections at the transition.

Bit 3 Reserved, always read as 0.

Bits 2:0 SMS[2:0]:Clock/trigger/slave mode selection.

When external signals are selected, the active edge of the trigger signal (TRGI) is linked to the polarity
selected on the external input (see Input Control register and Control Register description).

000: Clock/trigger controller disabled - if CEN = ‘1’ then the prescaler is clocked directly by the
internal clock.
001: Reserved.
010: Reserved.
011: Reserved.
100: Trigger reset mode - Rising edge of the selected trigger signal (TRGI) reinitializes the counter
and generates an update of the registers.
101: Gated Mode - The counter clock is enabled when the trigger signal (TRGI) is high. The counter
stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are
controlled.
110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only
the start of the counter is controlled.
111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

8-bit basic timer (TIM4, TIM6) RM0016

250/430

19.6.4 Interrupt enable register (TIMx_IER)

Address offset: 0x01(TIM4), 0x03 (TIM6)

Reset value: 0x00

19.6.5 Status register 1 (TIMx_SR1)

0x02(TIM4), 0x04 (TIM6)

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
TIE

Reserved
UIE

rw rw

Bit 7 Reserved, must be kept cleared.

Bit 6 TIE: Trigger Interrupt Enable.

0: Trigger Interrupt disabled.

1: Trigger Interrupt enabled.

Note: In TIM4 this bit is reserved.

Bits 5:1 Reserved, must be kept cleared.

Bit 0 UIE: Update Interrupt Enable.

0: Update Interrupt disabled.

1: Update Interrupt enabled.

7 6 5 4 3 2 1 0

Reserved
UIF

rc_w0

Bit 7 Reserved, must be kept cleared.

Bit 6 TIF: Trigger Interrupt Flag.

This flag is set by hardware on trigger event (active edge detected on TRGI signal, both edges in
case gated mode is selected). It is cleared by software.

0: No trigger event occurred.

1: Trigger interrupt pending.
Note: In TIM4 this bit is reserved.

Bits 5:1 Reserved, must be kept cleared.

Bit 0 UIF: Update Interrupt Flag.

This bit is set by hardware on an update event. It is cleared by software.

0: No update occurred.

1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– at overflow if UDIS=0 in the TIM4_CR1 register.
– when CNT is re-initialized by software using the UG bit in the TIM4_EGR register, if URS=0 and

UDIS=0 in the TIM4_CR1 register.

RM0016 8-bit basic timer (TIM4, TIM6)

 251/430

19.6.6 Event generation register (TIMx_EGR)

Address offset: 0x03(TIM4), 0x05 (TIM6)

Reset value: 0x00

19.6.7 Counter (TIMx_CNTR)

Address offset: 0x04(TIM4), 0x06 (TIM6)

Reset value: 0x00

19.6.8 Prescaler register (TIMx_PSCR)

Address offset: 0x05(TIM4), 0x07 (TIM6)

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
TG

Reserved
UG

w w

Bit 7 Reserved, must be kept cleared.

Bit 6 TG: Trigger Generation.

This bit is set by software in order to generate an event, it is automatically cleared by hardware.

0: No action.

1: The TIF flag is set in TIM4_SR1 register. An interrupt is generated if enabled by the TIE bit.

Note: In TIM4 this bit is reserved.

Bits 5:1 Reserved, must be kept cleared.

Bit 0 UG: Update Generation.
This bit can be set by software, it is automatically cleared by hardware.

0: No action.
1: Re-initializes the counter and generates an update of the registers. Note that the prescaler
counter is cleared too.

7 6 5 4 3 2 1 0

CNT[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 CNT[7:0]: Counter Value

7 6 5 4 3 2 1 0

Reserved
PSC[2:0]

rw rw rw

Bits 7:3 Reserved, must be kept cleared

8-bit basic timer (TIM4, TIM6) RM0016

252/430

19.6.9 Auto-reload register (TIMx_ARR)

Address offset: 0x06 (TIM4), 0x08 (TIM6)

Reset value: 0xFF

Bits 2:0 PSC[2:0]: Prescaler Value.
The prescaler value divides the CK_PSC clock frequency.

The counter clock frequency fCK_CNT is equal to fCK_PSC / 2(PSC[2:0]).

PSC contains the value which will be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIM4_EGR register).
This means that an update event must be generated in order that a new prescaler value can be taken
into account.

7 6 5 4 3 2 1 0

ARR[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 ARR[7:0]: Autoreload Value

RM0016 8-bit basic timer (TIM4, TIM6)

 253/430

19.6.10 TIM4/TIM6 register map and reset values

Table 39. TIM4 register map

Address Register name 7 6 5 4 3 2 1 0

0x00
TIM4_CR1
Reset Value

ARPE
0

-
0

-
0

-
0

OPM
0

URS
0

UDIS
0

CEN
0

0x01
TIM4_IER

Reset Value
-
0

-
0

-
0

-
0

-
0

-
0

-
0

UIE
0

0x02
TIM4_SR1

Reset Value
-
0

-
0

-
0

-
0

-
0

-
0

-
0

UIF
0

0x03
TIM4_EGR
Reset Value

-
0

-
0

-
0

-
0

-
0

-
0

-
0

UG
0

0x04
TIM4_CNTR
Reset Value

CNT7
0

CNT6
0

CNT5
0

CNT4
0

CNT3
0

CNT2
0

CNT1
0

CNT0
0

0x05
TIM4_PSCR
Reset Value

-
0

-
0

-
0

-
0

-
0

PSC2
0

PSC1
0

PSC0
0

0x06
TIM4_ARR
Reset Value

ARR7
1

ARR6
1

ARR5
1

ARR4
1

ARR3
1

ARR2
1

ARR1
1

ARR0
1

Table 40. TIM6 register map

Address
offset

Register name 7 6 5 4 3 2 1 0

0x00
TIM6_CR1
Reset Value

ARPE
0

-
0

-
0

-
0

OPM
0

URS
0

UDIS
0

CEN
0

0x01
TIM6_CR2
Reset Value

-
0

MMS2
0

MMS1
0

MMS0
0

-
0

-
0

-
0

-
0

0x02
TIM6_SMCR
Reset Value

MSM
0

TS2
0

TS1
0

TS0
0

-
0

SMS2
0

SMS1
0

SMS0
0

0x03
TIM6_IER

Reset Value
-
0

TIE
0

-
0

-
0

-
0

-
0

-
0

UIE
0

0x04
TIM6_SR1

Reset Value
-
0

TIF
0

-
0

-
0

-
0

-
0

-
0

UIF
0

0x05
TIM6_EGR
Reset Value

-
0

TG
0

-
0

-
0

-
0

-
0

-
0

UG
0

0x06 TIM6_CNTR CNT7
0

CNT6
0

CNT5
0

CNT4
0

CNT3
0

CNT2
0

CNT1
0

CNT0
0

0x07 TIM6_PSCR -
0

-
0

-
0

-
0

-
0

PSC2
0

PSC1
0

PSC0
0

0x08 TIM6_ARR ARR7
1

ARR6
1

ARR5
1

ARR4
1

ARR3
1

ARR2
1

ARR1
1

ARR0
1

Serial peripheral interface (SPI) RM0016

254/430

20 Serial peripheral interface (SPI)

20.1 Introduction
The Serial Peripheral Interface (SPI) allows half/ full duplex, synchronous, serial
communication with external devices. The interface can be configured as the master and in
this case it provides the communication clock (SCK) to the external slave device. The
interface is also capable of operating in multi-master configuration.

It may be used for a variety of purposes, including simplex synchronous transfers on 2 lines
with a possible bi-directional data line or reliable communication using CRC checking.

20.2 SPI main features
● Full duplex synchronous transfers (on 3 lines)

● Simplex synchronous transfers on 2 lines with or without a bi-directional data line

● Master or slave operation

● 8 Master mode frequencies (fMASTER/2 max.)

● Slave mode frequency (fMASTER/2 max.)

● Faster communication - Maximum SPI speed: 10 MHz

● NSS management by hardware or software for both master and slave

● Programmable clock polarity and phase

● Programmable data order with MSB-first or LSB-first shifting

● Dedicated transmission and reception flags with interrupt capability

● SPI bus busy status flag

● Master mode fault and overrun flags with interrupt capability

● Hardware CRC feature for reliable communication:

– CRC value can be transmitted as last byte in Tx mode

– CRC error checking for last received byte

● Wake-up capability:
The MCU wakes up from low power mode in full or half duplex transmit-only modes

RM0016 Serial peripheral interface (SPI)

 255/430

20.3 SPI functional description

20.3.1 General description

The block diagram of the SPI is shown in Figure 88.

Figure 88. SPI block diagram

The SPI is connected to external devices through 4 pins:

● MISO: Master In / Slave Out data (port C7). This pin can be used to transmit data in
slave mode and receive data in master mode.

● MOSI: Master Out / Slave In data (port C6). This pin can be used to transmit data in
master mode and receive data in slave mode.

● SCK: Serial Clock output (port C5) for SPI masters and Serial Clock input for SPI
slaves.

● NSS: Slave select (port E5). This is a optional pin to select master/ slave mode. This
pin acts as a ‘chip select’ to let the SPI master communicate with slaves individually
and to avoid contention on the data lines. Slave NSS inputs can be driven by standard
I/O ports on the master Device.

RX BUFFER

TX BUFFER

SHIFT REGISTER

LSBFirst

READ

WRITE

ADDRESS AND DATA BUS

MOSI

MISO

BAUD RATE GENERATORSCK

MASTER CONTROL LOGIC

COMMUNICATION

CONTROL

SPE BR2 BR1 BR0 MSTRCPOL CPHA

BR[2:0]

RXIE

LSB

BIDI
MODE

BIDI
OE

RX
SSM SSI

OVR MOD RXNETXE

ERR
TXIE

WK 0

0

0 0WKIE

ONLY

0

1

NSS

IE

F UP

FIRST

BSY

fMASTER

0

CRC
ERR

CRC
EN

CRC
Next

0

Serial peripheral interface (SPI) RM0016

256/430

A basic example of interconnections between a single master and a single slave is
illustrated in Figure 89.

Note: When using the SPI in high speed mode, the I/Os where SPI outputs are connected should
be programmed as fast slope outputs in order to be able to reach the expected bus speed.

Figure 89. Single master/ single slave application

The MOSI pins are connected together and the MISO pins are connected together. In this
way data is transferred serially between master and slave (most significant bit first).

The communication is always initiated by the master. When the master device transmits
data to a slave device via MOSI pin, the slave device responds the MISO pin. This implies
full duplex communication with both data out and data in synchronized with the same clock
signal (which is provided by the master device via the SCK pin).

Slave select (NSS) pin management

As an alternative to using the NSS pin to control the Slave Select signal (NSS pin, port E5),
the application can choose to manage the Slave Select signal by software. This is
configured by the SSM bit in the SPI_CSR register (see Figure 90). In software
management, the external NSS pin is free for other application uses and the internal NSS
signal level is driven by writing to the SSI bit in the SPI_CSR register.

Figure 90. Hardware/software slave select management

Clock phase and clock polarity

Four possible timing relationships may be chosen by software, using the CPOL and CPHA
bits. The CPOL (clock polarity) bit controls the steady state value of the clock when no data
is being transferred. This bit affects both master and slave modes. If CPOL is reset, SCK pin
has a low level idle state. If CPOL is set, SCK pin has a high level idle state.

Note: Make sure the SPI pin is configured at the idle state level of the SPI in order to avoid
generating an edge on the SPI clock pin when enabling or disabling the SPI cell.

8-BIT SHIFT REGISTER

SPI
CLOCK

GENERATOR

8-BIT SHIFT REGISTER
MISO

MOSI MOSI

MISO

SCK SCK

SLAVEMASTER

NSS NSSVDD

MSBit LSBit MSBit LSBit

Not used if NSS is managed
 by software

1

0

NSS Internal

SSM bit

SSI bit

 NSS external pin

RM0016 Serial peripheral interface (SPI)

 257/430

If CPHA (clock phase) bit is set, the second edge on the SCK pin (falling edge if the CPOL
bit is reset, rising edge if the CPOL bit is set) is the MSBit capture strobe. Data is latched on
the occurrence of the first clock transition. If CPHA bit is reset, the first edge on the SCK pin
(falling edge if CPOL bit is set, rising edge if CPOL bit is reset) is the MSBit capture strobe.
Data is latched on the occurrence of the second clock transition.

The combination of the CPOL clock polarity and CPHA (clock phase) bits selects the data
capture clock edge.

Figure 91, shows an SPI transfer with the four combinations of the CPHA and CPOL bits.
The diagram may be interpreted as a master or slave timing diagram where the SCK pin, the
MISO pin, the MOSI pin are directly connected between the master and the slave device.

Note: 1 Prior to changing the CPOL/CPHA bits the SPI must be disabled by resetting the SPE bit.

2 Master and slave must be programmed with the same timing mode.

3 The idle state of SCK must correspond to the polarity selected in the SPI_CR1 register (by
pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0).

Serial peripheral interface (SPI) RM0016

258/430

Figure 91. Data clock timing diagram

Frame format

Data can be shifted out either MSB-first or LSB-first depending on the value of the
LSBFIRST bit in the SPI_CR1 Register.

20.3.2 SPI slave mode

In slave configuration, the serial clock is received on the SCK pin from the master device.
The value set in the BR[2:0] bits in the SPI_CR1 register, does not affect the data transfer
rate.

CPOL = 1

CPOL = 0

MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit

MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit

MISO
(from master)

MOSI
(from slave)

NSS

(to slave)

CAPTURE STROBE

CPHA =1

CPOL = 1

CPOL = 0

MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit

MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit

MISO
(from master)

MOSI

NSS
(to slave)

CAPTURE STROBE

CPHA =0

Note: These timings are shown with the LSBFIRST bit reset in the SPI_CR1 register.

(from slave)

RM0016 Serial peripheral interface (SPI)

 259/430

Procedure

1. Select the CPOL and CPHA bits to define one of the four relationships between the
data transfer and the serial clock (see Figure 91). For correct data transfer, the CPOL
and CPHA bits must be configured the same way in the slave device and the master
device.

2. The frame format (MSB-first or LSB-first depending on the value of the LSBFIRST bit in
the SPI_CR1 register) must be same as the master device.

3. In Hardware mode (refer to Slave select (NSS) pin management on page 256), the
NSS pin must be connected to a low level signal during the complete byte transmit
sequence. In Software mode, set the SSM bit and clear the SSI bit in the SPI_CR2
register.

4. Clear the MSTR bit and set the SPE bit to assign the pins to alternate function.

In this configuration the MOSI pin is a data input and the MISO pin is a data output.

Transmit sequence

The data byte is parallel loaded into the Tx buffer during a write cycle.

The transmit sequence begins when the slave device receives the clock signal and the most
significant bit of the data on its MOSI pin. The remaining 7-bits are loaded into the shift-
register.The TXE flag will be set on the transfer of data from the Tx Buffer to the shift register
and an interrupt will be generated if TXIE bit in the SPI_ICR register is set.

When data transfer is complete:

● The Data in shift register is transferred to Rx Buffer and RXNE flag is set

● An Interrupt is generated if the RXIE bit is set.

After the last sampling clock edge the RXNE bit is set, a copy of the data byte received in
the shift register is moved to the Rx buffer. When the SPI_DR register is read, the SPI
peripheral returns this buffered value.

Clearing of the RXNE bit is performed by reading the SPI_DR register.

20.3.3 SPI master mode

In a master configuration, the serial clock is generated on the SCK pin.

Procedure

1. Select the BR[2:0] bits to define the serial clock baud rate (see SPI_CR1 register).

2. Select the CPOL and CPHA bits to define one of the four relationships between the
data transfer and the serial clock (see Figure 91).

3. Configure the LSBFIRST bit in the SPI_CR1 register to define the Frame Format

4. In Hardware mode, connect the NSS pin to a high level signal during the complete byte
transmit sequence. In software mode, set the SSM and SSI bits in the SPI_CR2
register.

5. The MSTR and SPE bits must be set (they remain set only if the NSS pin is connected
to a high level signal).

In this configuration the MOSI pin is a data output and to the MISO pin is a data input.

Serial peripheral interface (SPI) RM0016

260/430

Transmit sequence

The transmit sequence begins when a byte is written in the Tx Buffer.

The data byte is parallel loaded into the 8-bit shift register (from the internal bus) during first
bit transmission and then shifted out serially to the MOSI pin MSB first or LSB first
depending on the LSBFIRST bit in the SPI_CR1 register. The TXE flag will be set on the
transfer of data from the Tx Buffer to the shift register and an interrupt will be generated if
TXIE bit in the SPI_ICR register is set.

When data transfer is complete

● The data in shift register is transferred to RX Buffer and the RXNE flag is set

● An Interrupt is generated if the RXIE bit is set in the SPI_ICR register

At the last sampling clock edge the RXNE bit is set, a copy of the data byte received in the
shift register is moved to the Rx buffer. When the SPI_DR register is read, the SPI
peripheral returns this buffered value.

Clearing the RXNE bit is performed by reading the SPI_DR register.

A continuous transmit stream can be maintained if the next data to be transmitted is put in
the Tx buffer once the transmission is started. Note that TXE flag should be ‘1’ before an
attempt to write the Tx buffer.

20.3.4 Simplex communication

The SPI is capable of operating in simplex mode in 2 configurations.

● 1 clock and 1 bi-directional data wire

● 1 clock and 1 data wire (Rx-only or full duplex)

1 Clock and 1 bi-directional data wire

This mode is enabled by setting the BDM bit in the SPI_CR2 register. In this mode SCK is
used for the clock and MOSI in master or MISO in slave mode is used for data
communication. The transfer direction (Input/Output) is selected by the BDOE bit in the
SPI_CR2 register. When this bit is 1, the data line is output otherwise it is input.

1 Clock and 1 data wire (Rx-only or full duplex)

In order to free an I/O pin so it can be used for other purposes, you can disable the SPI
output function by setting the RXONLY bit in the SPI_CR2 register. In this case, SPI will
function in Receive-only mode. When the RXONLY bit is reset, the SPI will function in full
duplex mode.

Receive-only mode

To start the communication in receive-only mode, you have to configure and enable the SPI.

● In master mode, the communication starts immediately and stops when the SPE bit is
reset and the current reception terminates. There is no need to read the BUSY flag in
this mode. It is always set, as communication is ongoing and bus is busy until the SPE
bit is reset.

● In slave mode, the SPI will continue to receive as long as the NSS is pulled down (or
the SSI bit is reset) and the SCK is running.

RM0016 Serial peripheral interface (SPI)

 261/430

Note: The SPI can be used in Tx-only mode when the RXONLY bit in the SPI_CR2 register is
reset, the RX pin (MISO in master or MOSI in slave) can be used as GPIO. In this case,
when the data register is read, it does not contain the received value.

20.3.5 Status flags

There are three status flags to allow the application to completely monitor the state of the
SPI bus.

Busy flag

This flag indicates the state of the communication layer of the SPI. When it is set, it indicates
that the SPI is busy communicating and/or there is a valid data byte in the Tx buffer waiting
to be transmitted. The purpose of this flag is to indicate if there is any communication
ongoing on the SPI bus or not. This flag will be set as soon as:

1. Data is written in the SPI_DR register in master mode

2. The SCK clock is present in slave mode

The BUSY flag will reset as soon as a byte is transmitted/ received. This flag is set and reset
by hardware. You can monitor this flag to avoid write collision errors. Writing to this flag has
no effect. This flag is has meaning only when the SPE bit is set.

Tx buffer empty flag (TXE)

This flag when set indicates that the Tx buffer is empty and the next data to be transmitted
can be loaded into the buffer. The TXE flag is reset when the Tx buffer already has a data
which is to be transmitted. This flag is reset when the SPI is disabled (SPE bit is reset).

Rx buffer not empty (RXNE)

This flag when set indicates that there is a valid received data in the Rx Buffer. This flag is
reset when SPI Data register is read.

20.3.6 CRC calculation

A CRC calculator has been implemented for communication reliability. Separate CRC
calculators are implemented for transmitted data and received data. The CRC is calculated
using a programmable polynomial serially on each bit. The CRC is calculated on the
sampling clock edge defined by the CPHA and CPOL bits in the SPI_CR1 register.

CRC calculation is enabled by setting the CRCEN bit in the SPI_CR1 register. This action
resets the CRC registers (SPI_RXCRCR and SPI_TXCRCR). When the CRCNEXT bit in
SPI_CR2 is set, the SPI_TXCRCR value is transmitted at the end of the current byte
transmission.

If a byte is present in the Tx buffer, the CRC value is transmitted only after the transmission
of this byte. During the transmission of CRC, the CRC calculator is switched off and the
register value remains unchanged.

The CRCERR flag in the SPI_SR register is set if the value received in the shift register
during the SPI_TXCRCR value transmission does not match the SPI_RXCRCR value.

Serial peripheral interface (SPI) RM0016

262/430

SPI communication using CRC is possible through the following procedure:

● Program the CPOL, CPHA, LSBfirst, BR, SSM, SSI and MSTR values.

● Program the polynomial in the SPI_CRCPR register

● Enable the CRC calculation by setting the CRCEN bit in the SPI_CR1 register. This
also clears the SPI_RXCRCR and SPI_TXCRCR registers

● Enable the SPI by setting the SPE bit in SPI_CR1

● Start the communication and sustain the communication until all but one byte has been
transmitted or received.

● On writing the last byte to the Txbuffer, set the CRCNext bit in the SPI_CR2 register to
indicate that after transmission of the last byte, the CRC should be transmitted. The
CRC calculation will be frozen during the CRC transmission.

● After transmitting the last byte, the SPI transmits the CRC. CRCNext bit is reset. The
CRC is also received and compared against the SPI_RXCRCR value. If the value does
not match, the CRCERR flag in SPI_SR is set and an interrupt can be generated when
the ERRIE in the SPI_ICR register is set.

Note: With high bit rate frequencies, the user must take care when transmitting CRC. As the
number of used CPU cycles has to be as low as possible in the CRC transfer phase, the
calling of software functions in the CRC transmission sequence is forbidden to avoid errors
in the last data and CRC reception.

20.3.7 Error flags

Master mode fault (MODF)

Master mode fault occurs when the master device has its NSS pin pulled low (in hardware
mode) or SSI bit low (in software mode), this automatically sets the MODF bit. Master mode
fault affects the SPI peripheral in the following ways:

● The MODF bit is set and an SPI interrupt is generated if the ERRIE bit is set.

● The SPE bit is reset. This blocks all output from the device and disables the SPI
interface.

● The MSTR bit is reset, thus forcing the device into slave mode.

Use the following software sequence to clear the MODF bit:

1. Make a read or write access to the SPI_SR register while the MODF bit is set.

2. Then write to the SPI_CR1 register.

To avoid any multiple slave conflicts in a system comprising several MCUs, the NSS pin
must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits can
be restored to their original state during or after this clearing sequence.

As a security, hardware does not allow you to set the SPE and MSTR bits while the MODF
bit is set.

In a slave device the MODF bit cannot be set. However, in a multi-master configuration, the
device can be in slave mode with this MODF bit set. In this case, the MODF bit indicates that
there might have been a multi-master conflict for system control. You can use an interrupt
routine to recover cleanly from this state by performing a reset or returning to a default state.

RM0016 Serial peripheral interface (SPI)

 263/430

Overrun condition

An overrun condition occurs, when the master device has sent data bytes and the slave
device has not cleared the RXNE bit resulting from the previous data byte transmitted.
When an overrun condition occurs:

● OVR bit is set and an interrupt is generated if the ERRIE bit is set.

In this case, the receiver buffer contents will not be updated with the newly received data
from the master device. A read to the SPI_DR register returns this byte. All other
subsequently transmitted bytes are lost.

Clearing the OVR bit is done by a read access to the SPI_SR register.

CRC error

This flag is used to verify the correctness of the value received when the CRCEN bit in the
SPI_CR2 register is set. The CRCERR flag in the SPI_SR register is set if the value
received in the shift register after the SPI_TXCRCR value transmission does not match the
SPI_RXCRCR value. Refer to Chapter 20.3.6: CRC calculation.

20.3.8 Disabling the SPI

When transfer is terminated, the application can stop the communication by disabling the
SPI peripheral. This is done by resetting the SPE bit. Disabling the SPI peripheral while the
last data transfer is still ongoing does not affect the data reliability if the device is not in
Master transmit mode.

Note: In Master transmit mode (full duplex or simplex transmit-only), the application must make
sure that no data transfer is ongoing by checking the BSY flag in the SPI_SR register before
disabling the SPI master.

20.3.9 SPI low power modes

Using the SPI to wake up the device from Halt mode

- Full duplex and half duplex transmit-only modes

When the microcontroller is in Halt mode, the SPI is still capable of responding as a slave
provided the NSS pin is tied low or the SSI bit is reset before entering Halt mode.

Table 41. SPI behavior in low power modes

Mode Description

Wait
No effect on SPI.
SPI interrupt events cause the device to exit from Wait mode.

Halt

SPI registers are frozen.
In Halt mode, the SPI is inactive. If the SPI is in master mode, then
communication resumes when the device is woken up by an interrupt with
“wake-up from Halt mode” capability.
If the SPI is in slave mode, then it can wake up the MCU from Halt mode after
detecting the first sampling edge of data.

Serial peripheral interface (SPI) RM0016

264/430

When the first sampling edge of data (as defined by the CPHA bit) is detected:

● The WKUP bit is set in the SPI_SR register

● An interrupt is generated if the WKIE bit in the SPI_ICR register is set.

● This interrupt wakes-up the device from Halt mode.

● Due to the time needed to restore the system clock, the SPI slave sends or receives a
few data before being able to communicate correctly. It is then mandatory to use the
following protocol:

– a specific value is written into the SPI_DR before entering Halt mode. This value
indicates to the external master that the SPI is in Halt mode

– The external master sends the same byte continuously until it receives from the
SPI slave device a new value other than the unique value indicating the SPI is in
Halt mode. This new value indicates the SPI slave has woken-up and can correctly
communicate.

- Half duplex receive-only mode

The wake-up functionality is not guaranteed in this half duplex receive-only mode since the
time needed to restore the system clock can be greater than the data reception time. A lost
of data in reception would then be induced.

RM0016 Serial peripheral interface (SPI)

 265/430

20.3.10 SPI interrupts

Table 42. SPI interrupt requests

Interrupt event
Event
flag

Enable
control

bit

Exit
from
Wait

Exit
from
Halt

Transmit buffer empty flag TXE TXIE Yes No

Receive buffer not empty flag RXNE RXIE Yes No

Wake-up event flag WKUP WKIE Yes Yes

Master mode fault event MODF

ERRIE

Yes No

Overrun error OVR Yes No

CRC error flag CRCERR Yes No

Serial peripheral interface (SPI) RM0016

266/430

20.4 SPI registers

20.4.1 SPI control register 1 (SPI_CR1)

Address offset: 0x00

Reset Value: 0x00
7 6 5 4 3 2 1 0

LSBFIRST SPE BR [2:0] MSTR CPOL CPHA

rw rw rw rw rw rw rw rw

Bit 7 LSBFIRST: Frame format (1)

0: MSB is transmitted first
1: LSB is transmitted first

Bit 6 SPE: SPI Enable (1)

0: Peripheral disabled
1: Peripheral enabled

Bits 5:3 BR[2:0]: Baud rate control

000: fMASTER/2
001: fMASTER/4
010: fMASTER/8
011: fMASTER/16
100: fMASTER/32
101: fMASTER/64
110: fMASTER/128
111: fMASTER/256

Note: These bits should not be changed when the communication is ongoing.

Bit 2 MSTR: Master selection (1)

0: Slave configuration
1: Master configuration

Bit1 CPOL: Clock polarity (1)

0: SCK to 0 when idle
1: SCK to 1 when idle

Bit 0 CPHA: Clock phase (1)

0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge

1. This bit should not be changed when the communication is ongoing.

RM0016 Serial peripheral interface (SPI)

 267/430

20.4.2 SPI control register 2 (SPI_CR2)

Address offset: 0x01

Reset Value: 0x00

7 6 5 4 3 2 1 0

BDM BDOE CRCEN CRCNEXT
Reserved

RXOnly SSM SSI

rw rw rw rw rw rw rw

Bit 7 BDM: Bi-directional data mode enable

0: 2-line uni-directional data mode selected
1: 1-line bi-directional data mode selected

Bit 6 BDOE: Input/Output enable in bi-directional mode

This bit selects the direction of transfer in bi-directional mode when BDM is set to 1.
0: Input enabled (receive-only mode)
1: Output enabled (transmit-only mode)
In master mode, the MOSI pin is used and in slave mode, the MISO pin is used.

Bit 5 CRCEN: Hardware CRC calculation enable

0: CRC calculation disabled
1: CRC calculation Enabled

Note: This bit should be written only when SPI is disabled (SPE = ‘0’) for correct operation

Bit 4 CRCNEXT: Transmit CRC next

0: Next transmit value is from Tx buffer
1: Next transmit value is from Tx CRC register

Bit 3 Reserved, must be kept cleared.

Bit 2 RXONLY: Receive only

0: Full duplex (Transmit and receive)
1: Output disabled (Receive only mode)
This bit combined with BDM bit selects the direction of transfer in 2 line uni-directional mode
This bit is also useful in a multi-slave system in which this particular slave is not accessed, the
output from the accessed slave is not corrupted.

Bit 1 SSM: Software slave management
0: Software slave management disabled
1: Software slave management enabled
When the SSM bit is set, the NSS pin input is replaced with the value coming from the SSI bit

Bit 0 SSI: Internal slave select

This bit has effect only when SSM bit is set. The value of this bit is forced onto the NSS pin and the
I/O value of the NSS pin is ignored.
0: Slave mode
1: Master mode

Serial peripheral interface (SPI) RM0016

268/430

20.4.3 SPI interrupt control register (SPI_ICR)

Address offset: 0x02

Reset Value: 0x00

7 6 5 4 3 2 1 0

TXIE RXIE ERRIE WKIE
Reserved

rw rw rw rw

Bit 7 TXIE: Tx buffer empty interrupt enable

0: TXE interrupt masked
1: TXE interrupt not masked. This allows a interrupt request to be generated when the TXE flag is
set.

Note: To function correctly, the TXIE bit should not be set at the same time.

Bit 6 RXIE: RX buffer not empty interrupt enable

0: RXNE interrupt masked
1: RXNE interrupt not masked. This allows a interrupt request to be generated when the RXNE flag
is set.

Note: To function correctly, the RXIE bit should not be set at the same time.

Bit 5 ERRIE: Error interrupt enable

0: Error interrupt is masked
1: Error interrupt is enabled. This allows a interrupt request to be generated when an error condition
occurs (CRCERR, OVR, MODF)

Bit 4 WKIE: Wakeup interrupt enable
0: wakeup interrupt masked
1: wakeup interrupt enabled. This allows a interrupt request to be generated when the WKUP flag is
set.

Bits 3:0 Reserved, must be kept cleared.

RM0016 Serial peripheral interface (SPI)

 269/430

20.4.4 SPI status register (SPI_SR)

Address offset: 0x03

Reset value: 0x02

7 6 5 4 3 2 1 0

BSY OVR MODF CRCERR WKUP Reserved TXE RxNE

r rc_w0 rc_w0 rc_w0 rc_w0 r r r

Bit 7 BSY: Busy flag

0: SPI not busy
1: SPI is busy in communication or Tx buffer is not empty

This flag is set and reset by hardware.
Note: In master receiver only mode (1-line bidirectional), checking the BSY Flag is forbidden.

Bit 6 OVR: Overrun flag
0: No Overrun occurred
1: Overrun occurred
This flag is set by hardware and reset by a software sequence.

Bit 5 MODF: Mode fault
0: No Mode fault occurred
1: Mode fault occurred
This flag is set by hardware and reset by a software sequence.

Bit 4 CRCERR: CRC error flag
0: CRC value received matches the SPI_RXCRCR value
1: CRC value received does not match the SPI_RXCRCR value
This flag is set by hardware and cleared by software writing 0.

Bit 3 WKUP: Wake-up Flag
0: No wake-up event occurred
1: wake-up event occurred
This flag is set on the first sampling edge on SCK when the STM8 is in Halt mode and the SPI is
configured as slave.
This flag is reset by software writing 0.

Bit 2 Reserved, must be kept cleared.

Bit 1 TXE: Transmit buffer empty

0: Tx buffer not empty
1: Tx buffer empty

Bit 0 RxNE: Receive buffer not empty
0: Rx buffer empty
1: Rx buffer not empty

Serial peripheral interface (SPI) RM0016

270/430

20.4.5 SPI data register (SPI_DR)

Address offset: 0x04

Reset value: 0x00

20.4.6 SPI CRC polynomial register (SPI_CRCPR)

Address Offset: 0x05

Reset Value: 0x07

20.4.7 SPI Rx CRC register (SPI_RXCRCR)

Address offset: 0x06

Reset Value: 0x00

7 6 5 4 3 2 1 0

DR[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 DR[7:0]: Data register

Byte received or to be transmitted.

The data register is split into 2 buffers - one for writing (Transmit buffer) and another one for reading
(Receive buffer). A write to the data register will write into the Tx buffer and a read from the data
register will return the value held in the Rx buffer.

7 6 5 4 3 2 1 0

CRCPOLY[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 CRCPOLY[7:0]: CRC polynomial register

This register contains the polynomial for the CRC calculation.
The CRC polynomial (0x07) is the reset value of this register. You can configure an other polynomial
as required for your application.

7 6 5 4 3 2 1 0

RxCRC[7:0]

r r r r r r r r

Bits 7:0 RXCRC[7:0]: Rx CRC Register
When CRC calculation is enabled, the RxCRC[7:0] bits contain the computed CRC value of the
subsequently received bytes. This register is reset when the CRCEN bit in SPI_CR2 register is
written to 1. The CRC is calculated serially using the polynomial programmed in the SPI_CRCPR
register.

Note: A read to this register when the BSY Flag is set could return an incorrect value.

RM0016 Serial peripheral interface (SPI)

 271/430

20.4.8 SPI Tx CRC register (SPI_TXCRCR)

Address offset: 0x07

Reset value: 0x00

20.5 SPI register map and reset values

7 6 5 4 3 2 1 0

TxCRC[7:0]

r r r r r r r r

Bits 7:0 TxCRC[7:0]: Tx CRC register
When CRC calculation is enabled, the TxCRC[7:0] bits contain the computed CRC value of the
subsequently transmitted bytes. This register is reset when the CRCEN bit of SPI_CR2 is written to
1. The CRC is calculated serially using the polynomial programmed in the SPI_CRCPR register.

Note: A read to this register when the BSY flag is set could return a incorrect value

Table 43. SPI register map and reset values

Address
offset

Register
name

7 6 5 4 3 2 1 0

0x00
SPI_CR1

Reset Value
LSBFirst

0
SPE

0
BR2

0
BR1

0
BR1

0
MSTR

0
CPOL

0
CPHA

0

0x01
SPI_CR2

Reset Value
BDM

0
BDOE

0
CRCEN

0
CRCNEXT

0
Reserved

0
RXONLY

0
SSM

0
SSI
0

0x02
SPI_ICR

Reset Value
TXIE

0
RXIE

0
ERRIE

0
WKIE

0
Reserved

0
Reserved

0
Reserved

0
Reserved

0

0x03
SPI_SR

Reset Value
BSY

0
OVR

0
MODF

0
CRCERR

0
WKUP

0
Reserved

0
TXE

1
RXNE

0

0x04
SPI_DR

Reset Value
MSB

0
-
0

-
0

-
0

-
0

-
0

-
0

LSB
0

0x05
SPI_CRCPR
Reset Value

MSB
0

-
0

-
0

-
0

-
0

-
1

-
1

LSB
1

0x06
SPI_RXCRCR
Reset Value

MSB
0

-
0

-
0

-
0

-
0

-
0

-
0

LSB
0

0x07
SPI_TXCRCR
Reset Value

MSB
0

-
0

-
0

-
0

-
0

-
0

-
0

LSB
0

Inter-integrated circuit (I2C) Interface RM0016

272/430

21 Inter-integrated circuit (I2C) Interface

21.1 Introduction
I2C (Inter-Integrated Circuit) Bus Interface serves as an interface between the
microcontroller and the serial I2C bus. It provides multi-master capability, and controls all
I2C bus-specific sequencing, protocol, arbitration and timing. It supports standard and fast
speed modes.

21.2 I2C main features
● Parallel-bus/I2C protocol converter

● Multi-master capability: the same interface can act as Master or Slave

● I2C Master features:

– Clock generation

– Start and Stop generation

● I2C Slave features:

– Programmable I2C Address detection

– Stop bit detection

● Generation and detection of 7-bit/10-bit addressing and general call

● Supports different communication speeds:

– Standard speed (up to 100 kHz),

– Fast speed (up to 400 kHz)

● Status flags:

– Transmitter/Receiver mode flag

– End-of-Byte transmission flag

– I2C busy flag

● Error flags:

– Arbitration lost condition for master mode

– Acknowledgement failure after address/ data transmission

– Detection of misplaced start or stop condition

– Overrun/Underrun if clock stretching is disabled

● 3 types of interrupts:

– 1 Communication interrupt

– 1 Error condition interrupt

– 1 Wakeup from Halt interrupt

● Wakeup capability:

– MCU wakes up from low power mode on address detection in slave mode.

● Optional clock stretching

RM0016 Inter-integrated circuit (I2C) Interface

 273/430

21.3 I2C general description
In addition to receiving and transmitting data, this interface converts it from serial to parallel
format and vice versa. The interrupts are enabled or disabled by software. The interface is
connected to the I2C bus by a data pin (SDA) and by a clock pin (SCL). It can be connected
with a standard (up to 100 kHz), or fast (up to 400 kHz) I2C bus.

Mode selection

The interface can operate in one of the four following modes:

● Slave transmitter

● Slave receiver

● Master transmitter

● Master receiver

By default, it operates in slave mode. The interface automatically switches from slave to
master, after it generates a START condition and from master to slave, if an arbitration loss
or a STOP generation occurs, allowing Multi-Master capability.

Communication flow

In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a start condition and ends with a stop condition. Both
start and stop conditions are generated in master mode by software.

In Slave mode, the interface is capable of recognizing its own addresses (7 or 10-bit), and
the General Call address. The General Call address detection may be enabled or disabled
by software.

Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the
start condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is
always transmitted in Master mode.

A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must
send an acknowledge bit to the transmitter. Refer to the following figure.

Figure 92. I2C bus protocol

Acknowledge may be enabled or disabled by software. The I2C interface addresses (7-bit/
10-bit and/or general call address) can be selected by software.

The Block Diagram of the I2C interface is shown in Figure 93.

SCL

SDA

1 2 8 9

MSB ACK

STOP START
CONDITIONCONDITION

Inter-integrated circuit (I2C) Interface RM0016

274/430

Figure 93. I2C block diagram

DATA SHIFT REGISTER

COMPARATOR

OWN ADDRESS REGISTER LSB

CLOCK CONTROL

STATUS REGISTERS

CONTROL REGISTERS

CONTROL

CLOCK
CONTROL

DATA
CONTROL

SCL

LOGIC

OWN ADDRESS REGISTER MSB

DATA REGISTER

INTERRUPTS

SDA

REGISTER (CCR)

(SR1&SR2&SR3)

(CR1&CR2)

RM0016 Inter-integrated circuit (I2C) Interface

 275/430

21.4 I2C functional description
By default the I2C interface operates in Slave mode. To switch from default Slave mode to
Master mode a Start condition generation is needed.

21.4.1 I2C slave mode

The peripheral input clock must be programmed in the I2C_FREQR register in order to
generate correct timings. The peripheral input clock frequency must be at least:

● 1 MHz in Standard mode

● 4 MHz in Fast mode

As soon as a start condition is detected, the address is received from the SDA line and sent
to the shift register. Then it is compared with the address of the interface (OARLSB) and
with OAR2 or the General Call address (if ENGC = 1).

Note: In 10-bit addressing mode, the comparison includes the header sequence (11110xx0),
where xx denotes the two most significant bits of the address.

Header or address not matched: the interface ignores it and waits for another Start
condition.

Header matched (10-bit mode only): the interface generates an acknowledge pulse if the
ACK bit is set and waits for the 8-bit slave address.

Address matched: the interface generates in sequence:

● An acknowledge pulse if the ACK bit is set

● The ADDR bit is set by hardware and an interrupt is generated if the ITEVTEN bit is
set.

In 10-bit mode, after receiving the address sequence the slave is always in Receiver mode.
It will enter Transmitter mode on receiving a repeated Start condition followed by the header
sequence with matching address bits and the least significant bit set (11110xx1).

The TRA bit indicates whether the slave is in Receiver or Transmitter mode.

Inter-integrated circuit (I2C) Interface RM0016

276/430

Slave transmitter

Following the address reception and after clearing ADDR, the slave sends bytes from the
DR register to the SDA line via the internal shift register.

The slave stretches SCL low until ADDR is cleared and DR filled with the data to be sent
(see Figure 94 Transfer sequencing EV1 EV3).

When the acknowledge pulse is received:

● The TxE bit is set by hardware with an interrupt if the ITEVTEN and the ITBUFEN bits
are set.

If TxE is set and a data was not written in the DR register before the end of the next data
transmission, the BTF bit is set and the interface waits for a write in the DR register,
stretching SCL low.

Figure 94. Transfer sequence diagram for slave transmitter
7-bit slave transmitter:

10-bit slave transmitter

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge, NA= Non-acknowledge,
EVx= Event (with interrupt if ITEVTEN=1)

EV1: ADDR =1, cleared by reading SR1 register followed by reading SR3.
EV3-1: TxE=1, shift register empty.
EV3: TxE=1, cleared by writing DR; shift register not empty
EV3-2: AF=1, AF is cleared by writing ‘0’ in AF bit of SR2 register.

S Address A Data1 A Data2 A
.....

DataN NA P

EV1 EV3-1 EV3 EV3 EV3 EV3-2

S Header A Address A

EV1

Sr Header A Data1 A
.

DataN NA P

EV1 EV3_1 EV3 EV3 EV3-2

RM0016 Inter-integrated circuit (I2C) Interface

 277/430

Slave receiver

Following the address reception and after clearing ADDR, the slave receives bytes from the
SDA line into the DR register via the internal shift register. After each byte the interface
generates in sequence:

● An acknowledge pulse if the ACK bit is set

● The RxNE bit is set by hardware and an interrupt is generated if the ITEVTEN and
ITBUFEN bit is set.

If RxNE is set and the data in the DR register is not read before the end of the next data
reception, the BTF bit is set and the interface waits for a read to the DR register, stretching
SCL low (see Figure 95 Transfer sequencing).

Figure 95. Transfer sequence diagram for slave receiver

Closing slave communication

After the last data byte is transferred a Stop Condition is generated by the master. The
interface detects this condition and sets,

● the STOPF bit and generates an interrupt if the ITEVTEN bit is set.

Then the interface waits for a read of the SR1 register followed by a write to the CR2 register
(see Figure 95 Transfer sequencing EV4).

7-bit Slave receiver:

10-bit Slave receiver:

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge, NA= Non-acknowledge,
EVx= Event (with interrupt if ITEVTEN=1)

EV1: ADDR =1, cleared by reading SR1 register followed by reading SR3.
EV2: RxNE=1, cleared by reading DR register.
EV4: STOPF=1, cleared by reading SR1 register followed by writing CR2 register

See also: Note 7 on page 291

S Address A Data1 A Data2 A
.....

DataN A P

EV1 EV2 EV2 EV2 EV4

S Header A Address A Data1 A
.....

DataN A P

EV1 EV2 EV2 EV4

Inter-integrated circuit (I2C) Interface RM0016

278/430

21.4.2 I2C master mode

In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a Start condition and ends with a Stop condition.
Master mode is selected as soon as the Start condition is generated on the bus with a
START bit.

The following is the required sequence in master mode.

● Program the peripheral input clock in I2C_FREQR Register in order to generate correct
timings

● Configure the clock control registers

● Configure the rise time register

● Program the I2C_CR1 register to enable the peripheral

● Set the START bit in the I2C_CR2 register to generate a Start condition

The peripheral input clock frequency must be at least:

● 1 MHz in Standard mode

● 4 MHz in Fast mode

Start condition

Setting the START bit while the BUSY bit is cleared causes the interface to generate a Start
condition and switch to Master mode (M/SL bit set).

Once the Start condition is sent:

● The SB bit is set by hardware and an interrupt is generated if the ITEVTEN bit is set.

Then the master waits for a read of the SR1 register followed by a write in the DR register
with the Slave address (see Figure 96 & Figure 97 Transfer sequencing EV5).

RM0016 Inter-integrated circuit (I2C) Interface

 279/430

Slave address transmission

Then the slave address is sent to the SDA line via the internal shift register.

● In 10-bit addressing mode, sending the header sequence causes the following event:

– The ADD10 bit is set by hardware and an interrupt is generated if the ITEVTEN bit
is set.

Then the master waits for a read of the SR1 register followed by a write in the DR
register with the second address byte (see Figure 96 & Figure 97 Transfer sequencing
EV9).

– The ADDR bit is set by hardware and an interrupt is generated if the ITEVTEN bit
is set.

● In 7-bit addressing mode, one address byte is sent.

As soon as the address byte is sent,

– The ADDR bit is set by hardware and an interrupt is generated if the ITEVTEN bit
is set.

Then the master waits for a read of the SR1 register followed by a read in the SR3
register (see Figure 96 & Figure 97 Transfer sequencing EV6).

The master can decide to enter Transmitter or Receiver mode depending on the LSB of
the slave address sent.

● In 7-bit addressing mode,

– To enter Transmitter mode, a master sends the slave address with LSB reset.

– To enter Receiver mode, a master sends the slave address with LSB set.

● In 10-bit addressing mode,

– To enter Transmitter mode, a master sends the header and then the slave address
with LSB reset.

– To enter Receiver mode, a master sends the header and then the slave address
with LSB reset. Then it should send a repeated Start condition followed by the
header sequence with matching address bits and the least significant bit set
(11110xx1).

The TRA bit indicates whether the master is in Receiver or Transmitter mode.

Master transmitter

Following the address transmission and after clearing ADDR, the master sends bytes from
the DR register to the SDA line via the internal shift register.

The master waits until TxE is cleared, (see Figure 96 Transfer sequencing EV8).

When the acknowledge pulse is received:

● The TxE bit is set by hardware and an interrupt is generated if the ITEVTEN and
ITBUFEN bits are set.

If TxE is set and a data byte was not written in the DR register before the end of the next
data transmission, BTF is set and the interface waits until BTF is cleared.

Inter-integrated circuit (I2C) Interface RM0016

280/430

Closing the communication

After writing the last byte to the DR register, the STOP bit is set by software to generate a
Stop condition (see Figure 96 Transfer sequencing EV8_2). The interface goes
automatically back to slave mode (M/SL bit cleared).

Note: Stop condition should be programmed during EV8_2 event, when either TxE or BTF is set.

Figure 96. Transfer sequence diagram for master transmitter
7-bit Master Transmitter:

10-bit Master Transmitter

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge, NA= Non-acknowledge,
EVx= Event (with interrupt if ITEVTEN=1)

EV5: SB=1, cleared by reading SR1 register followed by writing DR register with Address.
EV6: ADDR=1, cleared by reading SR1 register followed by reading SR3.
EV8_1: TxE=1, cleared by writing DR register twice.(first write fills shift register, second fills DR)
EV8: TxE=1, cleared by writing DR register.
EV8_2: TxE=1, BTF = 1 cleared by HW by stop condition
EV9: ADD10=1, cleared by reading SR1 register followed by writing DR register.
See also: Note 7 on page 291

S Address A Data1 A Data2 A
.....

DataN A P

EV5 EV6 EV8_1 EV8 EV8 EV8_2

S Header A Address A Data1 A
.....

DataN A P

EV5 EV9 EV6 EV8_1 EV8 EV8_2

RM0016 Inter-integrated circuit (I2C) Interface

 281/430

Master receiver

Following the address transmission and after clearing ADDR, the I2C interface enters
Master Receiver mode. In this mode the interface receives bytes from the SDA line into the
DR register via the internal shift register. After each byte the interface generates in
sequence:

● An acknowledge pulse if the ACK bit is set

● The RxNE bit is set and an interrupt is generated if the ITEVTEN and ITBUFEN bits are
set (see Figure 97 Transfer sequencing EV7).

If the RxNE bit is set and the data was not read in the DR register before the end of the next
data reception, the BTF bit is set by hardware and the interface waits for a read in the DR
register.

Closing the communication

The master send a NACK for the last byte received from the slave. After receiving this
NACK, the slave releases the control of the SCL and SDA lines. Then master can send a
Stop/Re-Start condition.

● In order to generate the non-acknowledge pulse after the last received data byte, the
ACK bit must be cleared just after reading the second last data byte (after second last
RxNE event).

● In order to generate the Stop/Re-Start condition, sofware must set the STOP/ START
bit just after reading the second last data byte (after the second last RxNE event).

After the Stop condition generation, the interface goes automatically back to slave mode
(M/SL bit cleared).

Figure 97. Transfer sequence diagram for master receiver

7-bit Master Receiver:

10-bit Master Receiver

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge, NA= Non-acknowledge,
EVx= Event (with interrupt if ITEVTEN=1)
EV5: SB=1, cleared by reading SR1 register followed by writing DR register.
EV6: ADDR=1, cleared by reading SR1 register followed by reading SR3. In 10-bit master receiver mode, this se-
quence should be followed by writing CR2 with START = 1.
EV7: RxNE=1, cleared by reading DR register.
EV7_1: RxNE=1, cleared by reading DR register, program ACK=0 and STOP request
EV9: ADD10=1, cleared by reading SR1 register followed by writing DR register.
See also: Note 7 on page 291

S Address A Data1 A Data2 A
.....

DataN NA P

EV5 EV6 EV7 EV7 EV7_1 EV7

S Header A Address A

EV5 EV9 EV6

Sr Header A Data1 A
.....

DataN NA P

EV5 EV6 EV7 EV7_1 EV7

Inter-integrated circuit (I2C) Interface RM0016

282/430

21.4.3 Error conditions

The following are the error conditions which may cause communication to fail.

Bus error (BERR)

This error occurs when the I2C interface detects a Stop or a Start condition during a byte
transfer. In this case:

● The BERR bit is set and an interrupt is generated if the ITERREN bit is set

● In Slave mode: data is discarded and the lines are released by hardware:

– In case of misplaced start, the slave considers it is a restart and waits for an
address or a stop condition.

– In case of a misplaced stop, the slave acts in the same way as for a stop condition
and the lines are released by hardware.

● In Master mode, a Stop condition must be generated by software.

Acknowledge failure (AF)

This error occurs when the interface detects a non-acknowledge bit. In this case,

● The AF bit is set and an interrupt is generated if the ITERREN bit is set

● A transmitter which receives a NACK must reset the communication:

– If Slave: lines are released by hardware

– If Master: a Stop condition must be generated by software

Arbitration lost (ARLO)

This error occurs when the I2C interface detects an arbitration lost condition. In this case,

● The ARLO bit is set by hardware (and an interrupt is generated if the ITERREN bit is
set)

● The I2C Interface goes automatically back to slave mode (the M/SL bit is cleared)

● Lines are released by hardware

Overrun/underrun error (OVR)

An Overrun error can occur in slave mode when clock stretching is disabled and the I2C
interface is receiving data. The interface has received a byte (RxNE=1) and the data in DR
has not been read, before the next byte is received by the interface. In this case,

● The last received byte is lost.

● In case of Overrun error, software should clear the RxNE bit and the transmitter should
re-transmit the last received byte.

Underrun error can occur in slave mode when clock stretching is disabled and the I2C
interface is transmitting data. The interface has not updated the DR with the next byte
(TxE=1), before the clock comes for the next byte. In this case,

● The same byte in the DR register will be sent again

● The user should make sure that data received on the receiver side during an underrun
error is discarded and that the next bytes are written within the clock low time specified
in the I2C bus standard.

RM0016 Inter-integrated circuit (I2C) Interface

 283/430

21.4.4 SDA/SCL line control

● If clock stretching is enabled:

– Transmitter mode: If TxE=1 and BTF=1: the interface holds the clock line low
before transmission to wait for the microcontroller to read SR1 and then write the
byte in the Data Register (both buffer and shift register are empty).

– Receiver mode: If RxNE=1 and BTF=1: the interface holds the clock line low after
reception to wait for the microcontroller to read SR1 and then read the byte in the
Data Register (both buffer and shift register are full).

● If clock stretching is disabled in Slave mode:

– Overrun Error in case of RxNE=1 and no read of DR has been done before the
next byte is received. The last received byte is lost.

– Underrun Error in case TxE=1 and no write into DR has been done before the next
byte must be transmitted. The same byte will be sent again.

– Write Collision not managed.

21.5 I2C low power modes

Table 44. I2C Interface behavior in low power modes

Mode Description

WAIT
No effect on I2C interface.
I2C interrupts cause the device to exit from Wait mode.

HALT

In Slave mode : Communication is reset, except for configuration registers. Device is in
slave mode.

Wakeup from Halt interrupt is generated if ITEVTEN=1 and address matched (including
allowed headers).

The matched address is not acknowledged in Halt mode so the master has to send it
again when the CPU is woken up to receive an acknowledge.

If NOSTRETCH=0, SCLH will be stretched after acknowledge pulse in halt mode until
WUFH is cleared by software;

None of the flags are set by the address which wakes-up the CPU.

In Master Mode : Communication is frozen until the CPU is woken up. Wakeup from Halt
flag and interrupt are generated if ITEVTEN=1 and there is a HALT instruction.

Note: it is forbidden to enter halt mode while a communication is on going.

Inter-integrated circuit (I2C) Interface RM0016

284/430

21.6 I2C interrupts

Note: 1 SB, ADDR, ADD10, STOPF, BTF, RxNE and TxE are ORed on the same interrupt channel.

2 BERR, ARLO, AF, OVR, are ORed on the same interrupt channel.

3 WUFH uses another interrupt channel

4 The 3 previous channels can be ORed on the same one.

Table 45. I2C Interrupt requests

Interrupt event
Event
flag

Enable
control

bit

Exit
from
Wait

Exit
from
Halt

Start bit sent (Master) SB

ITEVTEN

Yes No

Address sent (Master) or Address matched
(Slave)

ADDR Yes No

10-bit header sent (Master) ADD10 Yes No

Stop received (Slave) STOPF Yes No

Data Byte Transfer Finished BTF Yes No

Wakeup from Halt WUFH ITEVTEN Yes Yes

Receive buffer not empty RxNE ITEVTEN
and

ITBUFEN

Yes No

Transmit buffer empty TxE Yes No

Bus error BERR

ITERREN

Yes No

Arbitration loss (Master) ARLO Yes No

Acknowledge failure AF Yes No

Overrun/Underrun OVR Yes No

RM0016 Inter-integrated circuit (I2C) Interface

 285/430

Figure 98. I2C interrupt mapping diagram

ADDR

SB

ADD10

WUFH it_event

ARLO

BERR

AF

OVR

ITERREN

it_error

ITEVTEN

STOPF

RxNE

TxE

BTF

ITBUFEN

Inter-integrated circuit (I2C) Interface RM0016

286/430

21.7 I2C registers

21.7.1 Control register 1 (I2C_CR1)

Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0

NOSTRETCH ENGC Reserved PE

rw rw rw

Bit 7 NOSTRETCH: Clock Stretching Disable (Slave mode)

This bit is used to disable clock stretching in slave mode when ADDR or BTF flag is set, until it is
reset by software.
0: Clock stretching enabled
1: Clock stretching disabled

Bit 6 ENGC: General Call Enable

0: General call disabled. Address 00h is NACKed.
1: General call enabled. Address 00h is ACKed.

Bits 5:1 Reserved, read as 0.

Bit 0 PE: Peripheral Enable
0: Peripheral disable
1: Peripheral enable: the corresponding I/Os are selected as alternate functions.

Note: If this bit is reset while a communication is on going, the peripheral is disabled at the end of the
current communication, when back to IDLE state.
All bit resets due to PE=0 occur at the end of the communication.

RM0016 Inter-integrated circuit (I2C) Interface

 287/430

21.7.2 Control register 2 (I2C_CR2)

Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0

SWRST reserved POS ACK STOP START

rw rw rw rw rw

Bit 7 SWRST: Software Reset
When set, the I2C is under reset state. Before resetting this bit, make sure the I2C lines are released
and the bus is free.
0: I2C Peripheral not under reset state
1: I2C Peripheral under reset state

Note: This bit can be used in case the BUSY bit is set to ‘1’ when no stop condition has been
detected on the bus.

Bits 6:4 Reserved, read as ‘0’

Bit 3 POS: Acknowledge position (for data reception).

This bit is set and cleared by software and cleared by hardware when PE=0.

0: ACK bit controls the (N)ACK of the current byte being received in the shift register.
1: ACK bit controls the (N)ACK of the next byte which will be received in the shift register.

Note: This bit must be configured before data reception starts.

Bit 2 ACK: Acknowledge Enable

This bit is set and cleared by software and cleared by hardware when PE=0.
0: No acknowledge returned
1: Acknowledge returned after a byte is received (matched address or data)

Bit 1 STOP: Stop Generation

The bit is set and cleared by software, cleared by hardware when a Stop condition is detected, set
by hardware when a timeout error is detected.

● In Master Mode:
0: No Stop generation.
1: Stop generation after the current byte transfer or after the current Start condition is sent.

Note: The BTF bit in the I2C_SR1 register must be cleared when the Stop request occurs.

● In Slave mode:
0: No Stop generation.
1: Release the SCL and SDA lines after the current byte transfer.

Bit 0 START: Start Generation

This bit is set and cleared by software and cleared by hardware when start is sent or PE=0.

● In Master Mode:
0: No Start generation
1: Repeated start generation

● In Slave mode:
0: No Start generation
1: Start generation when the bus is free

Inter-integrated circuit (I2C) Interface RM0016

288/430

21.7.3 Frequency register (I2C_FREQR)

Reset Value: 0000 0000 (00h)

21.7.4 Own address register LSB (I2C_OARL)

Reset Value: 0000 0000 (00h)

7 6 5 4 3 2 1 0

reserved FREQ[5:0]

r r rw rw rw rw rw rw

Bits 7:6 Reserved, read as ‘0’.

Bits 5:0 FREQ[5:0] Peripheral Clock Frequency. (1)

Input clock frequency must be programmed to generate correct timings:
The allowed range is between 1 MHz and 50 MHz
000000: not allowed
000001: 1 MHz
000010: 2 MHz
...
110010: 50 MHz
Higher values: not allowed.

1. The minimum peripheral clock frequencies for respecting the I2C bus timings are:
1 MHz for standard mode and 4 MHz for fast mode

7 6 5 4 3 2 1 0

ADD[7:1] ADD0

rw rw rw rw rw rw rw rw

Bits 7:1 ADD[7:1] Interface Address

bits 7:1 of address

Bit 0 ADD0 Interface Address

7-bit addressing mode: don’t care

10-bit addressing mode: bit 0 of address

RM0016 Inter-integrated circuit (I2C) Interface

 289/430

21.7.5 Own address register MSB (I2C_OARH)

Reset Value: 0000 0000 (00h)

21.7.6 Data register (I2C_DR)

Reset Value: 0000 0000 (00h)

7 6 5 4 3 2 1 0

ADDMODE ADDCONF reserved ADD[9:8] reserved

rw rw r r r rw rw r

Bit 7 ADDMODE Addressing mode (Slave mode)
0: 7-bit slave address (10-bit address not acknowledged)
1: 10-bit slave address (7-bit address not acknowledged)

Bit 6 ADDCONF Address mode configuration
This bit must set by software (must always be written as ‘1’).

Bits 5:3 Reserved, read as ‘0’.

Bit 2:1 ADD[9:8] Interface address

10-bit addressing mode: bits9:8 of address.

Bit 0 Reserved, read as ‘0’.

7 6 5 4 3 2 1 0

DR[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 DR[7:0] Data Register (1)(2)(3)

Byte received or to be transmitted to the bus.
● Transmitter mode: Byte transmission starts automatically when a byte is written in the DR

register. A continuous transmit stream can be maintained if the next data to be transmitted is put
in DR once the transmission is started (TxE=1)

● Receiver mode: Received byte is copied into DR (RxNE=1).

1. In slave mode, the address is not copied into DR.

2. Write collision is not managed (DR can be written if TxE=0).

3. If an ARLO event occurs on ACK pulse, the received byte is not copied into DR and so cannot be read.

Inter-integrated circuit (I2C) Interface RM0016

290/430

21.7.7 Status register 1 (I2C_SR1)

Reset Value: 0000 0000 (00h)
7 6 5 4 3 2 1 0

TxE RxNE Reserved STOPF ADD10 BTF ADDR SB

r r r r r r r r

Bit 7 TxE: Data Register Empty (transmitters) (1)

0: Data register not empty
1: Data register empty

● Set when DR is empty in transmission. TxE is not set during address phase.

● Cleared by software writing to the DR register or by hardware after a start or a stop condition or
when PE=0.

Bit 6 RxNE: Data Register not Empty (receivers) (2) (3)

0: Data register empty
1: Data register not empty

● Set when data register is not empty in receiver mode. RxNE is not set during address phase.
● Cleared by software reading or writing the DR register or by hardware when PE=0.

Bit 5 Reserved, read as ‘0’.

Bit 4 STOPF: Stop detection (Slave mode) (4)

0: No Stop condition detected
1: Stop condition detected

● Set by hardware when a Stop condition is detected on the bus by the slave after an acknowledge
(if ACK=1).

● Cleared by software reading the SR1 register followed by a write in the CR2 register, or by
hardware when PE=0

Bit 3 ADD10: 10-bit header sent (Master mode) (5)

0: No ADD10 event occurred.
1: Master has sent first address byte (header).
–Set by hardware when the master has sent the first byte in 10-bit address mode.

–Cleared by software reading the SR1 register followed by a write in the DR register of the second
address byte, or by hardware when PE=0.

Bit 2 BTF: Byte Transfer Finished (6)(7)

0: Data Byte transfer not done
1: Data Byte transfer succeeded

● Set by hardware when NOSTRETCH=0 and:

– In reception when a new byte is received (including ACK pulse) and DR has not been read
yet (RxNE=1).

– In transmission when a new byte should be sent and DR has not been written yet (TxE=1).
● Cleared by software reading SR1 followed by either a read or write in the DR register or by

hardware after a start or a stop condition in transmission or when PE=0.

RM0016 Inter-integrated circuit (I2C) Interface

 291/430

Bit 1 ADDR: Address sent (master mode)/matched (slave mode) (7)

This bit is cleared by software reading SR1 register followed reading SR3, or by hardware when
PE=0.

● Address matched (Slave)

0: Address mismatched or not received.
1: Received address matched.

– Set by hardware as soon as the received slave address matched with the OAR registers
content or a general call is recognized. (when enabled depending on configuration).

● Address sent (Master)

0: No end of address transmission
1: End of address transmission

– For 10-bit addressing, the bit is set after the ACK of the 2nd byte.
– For 7-bit addressing, the bit is set after the ACK of the byte.

Note: ADDR is not set after a NACK reception

Bit 0 SB: Start Bit (Master mode) (7)

0: No Start condition
1: Start condition generated.

– Set when a Start condition generated.

– Cleared by software by reading the SR1 register followed by writing the DR register, or by
hardware when PE=0

1. The interrupt will be generated when DR is copied into shift register after an ACK pulse. If a NACK is received, copy is not
done and TxE is not set.

2. The interrupt will be generated when Shift register is copied into DR after an ACK pulse.

3. RxNE is not set in case of ARLO event.

4. The STOPF bit is not set after a NACK reception

5. The ADD10 bit is not set after a NACK reception

6. The BTF bit is not set after a NACK reception, or in case of an ARLO event.

7. If fMASTER is < 2 MHz, it is highly recommended to use interrupts to manage the communication. Otherwise, if polling is
used to manage the SB, ADDR or BTF flags, 5 CPU cycles must be inserted between detecting that the flag has been set
and the second action which clears it (a write to I2C_DR for SB, a write or a read to I2C_DR for BTF, a read from I2C_SR3
for ADDR) these 5 CPU cycles can be inserted by executing 5 NOPs, for example.

Inter-integrated circuit (I2C) Interface RM0016

292/430

21.7.8 Status register 2 (I2C_SR2)

Reset Value: 0000 0000 (00h)

7 6 5 4 3 2 1 0

Reserved WUFH Reserved OVR AF ARLO BERR

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 7:6 Reserved, always read as 0.

Bit 5 WUFH: Wakeup from Halt

0: no wakeup from HALT mode

1: 7-bit address or header match in HALT mode (slave mode) or Halt entered when in master mode.

Note: This bit is set asynchronously in slave mode (during HALT mode). It is set only if ITEVTEN = 1.
– cleared by software writing 0, or by hardware when PE=0.

Bit 4 Reserved, always read as 0.

Bit 3 OVR: Overrun/Underrun

0: No overrun/underrun
1: Overrun or underrun

– Set by hardware in slave mode when NOSTRETCH=1 and:

– In reception when a new byte is received (including ACK pulse) and the DR register has not
been read yet. New received byte is lost.

– In transmission when a new byte should be sent and the DR register has not been written
yet. The same byte is sent twice.

Cleared by software writing 0, or by hardware when PE=0.

Note: if the DR write occurs very close to the SCL rising edge, the sent data is unspecified and a hold
timing error occurs.

Bit 2 AF: Acknowledge Failure.

0: No acknowledge failure
1: Acknowledge failure

– Set by hardware when no acknowledge is returned.
– Cleared by software writing 0, or by hardware when PE=0.

Bit 1 ARLO: Arbitration Lost (master mode)

0: No Arbitration Lost detected
1: Arbitration Lost detected

Set by hardware when the interface loses the arbitration of the bus to another master .
– Cleared by software writing 0, or by hardware when PE=0.

After an ARLO event the interface switches back automatically to Slave mode (M/SL=0).

Bit 0 BERR: Bus Error

0: No misplaced Start or Stop condition
1: Misplaced Start or Stop condition

– Set by hardware when the interface detects a misplaced Start or Stop condition

– Cleared by software writing 0, or by hardware when PE=0.

RM0016 Inter-integrated circuit (I2C) Interface

 293/430

21.7.9 Status register 3 (I2C_SR3)

Reset Value: 0000 0000 (00h)

7 6 5 4 3 2 1 0

Reserved GENCALL Reserved TRA BUSY MSL

r r r r r r r r

Bits 7:5 Reserved, read as ‘0’.

Bit 4 GENCALL: General Call Header (Slave mode)

0: No General Call
1: General Call header received when ENGC=1

– Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 3 Reserved, read as ‘0’.

Bit 2 TRA: Transmitter/Receiver

0: Data bytes received
1: Data bytes transmitted

This bit is set depending on R/W bit of address byte, at the end of total address phase.

It is also cleared by hardware after detection of Stop condition (STOPF=1), repeated Start condition,
loss of bus arbitration (ARLO=1), or when PE=0.

Bit 1 BUSY: Bus Busy

0: No communication on the bus
1: Communication ongoing on the bus

– Set by hardware on detection of SDA or SCL low
– cleared by hardware on detection of a Stop condition.

It indicates a communication in progress on the bus. This information is still updated when the
interface is disabled (PE=0).

Bit 0 MSL: Master/Slave

0: Slave Mode
1: Master Mode

– Set by hardware as soon as the interface is in Master mode (SB=1).
– Cleared by hardware after detecting a Stop condition on the bus or a loss of arbitration

(ARLO=1), or by hardware when PE=0.

Inter-integrated circuit (I2C) Interface RM0016

294/430

21.7.10 Interrupt register (I2C_ITR)

Reset Value: 0000 0000 (00h)

7 6 5 4 3 2 1 0

reserved ITBUFEN ITEVTEN ITERREN

r r r rw rw rw rw rw

Bits 7:3 Reserved, read as ‘0’.

Bit 2 ITBUFEN: Buffer Interrupt Enable

0: TxE = 1 or RxNE = 1 does not generate any interrupt.
1:TxE = 1 or RxNE = 1 generates Event Interrupt

Bit 1 ITEVTEN: Event Interrupt Enable

0: Event interrupt disabled
1: Event interrupt enabled

This interrupt is generated when:

– SB = 1 (Master)

– ADDR = 1 (Master/Slave)
– ADD10= 1 (Master)

– STOPF = 1 (Slave)

– BTF = 1 with no TxE or RxNE event
– TxE event to 1 if ITBUFEN = 1

– RxNE event to 1if ITBUFEN = 1

– WUFH = 1 (asynchronous interrupt to wakeup from halt)

Bit 0 ITERREN: Error Interrupt Enable

0: Error interrupt disabled
1: Error interrupt enabled

This interrupt is generated when:

– BERR = 1
– ARLO = 1

– AF = 1

– OVR = 1

RM0016 Inter-integrated circuit (I2C) Interface

 295/430

21.7.11 Clock control register low (I2C_CCRL)

Reset Value: 0000 0000 (00h)

7 6 5 4 3 2 1 0

CCR[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 CCR[7:0] Clock Control Register (Master mode)

Controls the SCLH clock in master mode.

● Standard Mode:

thigh = CCR * tCK

tlow = CCR * tCK

● Fast Mode:

If DUTY = 0:

thigh = CCR * tCK

tlow = 2 * CCR * tCK

If DUTY = 1: (to reach 400 kHz)

thigh = 9 * CCR * tCK

tlow = 16 * CCR * tCK

Notes:

– tCK = 1/ fCK. fCK is the input clock to the peripheral configured using clock control register.
– The minimum allowed value is 04h, except in FAST DUTY mode where the minimum allowed value

is 0x01.
– thigh includes the SCLH rising edge

– tlow includes the SCLH falling edge

– I2C communication speed, fSCL = 1/(Thigh + Tlow)
– These timings are without filters.

Inter-integrated circuit (I2C) Interface RM0016

296/430

21.7.12 Clock control register high (I2C_CCRH)

Reset Value: 0000 0000 (00h)

Note: 1 The CCR registers must be configured only when the I²C is disabled (PE=0).

2 fCK = multiple of 10 MHz is required to generate Fast clock at 400 kHz

3 fCK ≥ 1 MHz is required to generate Standard clock at 100 kHz

7 6 5 4 3 2 1 0

F/S DUTY reserved CCR[11:8]

rw rw r rw

Bit 7 F/S: I2C master mode selection

0: Standard mode I2C
1: Fast mode I2C

Bit 6 DUTY: Fast Mode Duty Cycle

0: Fast mode tlow/thigh = 2
1: Fast mode tlow/thigh = 16/9 (see CCR)

Bits 5:4 Reserved, must be kept cleared.

Bits 3:0 CCR[11:8]: Clock Control Register in Fast/Standard mode (Master mode)

Controls the SCLH clock in master mode.
● Standard Mode:

thigh = CCR * tCK

tlow = CCR * tCK

● Fast Mode:

If DUTY = 0:

thigh = CCR * tCK

tlow = 2 * CCR * tCK

If DUTY = 1: (to reach 400 kHz)

thigh = 9 * CCR * tCK

tlow = 16 * CCR * tCK

For instance: in standard mode, to generate a 100 kHz SCL frequency:

If FREQR = 08, tCK = 125 ns so CCR must be programmed with 28h

(0x28 <=> 40 x 125 ns = 5000 ns.)

Note: 1 thigh includes the SCLH rising edge

2 tlow includes the SCLH falling edge

3 These timings are without filters.

RM0016 Inter-integrated circuit (I2C) Interface

 297/430

21.7.13 TRISE register (I2C_TRISER)

Address offset: 0x0D

Reset value: 0x02

7 6 5 4 3 2 1 0

Reserved TRISE[5:0]

r r rw rw rw rw rw rw

Bits 7:6 Reserved, read as ‘0’.

Bits 5:0 TRISE[5:0] Maximum Rise Time in Fast/Standard mode (Master mode)

These bits must be programmed with the maximum SCL rise time given in the I2C bus specification,
incremented by 1.

For instance: in standard mode, the maximum allowed SCL rise time is 1000 ns.

If the value in the I2C_FREQR register = 08h, then tCK = 125ns therefore the TRISE[5:0] bits must
be programmed with 09h.

(1000 ns / 125 ns = 8 + 1)

The filter value can also be added to TRISE[5:0].

If the result is not an integer, TRISE[5:0] must be programmed with the integer part, in order to
respect the tHIGH parameter.

Note: TRISE[5:0] must be configured only when the I2C is disabled (PE = 0).

Inter-integrated circuit (I2C) Interface RM0016

298/430

21.7.14 I2C register map and reset values

Table 46. I2C register map

Address
offset

Register
name

7 6 5 4 3 2 1 0

0x00
I2C_CR1
Reset Value

NO STRETCH
0

ENGC
0

-
0

-
0

-
0

-
0

-
0

PE
0

0x01
I2C_CR2
Reset Value

SWRST
0

-
0

-
0

-
0

POS
0

ACK
0

STOP
0

START
0

0x02
I2C_FREQR
Reset Value

-
0

-
0

FREQ5
0

FREQ4
0

FREQ3
0

FREQ2
0

FREQ1
0

FREQ0
0

0x03
I2C_OARL
Reset Value

ADD7
0

ADD6
0

ADD5
0

ADD4
0

ADD3
0

ADD2
0

ADD1
0

ADD0
0

0x04
I2C_OARH
Reset Value

ADDMODE
0

ADDCONF
0

-
0

-
0

-
0

ADD9
0

ADD8
0

-
0

0x05 Reserved

0x06
I2C_DR
Reset Value

DR7
0

DR6
0

DR5
0

DR4
0

DR3
0

DR2
0

DR1
0

DR0
0

0x07
I2C_SR1
Reset Value

TxE
0

RxNE
0

-
0

STOPF
0

ADD10
0

BTF
0

ADDR
0

SB
0

0x08
I2C_SR2
Reset Value

-
0

-
0

WUFH
0

-
0

OVR
0

AF
0

ARLO
0

BERR
0

0x09
I2C_SR3
Reset Value

-
0

-
0

-
0

GENCALL
0

-
0

TRA
0

BUSY
0

MSL
0

0x0A
I2C_ITR
Reset Value

-
0

-
0

-
0

-
0

-
0

ITBUFEN
0

ITEVTEN
0

ITERREN
0

0x0B
I2C_CCRL
Reset Value

CCR7
0

CCR6
0

CCR5
0

CCR4
0

CCR3
0

CCR2
0

CCR1
0

CCR0
0

0x0C
I2C_CCRH
Reset Value

FS
0

DUTY
0

-
0

-
0

CCR11
0

CCR10
0

CCR9
0

CCR8
0

0x0D
I2C_TRISER
Reset Value

-
0

-
0

TRISE5
0

TRISE4
0

TRISE3
0

TRISE2
0

TRISE1
1

TRISE0
0

RM0016 Universal asynchronous receiver transmitter (UART)

 299/430

22 Universal asynchronous receiver transmitter (UART)

22.1 Introduction
The UARTs in the STM8S microcontroller family (UART1, UART2 or UART3) offer a flexible
means of full-duplex data exchange with external equipment requiring an industry standard
NRZ asynchronous serial data format (UART mode). The STM8 UARTs offer a very wide
range of baud rates and can also be used for multi-processor communication. They also
support LIN (Local Interconnection Network) protocol version 1.3, 2.0 and 2.1 and J2602 in
master mode.

UART1 and UART2 have extended features (see Table 47):

● LIN slave mode is supported in UART2 and UART3.

● Synchronous one-way communication, Smartcard Protocol and IrDA (Infrared Data
Association) SIR ENDEC specifications are supported in UART1 and UART2.

● Half-duplex single wire communication is supported in UART1.

Refer to the datasheet for information on the availability of the UART configurations (UART1,
UART2 or UART3) in each microcontroller type.

Table 47. UART configurations(1)

1. X = supported; NA = not applicable.

Feature UART1 UART2 UART3

Asynchronous mode X X X

Multiprocessor Communication X X X

Synchronous communication X X NA

Smartcard mode X X NA

IrDA mode X X NA

Half-Duplex (Single-Wire mode) X NA NA

LIN master mode X X X

LIN slave mode NA X X

Universal asynchronous receiver transmitter (UART) RM0016

300/430

22.2 UART main features
● Full duplex, asynchronous communications

● NRZ standard format (Mark/Space)

● High-precision baud rate generator system

– Common programmable transmit and receive baud rates up to fMASTER/16

● Programmable data word length (8 or 9 bits)

● Configurable stop bits - support for 1 or 2 stop bits

● LIN Master mode:

– LIN break and delimiter generation

– LIN break and delimiter detection with separate flag and interrupt source for
readback checking

● Transmitter clock output for synchronous communication (UART1, UART2)

● IrDA SIR Encoder Decoder (UART1, UART2)

– Support for 3/16 bit duration for normal mode

● Smartcard Emulation Capability (UART1, UART2)

– The Smartcard interface supports the asynchronous protocol for Smartcards as
defined in ISO 7816-3 standards

– 1.5 Stop Bits for Smartcard operation

● Single wire Half Duplex Communication (UART1)

● Separate enable bits for Transmitter and Receiver

● Transfer detection flags:

– Receive buffer full

– Transmit buffer empty

– End of Transmission flags

● Parity control:

– Transmits parity bit

– Checks parity of received data byte

● 4 error detection flags:

– Overrun error

– Noise error

– Frame error

– Parity error

● 6 interrupt sources with flags:

– Transmit data register empty

– Transmission complete

– Receive data register full

– Idle line received

– Parity error

– LIN break and delimiter detection (UART2, UART3)

RM0016 Universal asynchronous receiver transmitter (UART)

 301/430

● 2 interrupt vectors:

– Transmitter interrupt

– Receiver interrupt

● Reduced power consumption mode

● Multi-Processor communication - enter into mute mode if address match does not
occur

● Wakeup from mute mode (by idle line detection or address mark detection)

● 2 receiver wakeup modes:

– Address bit (MSB)

– Idle line

22.3 UART functional description
The interface is externally connected to another device by two or three pins (see Figure 99:
UART1 block diagram, Figure 100: UART2 block diagram and Figure 101: UART3 block
diagram). Any UART bidirectional communication requires a minimum of two pins: UART
Receive data input (UART_RX) and UART transmit data output (UART_TX):

UART_RX is the serial data input. Over-sampling techniques are used for data recovery by
discriminating between valid incoming data and noise.

UART_TX is the serial data output. When the transmitter is disabled, the output pin returns
to its I/O port configuration. When the transmitter is enabled and nothing is to be
transmitted, the pin is at high level.

Through these pins, serial data is transmitted and received in normal UART mode as frames
comprising:

● An Idle Line prior to transmission or reception

● A start bit

● A data word (8 or 9 bits) least significant bit first

● 1, 1.5 and 2 Stop bits indicating that the frame is complete

● A status register (UART_SR)

● Data Register (UART_DR)

● 16-bit baud rate prescaler (UART_BRR)

● Guard time Register for use in Smartcard mode

Refer to the register description for the definitions of each bit.

The following pin is required to interface in synchronous mode:

UART_CK: Transmitter clock output. This pin outputs the transmitter data clock for
synchronous transmission (no clock pulses on start bit and stop bit, and a software
option to send a clock pulse on the last data bit). This can be used to control
peripherals that have shift registers (e.g. LCD drivers). The clock phase and polarity
are software programmable.

The UART_RX and UART_TX pins are used in IrDA mode as follows:

UART_RX = IrDA_RDI: Receive Data Input in IrDA mode
UART_TX = IrDA_TDO: Transmit Data Output in IrDA mode

Universal asynchronous receiver transmitter (UART) RM0016

302/430

Figure 99. UART1 block diagram

WAKE_UP
UNIT

RECEIVER
CONTROL

UART1_SR

TRANSMIT

CONTROL

TXE TC RXNE IDLE OR NF FE

CONTROL

INTERRUPT

UART1_CR1

R8 T8 M WAKE

Receive Data Register (RDR)

Receive Shift Register

Read

Transmit Data Register (TDR)

Transmit Shift Register

Write

UART1_TX

UART1_DR(DATA REGISTER)

BAUD RATEfMASTER

GENERATOR

SBKRWURENTENILIENRIENTCIENTIEN

UART1_CR2

UARTD PCEN PS PIEN

PE

IRLPSCEN IREN--

UART1_CR4

UART1_CR5

IrDA
SIR ENDEC

BLOCK

LINEN- CLKEN CPOL CPHA LBCL

UART_CK CONTROLUART1_CK

UART1_CR3

GUARD TIME REGISTER

STOP BITS-NACK

UART1_BRR

HDSEL

LBDIEN ADDLBDL LBDF

UART1_RX

MCU bus

-

UART1_GTR

RM0016 Universal asynchronous receiver transmitter (UART)

 303/430

Figure 100. UART2 block diagram

WAKE_UP
UNIT

RECEIVER
CONTROL

UART2_SR

TRANSMIT

CONTROL

TXE TC RXNE IDLE OR NF FE

CONTROL

INTERRUPT

UART2_CR1

R8 T8 M WAKE

Receive Data Register (RDR)

Receive Shift Register

Read

Transmit Data Register (TDR)

Transmit Shift Register

Write

UART2_TX

UART2_DR(DATA REGISTER)

SBKRWURENTENILIENRIENTCIENTIEN

UART2_CR2

UARTD PCEN PS PIEN

PE

IRLPSCEN IREN--

UART2_CR4

UART2_CR5

IrDA
SIR ENDEC

BLOCK

LINEN- CLKEN CPOL CPHA LBCL

UART2_CK CONTROL

UART2_CR3

GUARD TIME REGISTER

STOP BITS-NACK

LBDIEN ADDLBDL LBDF

UART2_RX

MCU bus

-

UART2_GTR
UART2_CK

RECEIVER RATE

TRANSMITTER RATE

fMASTER

 CONTROL

CONTROL

UARTDIV[11:4]

UARTDIV[15:12]

7 4 0

UARTDIV[3:0]

3

REN

UART2_BRR2

/UARTDIV

TEN

UART2_BRR1

UART2_CR6

LASE LHIEN LSFLHDFLDUM LSLV

AUTOMATIC RESYNCHRONIZATION
UNIT

-

-

Universal asynchronous receiver transmitter (UART) RM0016

304/430

Figure 101. UART3 block diagram

WAKE
UP

UNIT

RECEIVER
CONTROL

UART3_SR

TRANSMIT
CONTROL

TXE TC RXNE IDLE
OR/

NF FE

CONTROL

INTERRUPT

UART2_CR1

R8 T8 M WAKE

Receive Data Register (RDR)

Receive Shift Register

Read

Transmit Data Register (TDR)

Transmit Shift Register

Write (DATA REGISTER) UART3_DR

RECEIVER
CLOCK

RECEIVER RATE

TRANSMITTER RATE

fMASTER

 CONTROL

CONTROL

SBKRWURENTENILIENRIENTCIENTIEN

UART3_CR2

UARTD PCEN PS PIEN

PE

UART3_CR4

LINEN

UART3_CR3

STOP[1:0]

UARTDIV[11:4]

UARTDIV[15:12]

7 4 0

UARTDIV[3:0]

3

REN

UART3_BRR2

/UARTDIV

TEN

UART3_TX

UART3_RX

LBDIEN ADD[3:0]LBDL LBDF

LHE

UART3_BRR1

UART3_CR6

LASE LHIEN LSFLHDFLDUM LSLV

TRANSMITTER
CLOCK

AUTOMATIC RESYNCHRONIZATION
UNIT

RM0016 Universal asynchronous receiver transmitter (UART)

 305/430

22.3.1 UART character description

Word length may be selected as being either 8 or 9 bits by programming the M bit in the
UART_CR1 register (see Figure 102).

The UART_TX pin is in low state during the start bit. It is in high state during the stop bit.

An Idle character is interpreted as an entire frame of “1”s (the number of “1” ‘s includes the
start bit, the number of data bits and the number of stop bits).

A Break character is interpreted on receiving “0”s for a frame period. At the end of the
break frame the transmitter inserts either 1 or 2 stop bits (logic “1” bit) to acknowledge the
start bit.

Transmission and reception are driven by a common baud rate generator, the clock for each
is generated when the enable bit is set respectively for the transmitter and receiver.

The details of each block is given below.

Figure 102. Word length programming

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8
Start
Bit Stop

Bit

Next
Start
Bit

Idle Frame

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Stop
Bit

Next
Start
Bit

Idle Frame
Start
Bit

9-bit Word length (M bit is set), 1 stop bit

8-bit Word length (M bit is reset), 1 stop bit

Possible
Parity

Bit

Possible
Parity

Bit

Break Frame Start
Bit

Extra
’1’

Data Frame

Break Frame Start
Bit

Extra
’1’

Data Frame

Next Data Frame

Next Data Frame

Start
Bit

** LBCL bit controls last data clock pulse

CLOCK

CLOCK

** LBCL bit controls last data clock pulse

**

**

Universal asynchronous receiver transmitter (UART) RM0016

306/430

22.3.2 Transmitter

The transmitter can send data words of either 8 or 9 bits depending on the M bit status.
When the M bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the
T8 bit in the UART_CR1 register.

When the transmit enable bit (TEN) is set, the data in the transmit shift register is output on
the UART_TX pin and the corresponding clock pulses are output on the UART_CK pin.

Character transmission

During an UART transmission, data shifts out least significant bit first on the UART_TX pin.
In this mode, the UART_DR register consists of a buffer (TDR) between the internal bus and
the transmit shift register (see Figure 99).

Every character is preceded by a start bit which is a logic level low for one bit period. The
character is terminated by a configurable number of stop bits.

The following stop bits are supported by UART.

Note: 1 The TEN bit should not be reset during transmission of data.Resetting the TEN bit during
the transmission will corrupt the data on the UART_TX pin as the baud rate counters will get
frozen.The current data being transmitted will be lost.

2 An idle frame will be sent after the TEN bit is enabled.

Configurable stop bits

The number of stop bits to be transmitted with every character can be programmed in
Control register 3, bits 5,4.

● 1 stop bit: This is the default value of number of stop bits.

● 2 Stop bits: This is supported by normal mode UART.

● 1.5 Stop bits: To be used in Smartcard mode only.

An idle frame transmission will include the stop bits.

A break transmission consists of 10 low bits followed by the configured number of stop bits
(when m = 0) and 11 low bits followed by the configured number of stop bits (when m = 1). It
is not possible to transmit long breaks (break of length greater than 10/11 low bits).

Note: In LIN mode (see Section 22.3.7 on page 315), a standard 13-bit break is always
generated.

RM0016 Universal asynchronous receiver transmitter (UART)

 307/430

Figure 103. Configurable stop bits

Procedure:

1. Program the M bit in UART_CR1 to define the word length.

2. Program the number of stop bits in UART_CR3.

3. Select the desired baud rate by programming the baud rate registers in the following
order:

a) UART_BRR2

b) UART_BRR1

4. Set the TEN bit in UART_CR2 to enable transmitter mode.

5. Write the data to send in the UART_DR register (this clears the TXE bit). Repeat this
for each data to be transmitted in case of single buffer.

Single byte communication

Clearing the TXE bit is always performed by a write to the data register.

The TXE bit is set by hardware and it indicates:

● The data has been moved from TDR to the shift register and the data transmission has
started.

● The TDR register is empty.

● The next data can be written in the UART_DR register without overwriting the previous
data.

This flag generates an interrupt if the TIEN bit is set.

When a transmission is taking place, a write instruction to the UART_DR register stores the
data in the TDR register. The data is copied in the shift register at the end of the current
transmission.

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Stop
Bit

Next
Start
Bit

8-bit Word length (M bit is reset)
Possible

Parity
Bit

Data Frame
Next Data Frame

** LBCL bit controls last data clock pulse

CLOCK
**

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

2 Stop
Bits

Next
Start
Bit

Possible
Parity

Bit
Data Frame

Next Data Frame

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Next
Start
Bit

Possible
Parity

Bit
Data Frame

Next Data Frame

1 1/2 stop bits

a) 1 Stop Bit

b) 1 1/2 stop Bits *

c) 2 Stop Bits

Universal asynchronous receiver transmitter (UART) RM0016

308/430

When no transmission is taking place, a write instruction to the UART_DR register places
the data directly in the shift register, the data transmission starts, and the TXE bit is
immediately set.

When a frame transmission is complete (after the stop bit) the TC bit is set and an interrupt
is generated if the TCIEN is set. Clearing the TC bit is performed by the following software
sequence:

1. A read to the UART_SR register

2. A write to the UART_DR register

Break character

Setting the SBK bit transmits a break character. The break frame length depends on the M
bit (see Figure 102).

If the SBK bit is set to ‘1’ a break character is sent on the UART_TX line after completing the
current character transmission. This bit is reset by hardware when the break character is
completed (during the stop bit of the break character).The UART inserts a logic 1 bit at the
end of the last break frame to guarantee the recognition of the start bit of the next frame.

Note: The break character is sent without taking into account the number of stop bits. If the UART
is programmed with 2 stop bits, the TX line is pulled low until the end of the first stop bit only.
Then 2 logic 1 bits are inserted before the next character.

Note: If the software resets the SBK bit before the start of break transmission, the break character
is not transmitted. For two consecutive breaks, the SBK bit should be set after the stop bit of
the previous break.

Idle character

Setting the TEN bit drives the UART to send an idle frame before the first data frame.

22.3.3 Receiver

The UART can receive data words of either 8 or 9 bits. When the M bit is set, word length is
9 bits and the MSB is stored in the R8 bit in the UART_CR1 register.

Character reception

During an UART reception, data shifts in least significant bit first through the UART_RX pin.
In this mode, the UART_DR register consists of a buffer (RDR) between the internal bus and
the received shift register (see Figure 2).

Procedure:

1. Program the M bit in UART_CR1 to define the word length.

2. Program the number of stop bits in UART_CR3.

3. Select the desired baud rate by programming the baud rate registers in the following
order:

a) UART_BRR2

b) UART_BRR1

4. Set the REN bit UART_CR2. This enables the receiver which begins searching for a
start bit.

RM0016 Universal asynchronous receiver transmitter (UART)

 309/430

When a character is received

● The RXNE bit is set. It indicates that the content of the shift register is transferred to the
RDR.

● An interrupt is generated if the RIEN bit is set.

● The error flags can be set if a frame error, noise or an overrun error has been detected
during reception.

● Clearing the RXNE bit is performed by a software read to the UART_DR register. The
RXNE flag can also be cleared by writing a zero to it. The RXNE bit must be cleared
before the end of the reception of the next character to avoid an overrun error.

Note: The REN bit should not be reset while receiving data. If the REN bit is disabled during
reception, the reception of the current byte will be aborted.

Break character

When a break character is received, the UART handles it as a framing error.

Idle character

When an idle frame is detected, there is the same procedure as a data received character
plus an interrupt if the ILIEN bit is set.

Overrun error

An overrun error occurs when a character is received when RXNE has not been reset. Data
can not be transferred from the shift register to the RDR register until the RXNE bit is
cleared.

When an overrun error occurs:

● The OR bit is set.

● The RDR content will not be lost. The previous data is available when a read to
UART_DR is performed.

● The shift register will be overwritten. The second data received during overrun is lost.

● An interrupt is generated if the RIEN bit is set.

● The OR bit is reset by a read to the UART_SR register followed by a UART_DR register
read operation.

Universal asynchronous receiver transmitter (UART) RM0016

310/430

Noise error

Over-sampling techniques are used for data recovery by discriminating between valid
incoming data and noise.

Figure 104. Data sampling for noise detection

Note: The sample clock frequency is 16x baud rate.

RX LINE

Sample
 clock 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sampled values

One bit time

6/16

7/16 7/16

RM0016 Universal asynchronous receiver transmitter (UART)

 311/430

When noise is detected in a frame:

● The NF is set at the rising edge of the RXNE bit.

● The invalid data is transferred from the Shift register to the UART_DR register.

This bit rises at the same time as the RXNE bit which generates an interrupt. The NF bit is
reset by a UART_SR register read operation followed by a UART_DR register read
operation.

Framing error

A framing error is detected when:

The stop bit is not recognized on reception at the expected time, following either a de-
synchronization or excessive noise.

When the framing error is detected:

● The FE bit is set by hardware

● The invalid data is transferred from the Shift register to the UART_DR register.

● No interrupt is generated in case of single byte communication. However, this bit rises
at the same time as the RXNE bit which itself generates an interrupt.

The FE bit is reset by a UART_SR register read operation followed by a UART_DR register
read operation.

Configurable stop bits during reception:

The number of stop bits to be received can be configured through the control bits of Control
Register 3 - it can be either 1 or 2 in normal mode, 1 in IrDA mode and 1.5 in Smartcard
mode.

1. 1 Stop Bit: Sampling for 1 stop Bit is done on the 8th, 9th and 10th samples.

2. 1.5 stop Bits (Smartcard mode only): Sampling for 1.5 stop bits is done on the
16th,17th and 18th samples. An NACK signal received from the Smartcard forces the
data signal low during the sampling, flagged as a framing error. Then, the FE flag is set
with the RXNE at the end of the 1.5 stop bit.

3. 2 Stop Bits: Sampling for 2 stop bits is done on the 8th, 9th and 10th samples of the
first stop bit.If a framing error is detected during the first stop bit the framing error flag
will be set. The second stop bit is not checked for framing error. The RXNE flag will be
set at the end of the first stop bit.

Table 48. Noise detection from sampled data

Sampled value NF status Received bit value Data validity

000 0 0 Valid

001 1 0 Not Valid

010 1 0 Not Valid

011 1 1 Not Valid

100 1 0 Not Valid

101 1 1 Not Valid

110 1 1 Not Valid

111 0 1 Valid

Universal asynchronous receiver transmitter (UART) RM0016

312/430

22.3.4 High precision baud rate generator

The receiver and transmitter (Rx and Tx) are both set to the same baud rate programmed by
a 16-bit divider UART_DIV according to the following formula:

The UART_DIV baud rate divider is an unsigned integer, coded in the BRR1 and BRR2
registers as shown in Figure 105.

Refer to Table 49. for typical baud rate programming examples.

Figure 105. How to code UART_DIV in the BRR registers

Note: The Baud Counters will be updated with the new value of the Baud Registers after a write to
BRR1. Hence the Baud Register value should not be changed during a transaction. The
BRR2 should be programmed before BRR1.

Note: UART_DIV must be greater than or equal to 16d.

Tx/ Rx baud rate =
fMASTER

UART_DIV

7 0 7 0

UART_BRR1 UART_BRR2

4 3

Example: To obtain 9600 baud with fMASTER = 10 MHz.

UART_DIV[15:12]UART_DIV[11:4] UART_DIV[3:0]

UART_DIV = 1042d = 0412h See Table 49.

register = 02h

UART_DIV = 10 000 000/9600

register = 41h

41h 2h0h

RM0016 Universal asynchronous receiver transmitter (UART)

 313/430

Note: The lower the fMASTER frequency, the lower will be the accuracy for a particular baud
rate.The upper limit of the achievable baud rate can be fixed with this data.

22.3.5 Parity control

Parity control (generation of parity bit in transmission and parity checking in reception) can
be enabled by setting the PCEN bit in the UART_CR1 register. Depending on the frame
length defined by the M bit, the possible UART frame formats are as listed in Table 50.

Legends: SB: Start Bit, STB: Stop Bit, PB: Parity Bit

Note: In case of wakeup by an address mark, the MSB bit of the data is taken into account and not
the parity bit

Even parity: the parity bit is calculated to obtain an even number of “1s” inside the frame
made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

Ex: data=00110101; 4 bits set => parity bit will be 0 if even parity is selected (PS bit in
UART_CR1 = 0).

Odd parity: the parity bit is calculated to obtain an odd number of “1s” inside the frame
made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

Table 49. Baud rate programming and error calculation

Baud
rate

fMASTER = 10 MHz fMASTER = 24 MHz

in
kbps

Actual % Error (1) UART_DIV BRR1 BRR2 Actual % Error(1) UART_DIV BRR1 BRR2

2.4 2.399 -0.04% 1047h 04h 17h 2.4 0.0% 2710h 71h 20h

9.6 9.596 -0.04% 0412h 41h 02h 9.6 0.0% 09C4h 9Ch 04h

19.2 19.193 -0.03% 0209h 20h 09h 19.2 0.0% 04E2 4Eh 02h

57.6 57.471 -0.22% 00AEh 0Ah 0Eh 57.554 -0.08% 01A1h 1Ah 01h

115.2 114.942 -0.22% 0057h 05h 07h 115.385 0.16% 00D0h 0Dh 00h

230.4 232.558 -0.94% 002Bh 02h 0Bh 230.769 0.16% 0068h 06h 08h

460.8 454.545 -1.36% 0016h 01h 06h 461.538 0.16% 0034h 03h 04h

921.6 NA NA NA 923.077 0.16% 001Ah 01h 0Ah

1. Error % = (Calculated - Desired) Baud Rate / Desired Baud Rate

Table 50. Frame formats

M bit PCEN bit UART frame

0 0 | SB | 8 bit data | STB |

0 1 | SB | 7-bit data | PB | STB |

1 0 | SB | 9-bit data | STB |

1 1 | SB | 8-bit data PB | STB |

Universal asynchronous receiver transmitter (UART) RM0016

314/430

Example: data=00110101; 4 bits set => parity bit will be 1 if odd parity is selected (PS bit in
UART_CR1 = 1).

Transmission: If the PCEN bit is set in UART_CR1 then the MSB bit of the data written in
the data register is not transmitted but is changed by the parity bit to give an even number of
‘1’s if even parity is selected (PS=0) or an odd number of ‘1’s if odd parity is selected
(PS=1).

Reception: If the parity check fails, the PE flag is set in the UART_SR register and an
interrupt is generated if the PIEN bit is set in the UART_CR1 register.

22.3.6 Multi-processor communication

It is possible to perform multi-processor communication with the UART (several UARTs
connected in a network). For example, one of the UARTs can be the master, its TX output is
connected to the RX input of the other UART. The others are slaves, their respective TX
outputs are logically ANDed together and connected to the RX input of the master.

In multi-processor configurations it is often desirable that only the intended message
recipient should actively receive the full message contents, thus reducing redundant UART
service overhead for all non addressed receivers.

The non addressed devices may be placed in mute mode by means of the muting function.
In mute mode:

● None of the reception status bits can be set.

● All the receive interrupts are inhibited.

● The RWU bit in UART_CR1 register is set to 1. RWU can be controlled automatically by
hardware or written by the software under certain conditions.

The UART can enter or exit from mute mode using one of two methods, depending on the
WAKE bit in the UART_CR1 register:

● Idle Line detection if the WAKE bit is reset,

● Address Mark detection if the WAKE bit is set.

Idle line detection (WAKE=0)

The UART enters mute mode when the RWU bit is written to 1.

It wakes up when an Idle frame is detected. Then the RWU bit is cleared by hardware but
the IDLE bit is not set in the UART_SR register. RWU can also be written to 0 by software.

An example of mute mode behavior using idle line detection is given in Figure 106.

Figure 106. Mute mode using Idle line detection

RWU written to 1

Data 1 IDLERX Data 2 Data 3 Data 4 Data 6Data 5

RWU Mute Mode Normal Mode

Idle frame detected

RXNE RXNE

RM0016 Universal asynchronous receiver transmitter (UART)

 315/430

Address mark detection (WAKE=1)

In this mode, bytes are recognized as addresses if their MSB is a ‘1’ else they are
considered as data. In an address byte, the address of the targeted receiver is put on the 4
LSB. This 4-bit word is compared by the receiver with its own address which is programmed
in the ADD bits in the UART_CR4 register.

The UART enters mute mode when an address character is received which does not match
its programmed address. The RXNE flag is not set for this address byte and no interrupt
request is issued as the UART would have entered mute mode.

It exits from mute mode when an address character is received which matches the
programmed address. Then the RWU bit is cleared and subsequent bytes are received
normally. The RXNE bit is set for the address character since the RWU bit has been cleared.

The RWU bit can be written to 0 or 1 when the receiver buffer contains no data (RXNE=0 in
the UART_SR register). Otherwise the write attempt is ignored.

An example of mute mode behavior using address mark detection is given in Figure 107.

Figure 107. Mute mode using Address mark detection

Note: If parity control is enabled, the parity bit remains in the MSB and the address bit is put in the
"MSB - 1" bit.

For example, with 7-bit data, address mode and parity control:

SB I 7-bit data I ADD I PB I STB

where:

SB = Start Bit
STB = Stop Bit
ADD = Address bit
PB = Parity Bit

22.3.7 LIN (local interconnection network) mode

The UART supports LIN break and delimiter generation in LIN master mode.

Refer to Section 22.4.1: Master mode on page 323 for details. LIN slave mode is supported
by the UART2 and 3 only, not by UART1.

LIN mode is selected by setting the LINEN bit in the UART_CR3 register. In LIN mode, the
following bits must be kept cleared:

● CLKEN, STOP[1:0] in the UART_CR3 register

● SCEN, HDSEL and IREN in the UART_CR5 register

RWU written to 1

IDLERX Addr=0

RWU Mute Mode Normal Mode

Matching address

RXNE RXNE

(RXNE was cleared)

Data 2 Data 3 Data 4 Data 5Data 1 IDLE Addr=1 Addr=2

Mute Mode

In this example, the current address of the receiver is 1
(programmed in the UART_CR4 register)

Non-matching address Non-matching address

Universal asynchronous receiver transmitter (UART) RM0016

316/430

22.3.8 UART synchronous communication

The UART transmitter allows the user to control bidirectional synchronous serial
communications in master mode.

In synchronous mode, the following bits must be kept cleared:

● LINEN bit in the UART_CR3 register

● SCEN, HDSEL and IREN bits in the UART_CR5 register

Note: This feature is only available in UART1 and UART2.

The UART_CK pin is the output of the UART transmitter clock. No clock pulses are sent to
the UART_CK pin during start bit and stop bit. Depending on the state of the LBCL bit in the
UART_CR3 register clock pulses will or will not be generated during the last valid data bit
(address mark). The CPOL bit in the UART_CR3 register allows the user to select the clock
polarity, and the CPHA bit in the UART_CR3 register allows the user to select the phase of
the external clock (see Figure 108, Figure 109 & Figure 110).

During idle and break frames, the external CK clock is not activated.

In synchronous mode, the UART receiver works differently compared to asynchronous
mode. If RE=1, the data is sampled on SCLK (rising or falling edge, depending on CPOL
and CPHA), without any oversampling. A setup and a hold time (even if the hold time is not
relevant due to the SPI protocol) must be respected (which depends on the baud rate: 1/16
bit time for an integer baud rate).

Note: 1 The UART_CK pin works in conjunction with the TX pin. When the UART transmitter is
disabled (TEN and REN= 0), the UART_CK and UART_TX pins go into high impedance
state.

2 The LBCL, CPOL and CPHA bits in UART_CR3 have to be selected when both the
transmitter and the receiver are disabled (TEN=REN=0) to ensure that the clock pulses
function correctly. These bits should not be changed while the transmitter or the receiver is
enabled.

3 It is recommended to set TE and RE are set in the same instruction in order to minimize the
setup and the hold time of the receiver.

4 The UART supports master mode only: it cannot receive or send data related to an input
clock (SCLK is always an output).

5 The data given in this section apply only when the UART_DIV[3:0] bits in the UART_BRR2
register are kept at 0. Else the setup and hold times are not 1/16 of a bit time but 4/16 of a
bit time.

This option allows to serially control peripherals which consist of shift registers, without
losing any functions of the asynchronous communication which can still talk to other
asynchronous transmitters and receivers.

RM0016 Universal asynchronous receiver transmitter (UART)

 317/430

Figure 108. UART example of synchronous transmission

Figure 109. UART data clock timing diagram (M=0)

Figure 110. UART data clock timing diagram (M=1)

Data outRX

TX

SCLK

UART

Data in

Synchronous device
(for example slave SPI)

Clock

M=0 (8 data bits)

Clock (CPOL=0, CPHA=1)

Clock (CPOL=1, CPHA=0)

Clock (CPOL=1, CPHA=1)

Start LSB MSB Stop

* LBCL bit controls last data clock pulse

Start
Idle or preceding
transmission

Data

Stop

Clock (CPOL=0, CPHA=0)

0 1 2 3 4 5 6 7

*

*

*

*

Idle or next
transmission

Idle or nextM=1 (9 data bits)

Clock (CPOL=0, CPHA=1)

Clock (CPOL=1, CPHA=0)

Clock (CPOL=1, CPHA=1)

Start LSB MSB Stop

* LBCL bit controls last data clock pulse

Start
Idle or preceding
transmission

Data

Stop

Clock (CPOL=0, CPHA=0)

0 1 2 3 4 5 6 7

*

*

*

*

8

transmission

Universal asynchronous receiver transmitter (UART) RM0016

318/430

Figure 111. RX data setup/hold time

Note: The function of UART_CK is different in Smartcard mode. Refer to Section 22.3.10:
Smartcard for more details.

22.3.9 Single wire half duplex communication

The UART can be configured to follow a single wire half duplex protocol. Single-wire half-
duplex mode is selected by setting the HDSEL bit in the UART_CR5 register. In this mode,
the following bits must be kept cleared:

● LINEN and CLKEN bits in the UART_CR3 register

● SCEN and IREN bits in the UART_CR5 register

Note: This feature is only available in UART1.

As soon as HDSEL is set:

● UART_RX is no longer used

● UART_TX is always released when no data is transmitted. Thus, it acts as a standard
I/O in idle or in reception. This means that the I/O must be configured so that UART_TX
is configured as floating input (or output high open-drain) when not driven by the UART.

Apart from this, the communications are similar to what is done in normal UART mode. The
conflicts on the line must be managed by the software (by the use of a centralized arbiter, for
instance). In particular, the transmission is never blocked by hardware and continue to occur
as soon as a data is written in the data register while the TEN bit is set.

22.3.10 Smartcard

Smartcard mode is selected by setting the SCEN bit in the UART_CR5 register. In
smartcard mode, the following bits must be kept cleared:

● LINEN bit in the UART_CR3 register,

● HDSEL and IREN bits in the UART_CR5 register.

Moreover, the CKEN bit may be set in order to provide a clock to the smartcard.

Note: This feature is only available in UART1 and UART2.

The Smartcard interface is designed to support asynchronous protocol Smartcards as
defined in the ISO7816-3 standard. The UART should be configured as eight bits plus parity
and 1.5 stop bits. With Smartcard mode enabled (which can be done by setting the SCEN
bit in the UART_CR5) the UART can communication with an asynchronous Smartcard.

valid DATA bit

tSETUP tHOLD

SCLK (capture strobe on SCLK
rising edge in this example)

Data on RX
(from slave)

tSETUP = tHOLD 1/16 bit time = 1/16*fSCLK

RM0016 Universal asynchronous receiver transmitter (UART)

 319/430

Figure 112. ISO 7816-3 asynchronous protocol

When connected to a smartcard, the UART_TX output drives a bidirectional line that is also
driven by the smartcard.

Smartcard is a single wire half duplex communication protocol.

● Transmission of data from the transmit shift register is guaranteed to be delayed by a
minimum of 1/2 baud clock. In normal operation a full transmit shift register will start
shifting on the next baud clock edge. In Smartcard mode this transmission is further
delayed by a guaranteed 1/2 baud clock.

● If a parity error is detected during reception of a frame programmed with a 1.5 stop bit
period, the transmit line is pulled low for a baud clock period after 1/2 baud clock
period. This is to indicate to the Smartcard that the data transmitted to the UART has
not been correctly received. This NACK signal (pulling transmit line low for 1 baud
clock) will cause a framing error on the transmitter side (configured with 1.5 stop bits).
The application can handle re-sending of data according to the protocol. A parity error
is ‘NACK’ed by the receiver if the NACK control bit is set, otherwise a NACK is not
transmitted.

● The TE bit must be set to enable:

– Data transmission

– Transmission of acknowledgements in case of parity error.

Software must manage the timing of data transmission to avoid conflicts on the
data line when it writes new data in the data register.

● The RE bit must be set to enable:

– Data reception (sent by the Smartcard as well as by the UART),

– Detection of acknowledgements in case of parity error.

● The assertion of the TC flag can be delayed by programming the Guard Time register.
In normal operation, TC is asserted when the transmit shift register is empty and no
further transmit requests are outstanding. In Smartcard mode an empty transmit shift
register triggers the guard time counter to count up to the programmed value in the
Guard Time register. TC is forced low during this time. When the guard time counter
reaches the programmed value TC is asserted high.

● The de-assertion of TC flag is unaffected by Smartcard mode.

● If a framing error is detected on the transmitter end (due to a NACK from the receiver),
the NACK will not be detected as a start bit by the receive block of the transmitter.
According to the ISO protocol, the duration of the received NACK can be 1 or 2 baud
clock periods.

● On the receiver side, if a parity error is detected and a NACK is transmitted the receiver
will not detect the NACK as a start bit.

● The output enable signal for the Smartcard I/O enables driving into a bidirectional line
which is also driven by the Smartcard. This signal is active while transmitting the start

S 0 1 2 3 54 6 7 P

Start
bit

Line pulled low
by receiver during stop in
case of parity error

Guard time

Universal asynchronous receiver transmitter (UART) RM0016

320/430

and data bits and transmitting NACK. While transmitting the stop bits this signal is
disabled, so that the UART weakly drives a ‘1’ on the bidirectional line.

Note: 1 A break character is not significant in Smartcard mode. A 00h data with a framing error will
be treated as data and not as a break.

2 No IDLE frame is transmitted when toggling the TEN bit. The IDLE frame (as defined for the
other configurations) is not defined by the ISO protocol.

Figure 113 details how the NACK signal is sampled by the UART. In this example the UART
is transmitting a data and is configured with 1.5 stop bits. The receiver part of the UART is
enabled in order to check the integrity of the data and the NACK signal.

Figure 113. Parity error detection using 1.5 stop bits

The UART can provide a clock to the smartcard through the UART_CK output. In smartcard
mode, UART_CK is not associated to the communication but is simply derived from the
internal peripheral input clock through a 5-bit prescaler. The division ratio is configured in
the prescaler register UART_PSCR. UART_CK frequency can be programmed from
fMASTER/2 to fMASTER/62, where fMASTER is the peripheral input clock.

22.3.11 IrDA SIR ENDEC block

IrDA mode is selected by setting the IREN bit in the UART_CR5 register. The STOP bits in
the UART_CR3 register must be configured to “1 stop bit”. In IrDA mode, the following bits
must be kept cleared:

● LINEN, STOP and CKEN bits in the UART_CR3 register,

● SCEN and HDSEL bits in the UART_CR5 register.

Note: This feature is only available in UART1 and UART2.

The IrDA SIR physical layer specifies use of a Return to Zero, Inverted (RZI) modulation
scheme that represents logic 0 as an infrared light pulse (see Figure 114).

The SIR Transmit encoder modulates the Non Return to Zero (NRZ) transmit bit stream
output from the UART. The output pulse stream is transmitted to an external output driver
and infrared LED. The UART supports only bit rates up to 115.2 kbps for the SIR ENDEC. In
normal mode the transmitted pulse width is specified as 3/16 of a bit period.

1 bit time 1.5 bit time

0.5 bit time 1 bit time

sampling at
8th, 9th, 10th

sampling at
8th, 9th, 10th

sampling at
8th, 9th, 10th

sampling at
16th, 17th, 18th

Bit 7 Parity Bit 1.5 Stop Bit

RM0016 Universal asynchronous receiver transmitter (UART)

 321/430

The SIR receive decoder demodulates the return-to-zero bit stream from the infrared
detector and outputs the received NRZ serial bit stream to UART. The decoder input is
normally HIGH (marking state) in the idle state. The transmit encoder output has the
opposite polarity to the decoder input. A start bit is detected when the decoder input is low.

● IrDA is a half duplex communication protocol. If the Transmitter is busy (i.e. the UART is
sending data to the IrDA encoder), any data on the IrDA receive line will be ignored by
the IrDA decoder and if the Receiver is busy (UART is receiving decoded data from the
UART), data on the TX from the UART to IrDA will not be encoded by IrDA. While
receiving data, transmission should be avoided as the data to be transmitted could be
corrupted.

● A ’0’ is transmitted as a high pulse and a ’1’ is transmitted as a ’0’. The width of the
pulse is specified as 3/16th of the selected bit period in normal mode (see Figure 115).

● The SIR decoder converts the IrDA compliant receive signal into a bit stream for the
UART.

● The SIR receive logic interprets a high state as a logic one and low pulses as logic
zeros.

● The transmit encoder output has the opposite polarity to the decoder input. The SIR
output is in low state when idle.

● The IrDA specification requires the acceptance of pulses greater than 1.41 us. The
acceptable pulse width is programmable. Glitch detection logic on the receiver end
filters out pulses of width less than 2 PSC periods (PSC is the prescaler value
programmed in UART_PSCR). Pulses of width less than 1 PSC period are always
rejected, but those of width greater than one and less than two periods may be
accepted or rejected, those greater than 2 periods will be accepted as a pulse. The
IrDA encoder/decoder doesn’t work when PSC=0.

● The receiver can communicate with a low-power transmitter.

● In IrDA mode, the STOP bits in the UART_CR2 register must be configured to “1 stop
bit”.

IrDA low-power mode

The IrDA can be used either in normal mode or in Low Power mode. The Low Power mode
is selected by setting the IRLP bit in UART_CR5 register.

Transmitter:

In low-power mode the pulse width is not maintained at 3/16 of the bit period. Instead, the
width of the pulse is 3 times the low-power baud rate which can be a minimum of 1.42 MHz.
Generally this value is 1.8432 MHz (1.42 MHz < PSC< 2.12 MHz). A low-power mode
programmable divisor divides the system clock to achieve this value.

Receiver:

Receiving in low-power mode is similar to receiving in normal mode. For glitch detection the
UART should discard pulses of duration shorter than 1/PSC. A valid low is accepted only if
its duration is greater than 2 periods of the IrDA low-power Baud clock (PSC value in
UART_PSCR).

Note: 1 A pulse of width less than two and greater than one PSC period(s) may or may not be
rejected.

2 The receiver set up time should be managed by software. The IrDA physical layer
specification specifies a minimum of 10 ms delay between transmission and reception (IrDA
is a half duplex protocol).

Universal asynchronous receiver transmitter (UART) RM0016

322/430

Figure 114. IrDA SIR ENDEC- block diagram

Figure 115. IrDA data modulation (3/16) - normal mode

UART

Transmit
Encoder

IrDA
Receive
Decoder

IrDA_TX

IrDA_RX

TX

RX

IREN bit

UART_TX pin

UART_RX pin

IrDA

IREN bit

TX

IrDA_TDO

IrDA_RDI

RX

Start
bit

0 1 0 1 0 0 1 1 0 1

3/16

stop bit

bit period

0 1 0 1 0 0 1 1 0 1

RM0016 Universal asynchronous receiver transmitter (UART)

 323/430

22.4 LIN mode functional description
In LIN mode, 8-bit data format with 1 stop bit is required in accordance with the LIN
standard.

To configure these settings, clear the M bit in UART_CR1 register and clear the STOP[1:0]
bits in the UART_CR3 register.

22.4.1 Master mode

UART initialization

Procedure:

1. Select the desired baudrate by programming the UART_BRR2 and UART_BRR1
registers.

2. Enable LIN mode by setting the LINEN bit in the UART_CR3 register.

3. Enable the transmitter and receiver by setting the TEN and REN bits in the UART_CR2
register.

LIN header transmission

According to the LIN protocol, any communication on the LIN bus is triggered by the Master
sending a Header, followed by the response. The Header is transmitted by the Master Task
(master node) while the data are transmitted by the Slave task of a node (master node or
one of the slave nodes).

Procedure without error monitoring:

1. Request Break + Delimiter transmission (13 dominant bits and 1 recessive bit) by
setting the SBK bit in the UART_CR2 register.

2. Request Synch Field transmission by writing 0x55 in the UART_DR register.

3. Wait for the TC flag in the UART_SR register.

4. Request Identifier Field transmission by writing the protected identifier value in the
UART_DR register.

5. Wait for the TC flag in the UART_SR register.

Procedure with error monitoring:

1. Request Break + Delimiter transmission (13 dominant bits and 1 recessive bit) by
setting the SBK bit in the UART_CR2 register;

2. Wait for the LBDF flag in the UART_CR4 register.

3. Request Synch Field transmission by writing 0x55 into UART_DR register.

4. Wait for the RXNE flag in the UART_SR register and read back the UART_DR register.

5. Request Identifier Field transmission by writing the protected identifier value in the
UART_DR register.

6. Wait for the RXNE flag in the UART_SR register and read back the UART_DR register.

The LBDF flag is set only if a valid Break + Delimiter has been received back on the
UART_RX pin.

Universal asynchronous receiver transmitter (UART) RM0016

324/430

LIN break and delimiter detection

When the LIN mode is enabled, the break detection circuit is activated. The detection is
totally independent from the normal UART receiver. A break can be detected whenever it
occurs, during idle state or during a frame.

When the receiver is enabled (REN=1 in UART_CR2), the circuit looks at the UART_RX
input for a start signal. The method for detecting start bits is the same when searching break
characters or data. After a start bit has been detected, the circuit samples the next bits
exactly like for the data (on the 8th, 9th and 10th samples). If 10 bits (when the LBDL = 0 in
UART_CR4) or 11 bits (when LBDL=1 in UART_CR4) are detected as ‘0’, and are followed
by a delimiter character, the LBDF flag is set in UART_CR4. If the LBDIEN bit=1, an
interrupt is generated.

If a ‘1’ is sampled before the 10 or 11 have occurred, the break detection circuit cancels the
current detection and searches for a start bit again. If LIN mode is disabled (LINEN=0), the
receiver continues working as a normal UART, without taking into account the break
detection.

If LIN mode is enabled (LINEN=1), as soon as a framing error occurs (i.e. stop bit detected
at ‘0’, which will be the case for any break frame), the receiver stops until the break detection
circuit receives either a ‘1’, if the break word was not complete, or a delimiter character if a
break has been detected.

The behavior of the break detector state machine and the break flag is shown in Figure 116:
Break detection in LIN mode (11-bit break length - LBDL bit is set) on page 325.

The LBDF flag is used in master mode, in slave mode the LHDF flag is used instead.

Examples of break frames are given on Figure 117: Break detection in LIN mode vs Framing
error detection on page 325.

RM0016 Universal asynchronous receiver transmitter (UART)

 325/430

Figure 116. Break detection in LIN mode (11-bit break length - LBDL bit is set)

Figure 117. Break detection in LIN mode vs Framing error detection

Case 1: break signal not long enough => break discarded, LBDF is not set

“Short” Break FrameRX line

Break State machine

Capture Strobe

0

Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8 Bit9Idle Idle

Read Samples

Bit0

0 0 0 0 0 0 0 0 0 1

Bit10

Break FrameRX line

Break State machine

Capture Strobe

0

Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8 Bit9Idle Idle

Read Samples

Bit0

0 0 0 0 0 0 0 0 0 0

B10

Case 2: break signal just long enough => break detected, LBDF is set

LBDF

 Break FrameRX line

Break State machine

Capture Strobe

0

Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8 Bit9Idle delimiter

Read Samples

Bit0

0 0 0 0 0 0 0 0 0 0

Bit10

Case 3: break signal long enough => break detected, LBDF is set

wait delimiter

LBDF

delimiter

delimiter is immediate

Case 1: break occurring after an Idle

IDLE data2 (0x55)data 1 data 3 (header)

In these examples, we suppose that LBDL=1 (11-bit break length), M=0 (8-bit data)

RX line

RXNE / FE

LBDF

1 data time 1 data time

Case 2: break occurring while a data is being received

data 2 data2 (0x55)data 1 data 3 (header)RX line

RXNE / FE

LBDF

1 data time 1 data time

BREAK

BREAK

Universal asynchronous receiver transmitter (UART) RM0016

326/430

Response transmission (master is the publisher of the response)

The response is composed of bytes with a standard UART format: 8-bit data, 1 stop bit, no
parity.

In order to send n data bytes, the application must repeat the following sequence n times:

1. Write data in UART_DR register

2. Wait for RXNE flag in UART_SR register

3. Check for readback value by reading the UART_DR register

Response reception (master is the subscriber of the response)

In order to receive n data bytes, the application must repeat following sequence n times:

1. Wait for the RXNE flag in the UART_SR register

2. Read the UART_DR register

Discard Response (slave to slave communication)

In case of slave to slave communication and if the master does not need to check errors in
the response, the application can ignore the RXNE flag till the next frame slot. The RXNE
and OR flags should be cleared before starting the next Break transmission.

Note: Receiving back a Break will also set the RXNE and FE flags before setting the LBDF flag.
Therefore, if the RX interrupt is used, it's better to disable it (by clearing the RIEN bit in the
UART_CR2 register) before sending the Break, to avoid an additional interrupt. In case of
slave to slave communication, RIEN bit can be cleared once the header has been
transmitted.

RM0016 Universal asynchronous receiver transmitter (UART)

 327/430

22.4.2 Slave mode with automatic resynchronization disabled

Note: This feature is only available in UART2 and UART3.

UART initialization

Procedure:

1. Select the desired baudrate by programming UART_BRR2 and UART_BRR1 registers,

2. Enable transmitter and receiver by setting TEN and REN bits in UART_CR2 register,

3. Enable LSLV bit in UART_CR6 register,

4. Enable LIN mode by setting LINEN bit in UART_CR3 register,

LIN Header reception

According to the LIN protocol, a slave node must wait for a valid header, coming from the
master node. Then application has to take following action, depending on the header
Identifier value:

● Receive the response

● Transmit the response

● Ignore the response and wait for next header

When a LIN Header is received:

● The LHDF flag in the UART_CR6 register indicates that a LIN Header has been
detected.

● An interrupt is generated if the LHDIEN bit in the UART_CR6 register is set.

● The LIN Identifier is available in the UART_DR register.

Note: It is recommended to put UART in mute mode by setting RWU bit. This mode allows
detection of headers only and prevents the reception of any other characters.

Setting the PCEN bit in the UART_CR2 register while LIN is in slave mode enables the
Identifier parity check. The PE flag in the UART_CR6 register is set together with the LHDF
flag in the UART_CR6 register if the Identifier parity is not correct.

Response transmission (slave is the publisher of the response)

In order to send n data bytes, the application must repeat following sequence n times:

1. Write data in the UART_DR register

2. Wait for the RXNE flag in the UART_SR register

3. Check for readback value by reading the UART_DR register

Once response transmission is completed, software can set the RWU bit.

Response reception (slave is the subscriber of the response)

In order to receive n data bytes, the application must repeat following sequence n times:

1. Wait for the RXNE flag in the UART_SR register

2. Read the UART_DR register

Once response reception is completed, software can set the RWU bit.

Discard Response

Software can set the RWU bit immediately.

Universal asynchronous receiver transmitter (UART) RM0016

328/430

LIN Slave parity

In LIN Slave mode (LINEN and LSLV bits are set) LIN parity checking can be enabled by
setting the PCEN bit. An interrupt is generated if an ID parity error occurs (PE bit rises) and
the PIEN bit is set.

In this case, the parity bits of the LIN Identifier Field are checked. The identifier character is
recognized as the third received character after a break character (included):

Figure 118. LIN identifier field parity bits

The bits involved are the two MSB positions (7th and 8th bits) of the identifier character. The
check is performed as specified by the LIN specification:

Figure 119. LIN identifier field parity check

LIN header error detection

The LIN Header Error Flag indicates that an invalid LIN Header has been detected.

When a LIN Header Error occurs:

● The LHE flag is set

● An interrupt is generated if the RIEN bit in the UART_CR2 register is set.

The LHE bit is reset by an access to the UART_SR register followed by a read of the
UART_DR register.

LHE is set if one of the following conditions occurs:

● Break Delimiter is too short

● Synch Field is different from 55h

● Framing error in Synch Field or Identifier Field

● A LIN header reception time-out

Note: If a LIN header error occurs, the LSF bit in the UART_CR6 register must be cleared by
software

LIN Break LIN Synch Identifier

parity bits

Field Field

Identifier Field

parity bits

ID0

start bit stop bit

ID1 ID2 ID3 ID4 ID5 P0 P1

identifier bits

P1 ID1 ID3 ID4 ID5⊕ ⊕ ⊕=

P0 ID0= ID1 ID2 ID4⊕ ⊕ ⊕
M = 0

RM0016 Universal asynchronous receiver transmitter (UART)

 329/430

LIN header time-out error

The UART automatically monitors the THEADER_MAX condition given by the LIN protocol.

If the entire Header (up to and including the STOP bit of the LIN Identifier Field) is not
received within the maximum time limit of 57 bit times then a LIN Header Error is signaled
and the LHE bit is set in the UART_SR register.

Figure 120. LIN header reception time-out

The time-out counter is enabled at each break detection. It is stopped in the following
conditions:

● A LIN Identifier Field has been received

● An LHE error occurred (other than a time-out error).

● A software reset of LSF bit (transition from high to low) occurred during the analysis of
the LIN Synch Field

If LHE bit is set due to this error during the LIN Synch Field (if LASE bit = 1) then the UART
goes into a blocked state (the LSF bit is set).

If LHE bit is set due to this error during Fields other than LIN Synch Field or if LASE bit is
reset then the current received Header is discarded and the UART searches for a new Break
Field.

Note on LIN Header time-out limit

According to the LIN specification, the maximum length of a LIN Header which does not
cause a time-out is equal to:

1.4 * (34 + 1) = 49 TBIT_MASTER.

TBIT_MASTER refers to the master baud rate.

When checking this time-out, the slave node is desynchronized for the reception of the LIN
Break and Synch fields. Consequently, a margin must be allowed, taking into account the
worst case: This occurs when the LIN identifier lasts exactly 10 TBIT_MASTER periods. In
this case, the LIN Break and Synch fields last 49 - 10 = 39 TBIT_MASTER periods.

Assuming the slave measures these first 39 bits with a desynchronized clock of 15.5%. This
leads to a maximum allowed Header Length of:

39 x (1/0.845) TBIT_MASTER + 10 TBIT_MASTER

= 56.15 TBIT_SLAVE

LIN Synch LIN Synch Identifier
Field Field Break

THEADER

Universal asynchronous receiver transmitter (UART) RM0016

330/430

A margin is provided so that the time-out occurs when the header length is greater than 57
TBIT_SLAVE periods. If it is less than or equal to 57 TBIT_SLAVE periods, then no time-out
occurs.

Mute mode and errors

In mute mode, if an LHE error occurs during the analysis of the LIN Synch Field or if a LIN
Header Time-out occurs then the LHE bit is set but it does not wake up from mute mode. In
this case, the current header analysis is discarded. If needed, the software has to reset the
LSF bit. Then the UART searches for a new LIN header.

In mute mode, if a framing error occurs on a data (which is not a break), it is discarded and
the FE bit is not set.

Any LIN header which respects the following conditions causes a wake-up from mute mode:

● A valid LIN Break and Delimiter

● A valid LIN Synch Field (without deviation error)

● A LIN Identifier Field without framing error. Note that a LIN parity error on the LIN
Identifier Field does not prevent wake-up from mute mode.

● No LIN Header Time-out should occur during Header reception.

22.4.3 Slave mode with automatic resynchronization enabled

This mode is similar to slave mode as described in Section 22.4.2: Slave mode with
automatic resynchronization disabled, with the addition of automatic resynchronization
enabled by the LASE bit. In this mode UART adjusts the baudrate generator after each
Synch Field reception.

Note: This feature is only available in UART2 and UART3.

Automatic resynchronization

When automatic resynchronization is enabled, after each LIN Break, the time duration
between 5 falling edges on RDI is sampled on fMASTER and the result of this measurement
is stored in an internal 19-bit register called SM (not user accessible) (See Figure 121).
Then the UARTDIV value (and its associated BRR1 and BRR2 registers) are automatically
updated at the end of the fifth falling edge. During LIN Synch field measurement, the UART
state machine is stopped and no data is transferred to the data register.

Figure 121. LIN synch field measurement

LIN Break
Break Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7

Start
Bit Stop

Bit

Next
Start
Bit

LIN Synch Field

Measurement = 8.TBR = SM.TMASTER

UARTDIV(n) UARTDIV(n+1)

UARTDIV = TBR / (TMASTER) = Rounding (SM / 128)

TMASTER = Master clock period
TBR = Baud Rate period

TBR

TBR = UARTDIV.TMASTER

SM = Synch Measurement Register (19 bits)

delim.

RM0016 Universal asynchronous receiver transmitter (UART)

 331/430

UARTDIV is an unsigned integer, coded in the BRR1 and BRR2 registers as shown in
Figure 105.

If LASE bit = 1 then UARTDIV is automatically updated at the end of each LIN Synch Field.

Three registers are used internally to manage the auto-update of the LIN divider
(UARTDIV):

● UARTDIV_NOM (nominal value written by software at UART_BRR1 and UART_BRR2
addresses)

● UARTDIV_MEAS (results of the Field Synch measurement)

● UARTDIV (used to generate the local baud rate)

The control and interactions of these registers are explained in Figure 122 and Figure 123.
They depend on the LDUM bit setting (LIN Divider Update Method)

As explained in Figure 122 and Figure 123, UARTDIV can be updated by two concurrent
actions: a transfer from UARTDIV_MEAS at the end of the LIN Sync Field and a transfer
from UARTDIV_NOM due to a software write to BRR1. If both operations occur at the same
time, the transfer from UARTDIV_NOM has priority.

Figure 122. UARTDIV read / write operations when LDUM = 0

UARTDIV

UARTDIV_NOM

Baud Rate

Read UART2_BRR1

Write UART2_BRR2

Update
at end of

Synch Field

UARTDIV[3:0]
UARTDIV[11:4]

UARTDIV_MEAS

Write UART2_BRR1

Read UART2_BRR2

Generation

LIN Sync Field
Measurement

Write
UART2_BRR1

UARTDIV[15:2]

UARTDIV[3:0]
UARTDIV[7:0] UARTDIV[15:12]

UARTDIV[3:0]
UARTDIV[11:4] UARTDIV[15:12]

Universal asynchronous receiver transmitter (UART) RM0016

332/430

Figure 123. UARTDIV read / write operations when LDUM = 1

Deviation error on the synch field

The deviation error is checked by comparing the current baud rate (relative to the slave
oscillator) with the received LIN Synch Field (relative to the master oscillator). Two checks
are performed in parallel.

The first check is based on a measurement between the first falling edge and the last falling
edge of the Synch Field.

● If D1 > 14.84% LHE is set

● If D1< 14.06% LHE is not set

● If 14.06% < D1 < 14.84% LHE can be either set or reset depending on the dephasing
between the signal on UART_RX pin and the fMASTER clock

The second check is based on a measurement of time between each falling edge of the
Synch Field

● If D2 > 18.75% LHE is set

● If D2 < 15.62% LHE is not set

● If 15.62% < D2 < 18.75% LHE can be either set or reset depending on dephasing
between the signal on UART_RX pin and the fMASTER clock

Note that the UART does not need to check if the next edge occurs slower than expected.
This is covered by the check for deviation error on the full synch byte.

Note: Deviation checking is based on the current baudrate and not on the nominal one. Therefore,
in order to guarantee correct deviation checking, the baudrate generator must reload the
nominal value before each new Break reception. This nominal value is programmed by the

UARTDIV

UARTDIV_NOM

Baud Rate

Read UART2_BRR1

Write UART2_BRR2

Update

RXNE=1

at end of
Synch Field

UARTDIV_MEAS

Write UART2_BRR1

Read UART2_BRR2

Generation

LIN Sync Field
Measurement

LDUM is reset

UARTDIV[3:0]
UARTDIV[11:4] UARTDIV[15:12]

UARTDIV[3:0]
UARTDIV[11:4] UARTDIV[15:12]

UARTDIV[3:0]
UARTDIV[11:4] UARTDIV[15:12]

RM0016 Universal asynchronous receiver transmitter (UART)

 333/430

application during initialization. To do this software must set the LDUM bit before checksum
reception.

If LDUM bit is set, the next character reception will automatically reload the baudrate
generator with nominal value.

You can also reload the nominal value by writing to BRR2 and BRR1. This second method is
typically used when an error occurs during response transmission or reception.

If for any reason, the LDUM bit is set when UART is receiving a new Break and a Synch
Field, this bit will be ignored and cleared. UART will adjust the baudrate generator with a
value calculated from the synch field.

LIN header error detection

LHE is set if one of the following conditions occurs:

● Break Delimiter is too short

● Deviation error on the Synch Field is outside the LIN specification which allows up to +/
-14% of period deviation between the slave and master oscillators.

● Framing error in Synch Field or Identifier Field

● A LIN header reception time-out

● An overflow during the Synch Field Measurement, which leads to an overflow of the
divider registers

LIN header time-out error

The description in the section LIN header time-out error on page 329 applies also when
automatic resynchronization is enabled.

UART clock tolerance when synchronized

When synchronization has been performed, following reception of a LIN Break, the UART
has the same clock deviation tolerance as in UART mode, which is explained below:

During reception, each bit is oversampled 16 times. The mean of the 8th, 9th and 10th
samples is considered as the bit value.

Consequently, the clock frequency should not vary more than 6/16 (37.5%) within one bit.

The sampling clock is resynchronized at each start bit, so that when receiving 10 bits (one
start bit, 1 data byte, 1 stop bit), the clock deviation should not exceed 3.75%.

UART clock tolerance when unsynchronized

When LIN slaves are unsynchronized (meaning no characters have been transmitted for a
relatively long time), the maximum tolerated deviation of the UART clock is +/-14%.

If the deviation is within this range then the LIN Break is detected properly when a new
reception occurs.

This is made possible by the fact that masters send 13 low bits for the LIN Break, which can
be interpreted as 11 low bits (13 bits -14% = 11.18) by a "fast" slave and then considered as
a LIN Break. According to the LIN specification, a LIN Break is valid when its duration is
greater than tSBRKTS = 10. This means that the LIN Break must last at least 11 low bits.

If the period desynchronization of the slave is +14% (slave too slow), the character "00h"
which represents a sequence of 9 low bits must not be interpreted as a break character (9
bits + 14% = 10.26). Consequently, a valid LIN break must last at least 11 low bits.

Universal asynchronous receiver transmitter (UART) RM0016

334/430

Clock deviation causes

The causes which contribute to the total deviation are:

● DTRA: Deviation due to transmitter error. Note: the transmitter can be either a master
or a slave (in case of a slave listening to the response of another slave).

● DMEAS: Error due to the LIN Synch measurement performed by the receiver.

● DQUANT: Error due to the baud rate quantization of the receiver.

● DREC: Deviation of the local oscillator of the receiver: This deviation can occur during
the reception of one complete LIN message assuming that the deviation has been
compensated at the beginning of the message.

● DTCL: Deviation due to the transmission line (generally due to the transceivers)

● All the deviations of the system should be added and compared to the UART clock
tolerance:

– DTRA + DMEAS+ DQUANT + DREC + DTCL < 3.75%

Error due to LIN synch measurement

The LIN Synch Field is measured over eight bit times.

This measurement is performed using a counter clocked by the CPU clock. The edge
detections are performed using the CPU clock cycle.

This leads to a precision of 2 CPU clock cycles for the measurement which lasts
8*UARTDIV clock cycles.

Consequently, this error (DMEAS) is equal to:

2 / (8*UARTDIVMIN)

UARTDIVMIN corresponds to the minimum LIN prescaler content, leading to the maximum
baud rate, taking into account the maximum deviation of +/-14%.

Error due to baud rate quantization

The baud rate can be adjusted in steps of 1 / (UARTDIV). The worst case occurs when the
"real" baud rate is in the middle of the step.

This leads to a quantization error (DQUANT) equal to 1 / (2*UARTDIVMIN).

Impact of clock deviation on maximum baud rate

The choice of the nominal baud rate (UARTDIVNOM) will influence both the quantization
error (DQUANT) and the measurement error (DMEAS). The worst case occurs for
UARTDIVMIN.

Consequently, at a given CPU frequency, the maximum possible nominal baud rate
(LPRMIN) should be chosen with respect to the maximum tolerated deviation given by the
equation:

DTRA + 1 / (2*UARTDIVMIN) + DREC + DTCL < 3.75%

Example:

A nominal baud rate of 20 Kbits/s at TCPU = 125 ns (8 MHz) leads to UARTDIVNOM = 25d.

UARTDIVMIN = 25 - 0.15*25 = 21.25

DQUANT = 1 / (2*UARTDIVMIN) = 0.0015%

RM0016 Universal asynchronous receiver transmitter (UART)

 335/430

Figure 124. Bit sampling in reception mode

22.4.4 LIN mode selection

22.5 UART low power modes

RDI LINE

Sample
 clock 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sampled values

One bit time

6/16

7/16 7/16

Table 51. LIN mode selection

LINE LSLV LASE Meaning

0
0 0

LIN mode disabled

1

LIN Master Mode

1

0
LIN Slave Mode

with Automatic resynchronization disabled

1
LIN Slave Mode

with Automatic resynchronization enabled

Table 52. UART interface behavior in low power modes

Mode Description

WAIT
No effect on UART.
UART interrupts cause the device to exit from Wait mode.

HALT
UART registers are frozen.

In Halt mode, the UART stops transmitting/receiving until Halt mode is exited.

Universal asynchronous receiver transmitter (UART) RM0016

336/430

22.6 UART interrupts

Note: 1 The UART interrupt events are connected to two interrupt vectors (see Figure 125).

a) Transmission Complete or Transmit Data Register empty interrupt.

b) Idle Line detection, Overrun error, Receive Data register full, Parity error interrupt,
and Noise Flag.

2 These events generate an interrupt if the corresponding Enable Control Bit is set and the
interrupt mask in the CC register is reset (RIM instruction).

Figure 125. UART interrupt mapping diagram

Table 53. UART interrupt requests

Interrupt event
Event
flag

Enable
control

bit

Exit
from
Wait

Exit
from
Halt

Transmit data register empty TXE TIEN Yes No

Transmission complete TC TCIEN Yes No

Received data ready to be read RXNE
RIEN

Yes No

Overrun error detected / LIN header error OR/LHE Yes No

Idle line detected IDLE ILIEN Yes No

Parity error PE PIEN Yes No

Break flag LBDF LBDIEN Yes No

Header Flag LHDF LHDIEN Yes No

TC
TCIEN

TXE

TIEN

IDLE
ILIEN

RIEN
OR/LHE

RIEN
RXNE

PE
PIEN

Transmitter Interrupt

Receiver Interrupt

LBDF
LBDIEN

LHDF
LHDIEN

RM0016 Universal asynchronous receiver transmitter (UART)

 337/430

22.7 UART registers

22.7.1 Status register (UART_SR)

Address offset: 0x00

Reset value: 0xC0

7 6 5 4 3 2 1 0

TXE TC RXNE IDLE OR/LHE NF FE PE

r rc_w0 rc_w0 r r r r r

Bit 7 TXE: Transmit data register empty

This bit is set by hardware when the content of the TDR register has been transferred into the shift
register. An interrupt is generated if the TIEN bit =1 in the UART_CR2 register. It is cleared by a
write to the UART_DR register.
0: Data is not transferred to the shift register
1: Data is transferred to the shift register

Bit 6 TC: Transmission complete
This bit is set by hardware when transmission of a frame containing Data is complete. An interrupt is
generated if TCIEN=1 in the UART_CR2 register. It is cleared by a software sequence (a read to the
UART_SR register followed by a write to the UART_DR register). In UART2 and UART3, it can also
be cleared by writing 0.
0: Transmission is not complete
1: Transmission is complete

Bit 5 RXNE: Read data register not empty
This bit is set by hardware when the content of the RDR shift register has been transferred to the
UART_DR register. An interrupt is generated if RIEN=1 in the UART_CR2 register. It is cleared by a
read to the UART_DR register. In UART2 and UART3, it can also be cleared by writing 0.
0: Data is not received
1: Received data is ready to be read.

Bit 4 IDLE: IDLE line detected (1)

This bit is set by hardware when an Idle Line is detected. An interrupt is generated if the ILIEN=1 in
the UART_CR2 register. It is cleared by a software sequence (a read to the UART_SR register
followed by a read to the UART_DR register).
0: No Idle Line is detected
1: Idle Line is detected

Universal asynchronous receiver transmitter (UART) RM0016

338/430

Bit 3 OR: Overrun error(2)

This bit is set by hardware when the word currently being received in the shift register is ready to be
transferred into the RDR register while RXNE=1. An interrupt is generated if RIEN=1 in the
UART_CR2 register. It is cleared by a software sequence (a read to the UART_SR register followed
by a read to the UART_DR register).

0: No Overrun error
1: Overrun error is detected

LHE LIN Header Error (LIN slave mode)

During LIN Header reception, this bit signals three error types:
– Break delimiter too short

– Synch Field error

– Deviation error (if LASE=1)
– Identifier framing error

0: No LIN Header error
1: LIN Header error detected

Bit 2 NF: Noise flag (3)

This bit is set by hardware when noise is detected on a received frame. It is cleared by a software
sequence (a read to the UART_SR register followed by a read to the UART_DR register).

0: No noise is detected
1: Noise is detected

Bit 1 FE: Framing error (4)

This bit is set by hardware when a de-synchronization, excessive noise or a break character is
detected. It is cleared by a software sequence (a read to the UART_SR register followed by a read to
the UART_DR register).

0: No Framing error is detected
1: Framing error or break character is detected

Bit 0 PE: Parity error

This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by a software
sequence (a read to the status register followed by a read to the UART_DR data register). You have
to wait for the RXNE flag to be set before clearing it. An interrupt is generated if PIEN=1 in the
UART_CR1 register.

0: No parity error

1: Parity error (or, in LIN slave mode, identifier parity error)

1. The IDLE bit will not be set again until the RXNE bit has been set itself (i.e. a new idle line occurs)

2. When this bit is set, the RDR register content will not be lost but the shift register will be overwritten.

3. This bit does not generate interrupt as it appears at the same time as the RXNE bit which itself generates an interrupt.

4. This bit does not generate interrupt as it appears at the same time as the RXNE bit which itself generates an interrupt. If the
word currently being transferred causes both frame error and overrun error, it will be transferred and only the OR bit will be
set.

RM0016 Universal asynchronous receiver transmitter (UART)

 339/430

22.7.2 Data register (UART_DR)

Address offset: 0x01

Reset value: Undefined

22.7.3 Baud rate register 1 (UART_BRR1)

The Baud Rate Registers are common to both the transmitter and the receiver. The baud
rate is programmed using two registers BRR1 and BRR2. Writing of BRR2 (if required)
should precede BRR1, since a write to BRR1 will update the baud counters.

See Figure 105: How to code UART_DIV in the BRR registers on page 312 and Table 49:
Baud rate programming and error calculation on page 313

Note: 1 The baud counters stop counting if the TEN or REN bits are disabled respectively.

Address offset: 0x02

Reset value: 0x00

7 6 5 4 3 2 1 0

DR[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 DR[7:0]: Data value

Contains the Received or Transmitted data character, depending on whether it is read from or
written to.

The Data register performs a double function (read and write) since it is composed of two registers,
one for transmission (TDR) and one for reception (RDR)

The TDR register provides the parallel interface between the internal bus and the output shift
register.

The RDR register provides the parallel interface between the input shift register and the internal bus.

7 6 5 4 3 2 1 0

UART_DIV[11:4]

rw rw rw rw - rw rw rw

Bits 7:0 UART_DIV[11:4] UART_DIV bits (1)

These 8 bits define the 2nd and 3rd nibbles of the 16-bit UART divider (UART_DIV).

1. BRR1 = 00h means UART clock is disabled.

Universal asynchronous receiver transmitter (UART) RM0016

340/430

22.7.4 Baud rate register 2 (UART_BRR2)

Address offset: 0x03

Reset value: 0x00

22.7.5 Control register 1 (UART_CR1)

Address offset: 0x04

Reset value: 0x00

7 6 5 4 3 2 1 0

UART_DIV[15:12] UART_DIV[3:0]

rw rw rw rw rw rw rw rw

Bits 7:4 UART_DIV[15:12] MSB of UART_DIV.

These 4 bits define the MSB of the UART Divider (UART_DIV)

Bits 3:0 UART_DIV[3:0]: LSB of UART_DIV.

These 4 bits define the LSB of the UART Divider (UART_DIV)

7 6 5 4 3 2 1 0

R8 T8 UARTD M WAKE PCEN PS PIEN

rw rw rw rw rw rw rw rw

Bit 7 R8: Receive Data bit 8.

This bit is used to store the 9th bit of the received word when M=1

Bit 6 T8: Transmit data bit 8.

This bit is used to store the 9th bit of the transmitted word when M=1

Bit 5 UARTD: UART Disable (for low power consumption).

When this bit is set the UART prescaler and outputs are stopped at the end of the current byte
transfer in order to reduce power consumption. This bit is set and cleared by software.

0: UART enabled

1: UART prescaler and outputs disabled

Bit 4 M: word length.

This bit determines the word length. It is set or cleared by software.

0: 1 Start bit, 8 Data bits, n Stop bit (n depending on STOP[1:0] bits in the UART_CR3 register)

1: 1 Start bit, 9 Data bits, 1 Stop bit
Note: The M bit must not be modified during a data transfer (both transmission and reception) In LIN

slave mode, the M bit and the STOP[1:0] bits in the UART_CR3 register should be kept at 0.

Bit 3 WAKE: Wakeup method.

This bit determines the UART wakeup method, it is set or cleared by software.

0: Idle Line

1: Address Mark

RM0016 Universal asynchronous receiver transmitter (UART)

 341/430

22.7.6 Control register 2 (UART_CR2)

Address offset: 0x05

Reset value: 0x00

Bit 2 PCEN: Parity control enable.
● UART Mode

This bit selects the hardware parity control (generation and detection). When the parity control is
enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and parity
is checked on the received data. This bit is set and cleared by software. Once it is set, PCEN is
active after the current byte (in reception and in transmission).

0: Parity control disabled

1: Parity control enabled

● LIN slave mode

This bit enables the LIN identifier parity check while the UART is in LIN slave mode.

0: Identifier parity check disabled

1: Identifier parity check enabled

Bit 1 PS: Parity selection.

This bit selects the odd or even parity when the parity generation/detection is enabled (PCEN bit set)
in UART mode. It is set and cleared by software. The parity will be selected after the current byte.

0: Even parity

1: Odd parity

Bit 0 PIEN: Parity interrupt enable.

This bit is set and cleared by software.

0: Parity interrupt disabled

1: Parity interrupt is generated whenever PE=1 in the UART_SR register

7 6 5 4 3 2 1 0

TIEN TCIEN RIEN ILIEN TEN REN RWU SBK

rw rw rw rw rw rw rw rw

Bit 7 TIEN: Transmitter interrupt enable

This bit is set and cleared by software.

0: Interrupt is inhibited

1: An UART interrupt is generated whenever TXE=1 in the UART_SR register

Bit 6 TCIEN: Transmission complete interrupt enable

This bit is set and cleared by software.

0: Interrupt is inhibited

1: An UART interrupt is generated whenever TC=1 in the UART_SR register

Bit 5 RIEN: Receiver interrupt enable

This bit is set and cleared by software.

0: Interrupt is inhibited

1: An UART interrupt is generated whenever OR=1 or RXNE=1 in the UART_SR register

Universal asynchronous receiver transmitter (UART) RM0016

342/430

Bit 4 ILIEN: IDLE Line interrupt enable

This bit is set and cleared by software.

0: Interrupt is inhibited

1: An UART interrupt is generated whenever IDLE=1 in the UART_SR register

Bit 3 TEN: Transmitter enable (1) (2)

This bit enables the transmitter. It is set and cleared by software.

0: Transmitter is disabled

1: Transmitter is enabled

Bit 2 REN: Receiver enable

This bit enables the receiver. It is set and cleared by software.

0: Receiver is disabled

1: Receiver is enabled and begins searching for a start bit

Bit 1 RWU: Receiver wakeup
● UART Mode

This bit determines if the UART is in mute mode or not. It is set and cleared by software and can be

cleared by hardware when a wakeup sequence is recognized.(3) (4)

● LIN mode

While LIN is used in slave mode, setting the RWU bit allows the detection of Headers only and
prevents the reception of any other characters. Refer to Mute mode and errors on page 330. In LIN
slave mode, when RDRF is set, the software can not set or clear the RWU bit.

0: Receiver in active mode

1: Receiver in mute mode

Bit 0 SBK: Send break

This bit set is used to send break characters. It can be set and cleared by software.It should be set
by software, and will be reset by hardware during the stop bit of break.

0: No break character is transmitted

1: Break character will be transmitted

1. During transmission, a “0” pulse on the TEN bit (“0” followed by “1”) sends a preamble (idle line) after the current word.

2. When TEN is set there is a 1 bit-time delay before the transmission starts.

3. Before selecting Mute mode (by setting the RWU bit) the UART must first receive a data byte, otherwise it cannot function
in Mute mode with wakeup by Idle line detection.

4. In Address Mark Detection wakeup configuration (WAKE bit=1) the RWU bit cannot be modified by software while the
RXNE bit is set.

RM0016 Universal asynchronous receiver transmitter (UART)

 343/430

22.7.7 Control register 3 (UART_CR3)

Address offset: 0x06

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
LINEN STOP[1:0] CLKEN CPOL CPHA LBCL

rw rw rw rw rw rw rw

Bit 7 Reserved, must be kept cleared.

Bit 6 LINEN: LIN mode enable

This bit is set and cleared by software.

0: LIN mode disabled

1: LIN mode enabled

Bits 5:4 STOP: STOP bits.

These bits are used for programming the stop bits.

00: 1 Stop bit

01: Reserved

10: 2 Stop bits

11: 1.5 Stop bits

Note: For LIN slave mode, both bits should be kept cleared.

Bit 3 CLKEN: Clock enable

This bit allows the user to enable the SCLK pin.

0: SLK pin disabled

1: SLK pin enabled
Note: This bit is not available for UART3.

Bit 2 CPOL: Clock polarity (1)

This bit allows the user to select the polarity of the clock output on the SCLK pin. It works in
conjunction with the CPHA bit to produce the desired clock/data relationship
0: SCK to 0 when idle
1: SCK to 1 when idle.

Note: This bit is not available for UART3.

Bit 1 CPHA: Clock phase (1)

This bit allows the user to select the phase of the clock output on the SCLK pin. It works in
conjunction with the CPOL bit to produce the desired clock/data relationship
0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge

Note: This bit is not available for UART3.

1. These 3 bits (CPOL, CPHA, LBCL) should not be written while the transmitter is enabled.

Universal asynchronous receiver transmitter (UART) RM0016

344/430

22.7.8 Control register 4 (UART_CR4)

Address offset: 0x07

Reset value: 0x00

Bit 0 LBCL: Last bit clock pulse.(1)(1)

This bit allows the user to select whether the clock pulse associated with the last data bit transmitted
(MSB) has to be output on the SCLK pin.

0: The clock pulse of the last data bit is not output to the SCLK pin.

1: The clock pulse of the last data bit is output to the SCLK pin.

Note: This bit is not available for UART3.

1. The last bit is the 8th or 9th data bit transmitted depending on the 8 or 9 bit format selected by the M bit in the UART_CR1
register.

7 6 5 4 3 2 1 0

Reserved
LBDIEN LBDL LBDF ADD[3:0]

rw rw rw rw rw rw rw

Bit 7 Reserved, must be kept cleared.

Bit 6 LBDIEN: LIN Break Detection Interrupt Enable.

Break interrupt mask (break detection using break delimiter).

0: LIN break detection interrupt disabled

1: LIN break detection interrupt enabled

Bit 5 LBDL: LIN Break Detection Length.

This bit is for selection between 11 bit or 10 bit break detection.

0: 10 bit break detection

1: 11 bit break detection

Bit 4 LBDF: LIN Break Detection Flag.

LIN Break Detection Flag (Status flag)

This bit is set by hardware and cleared by software writing 0.

0: LIN Break not detected

1: LIN Break detected

An interrupt is generated when LBDF=1 if LBDIEN=1

Bits 3:0 ADD[3:0]: Address of the UART node.

This bit-field gives the address of the UART node.

This is used in multi-processor communication during mute mode, for wakeup with address mark
detection.

RM0016 Universal asynchronous receiver transmitter (UART)

 345/430

22.7.9 Control register 5 (UART_CR5)

Address offset: 0x08

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
SCEN NACK HDSEL IRLP IREN

Reserved
r r rw rw rw

Bits 7:6 Reserved, must be kept cleared.

Bit 5 SCEN: Smartcard mode enable.

This bit is used for enabling Smartcard mode.

0: Smartcard Mode disabled

1: Smartcard Mode enabled

Note: This bit is not available for UART3.

Bit 4 NACK: Smartcard NACK enable

0: NACK transmission in case of parity error is disabled

1: NACK transmission during parity error is enabled.
Note: This bit is not available for UART3.

Bit 3 HDSEL: Half-Duplex Selection

Selection of Single-wire Half-duplex mode

0: Half duplex mode is not selected

1: Half duplex mode is selected
Note: This bit is not available for UART2 and UART3.

Bit 2 IRLP: IrDA Low Power

This bit is used for selected between normal and Low power IrDA mode

0: Normal mode

1: Low power mode
Note: This bit is not available for UART3.

Bit 1 IREN: IrDA mode Enable

This bit is set and cleared by software.

0: IrDA disabled

1: IrDA enabled
Note: This bit is not available for UART3.

Bit 0 Reserved, must be kept cleared.

Universal asynchronous receiver transmitter (UART) RM0016

346/430

22.7.10 Control register 6 (UART_CR6)

Address offset: 0x09

Reset value: 0x00

Note: This register is not available for UART1.

7 6 5 4 3 2 1 0

LDUM
Reserved

LSLV LASE
Reserved

LHDIEN LHDF LSF

rw rw rw rw rc_w0 rc_w0

Bit 7 LDUM: LIN Divider Update Method

0: LDIV is updated as soon as BRR1 is written (if no automatic resynchronization update occurs at
the same time).

1: LDIV is updated at the next received character (when RXNE=1) after a write to the BRR1 register.

LDIV is coded using the two register BRR1 and BRR2

This bit is reset by hardware once LDIV is updated with the measured baud rate at the end of the
synch field.

Bit 6 Reserved

Bit 5 LSLV: LIN Slave Enable

0: LIN Master Mode

1: LIN Slave Mode

Bit 4 LASE: LIN automatic resynchronisation enable

0: LIN automatic resynchronization disabled

1: LIN automatic resynchronization enabled

Bit 3 Reserved

Bit 2 LHDIEN: LIN Header Detection Interrupt Enable.

Header interrupt mask.

0: LIN header detection interrupt disabled

1: LIN header detection interrupt enabled

Bit 1 LHDF: LIN Header Detection Flag.

This bit is set by hardware when a LIN header is detected in LIN slave mode and cleared by software
writing 0.

0: LIN Header not detected

1: LIN Header detected (Break+Sync+Ident)

An interrupt is generated when LHDF=1 if LHDIEN=1

Bits 0 LSF: LIN Sync Field

This bit indicates that the LIN Synch Field is being analyzed. It is only used in LIN Slave mode. In
automatic resynchronization mode (LASE bit=1), when the UART is in the LIN Synch Field State it
waits or counts the falling edges on the RDI line.

It is set by hardware as soon as a LIN Break is detected and cleared by hardware when the LIN
Synch Field analysis is finished. This bit can also be cleared by software writing 0 to exit LIN Synch
State and return to idle mode.

0: The current character is not the LIN Synch Field

1: LIN Synch Field State (LIN Synch Field undergoing analysis)

RM0016 Universal asynchronous receiver transmitter (UART)

 347/430

22.7.11 Guard time register (UART_GTR)

Address offset: 0x09 (UART1), 0x0A (UART2)

Reset value: 0x00

7 6 5 4 3 2 1 0

GT[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 GT[7:0]: Guard time value.

This register gives the Guard time value in terms of number of baud clocks.

This is used in Smartcard mode.The Transmission Complete flag is set after this guard time value.
Note: These bits are not available for UART3.

Universal asynchronous receiver transmitter (UART) RM0016

348/430

22.7.12 Prescaler register (UART_PSCR)

Address offset: 0x0A (UART1), 0x0B (UART2)

Reset value: 0x00

Note: Care must be taken to program this register with correct value, when both Smartcard and
IrDA interfaces are used in the application

7 6 5 4 3 2 1 0

PSC[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 PSC[7:0]: Prescaler value.
● In IrDA Low Power mode

PSC[7:0] = IrDA Low Power Baud Rate (1)

Used for programming the prescaler for dividing the system clock to achieve the low power
frequency:

The source clock is divided by the value given in the register (8 significant bits):

0000 0000: Reserved - do not program this value

0000 0001: divides the source clock by 1

0000 0010: divides the source clock by 2

...
● In Smartcard mode

PSC[4:0]: Prescaler value. (2) (3)

Used for programming the prescaler for dividing the system clock to provide the smartcard clock.
The value given in the register (5 significant bits) is multiplied by 2 to give the division factor of the
source clock frequency:
0 0000: Reserved - do not program this value
0 0001: divides the source clock by 2
0 0010: divides the source clock by 4
0 0011: divides the source clock by 6

...

Note: These bits are not available for UART3.

1. This prescaler setting has no effect if IrDA mode is not enabled.

2. This prescaler setting has no effect if Smartcard mode is not enabled.

3. Bits [7:5] have no effect even if Smartcard mode is enabled.

RM0016 Universal asynchronous receiver transmitter (UART)

 349/430

22.7.13 UART register map and reset values

Table 54. UART1 register map

Address
Register

name
7 6 5 4 3 2 1 0

0x00
UART1_SR
Reset Value

TXE
1

TC
1

RXNE
0

IDLE
0

OR
0

NF
0

FE
0

PE
0

0x01
UART1_DR
Reset Value

DR7
x

DR6
x

DR5
x

DR4
x

DR3
x

DR2
x

DR1
x

DR0
x

0x02
UART1_BRR1
Reset Value

UART_DIV[11:4]
00000000

0x03
UART1_BRR2
Reset Value

UART_DIV[15:12]
0000

UART_DIV[3:0]
0000

0x04
UART1_CR1
Reset Value

R8
0

T8
0

UARTD
0

M
0

WAKE
0

PCEN
0

PS
0

PIEN
0

0x05
UART1_CR2
Reset Value

TIEN
0

TCIEN
0

RIEN
0

ILIEN
0

TEN
0

REN
0

RWU
0

SBK
0

0x06
UART1_CR3
Reset Value

-
0

LINEN
0

STOP
00

CKEN
0

CPOL
0

CPHA
0

LBCL
0

0x07
UART1_CR4
Reset Value

-
0

LBDIEN
0

LBDL
0

LBDF
0

ADD[3:0]
0000

0x08
UART1_CR5
Reset Value

-
0

-
0

SCEN
0

NACK
0

HDSEL
0

IRLP
0

IREN
0 0

0x09
UART1_GTR
Reset Value

GT7
0

GT6
0

GT5
0

GT4
0

GT3
0

GT2
0

GT1
0

GT0
0

0x0A
UART1_PSCR
Reset Value

PSC7
0

PSC6
0

PSC5
0

PSC4
0

PSC3
0

PSC2
0

PSC1
0

PSC0
0

Table 55. UART2 register map

Address
Register

name
7 6 5 4 3 2 1 0

0x00
UART2_SR
Reset Value

TXE
1

TC
1

RXNE
0

IDLE
0

OR
0

NF
0

FE
0

PE
0

0x01
UART2_DR
Reset Value

DR7
x

DR6
x

DR5
x

DR4
x

DR3
x

DR2
x

DR1
x

DR0
x

0x02
UART2_BRR1
Reset Value

UART_DIV[11:4]
00000000

0x03
UART2_BRR2
Reset Value

UART_DIV[15:12]
0000

UART_DIV[3:0]
0000

0x04
UART2_CR1
Reset Value

R8
0

T8
0

UARTD
0

M
0

WAKE
0

PCEN
0

PS
0

PIEN
0

0x05
UART2_CR2
Reset Value

TIEN
0

TCIEN
0

RIEN
0

ILIEN
0

TEN
0

REN
0

RWU
0

SBK
0

0x06
UART2_CR3
Reset Value

-
0

LINEN
0

STOP
00

CKEN
0

CPOL
0

CPHA
0

LBCL
0

0x07
UART2_CR4
Reset Value

-
0

LBDIEN
0

LBDL
0

LBDF
0

ADD[3:0]
0000

0x08
UART2_CR5
Reset Value

-
0

-
0

SCEN
0

NACK
0

HDSEL
0

IRLP
0

IREN
0 0

0x09
UART2_CR6
Reset Value

LDUM
0

-
0

LSLV
0

LASE
0

-
0

LHDIEN
0

LHDF
0

LSF
0

Universal asynchronous receiver transmitter (UART) RM0016

350/430

0x0A
UART2_GTR
Reset Value

GT7
0

GT6
0

GT5
0

GT4
0

GT3
0

GT2
0

GT1
0

GT0
0

0x0B
UART2_PSCR
Reset Value

PSC7
0

PSC6
0

PSC5
0

PSC4
0

PSC3
0

PSC2
0

PSC1
0

PSC0
0

Table 55. UART2 register map

Address
Register

name
7 6 5 4 3 2 1 0

Table 56. UART3 register map

Address
Register

name
7 6 5 4 3 2 1 0

0x00
UART3_SR
Reset Value

TXE
1

TC
1

RXNE
0

IDLE
0

OR
0

NF
0

FE
0

PE
0

0x01
UART3_DR
Reset Value

DR7
x

DR6
x

DR5
x

DR4
x

DR3
x

DR2
x

DR1
x

DR0
x

0x02
UART3_BRR1
Reset Value

UART_DIV[11:4]
00000000

0x03
UART3_BRR2
Reset Value

UART_DIV[15:12]
0000

UART_DIV[3:0]
0000

0x04
UART3_CR1
Reset Value

R8
0

T8
0

UARTD
0

M
0

WAKE
0

PCEN
0

PS
0

PIEN
0

0x05
UART3_CR2
Reset Value

TIEN
0

TCIEN
0

RIEN
0

ILIEN
0

TEN
0

REN
0

RWU
0

SBK
0

0x06
UART3_CR3
Reset Value

-
0

LINEN
0

STOP
00

-
0

-
0

-
0

-
0

0x07
UART3_CR4
Reset Value

-
0

LBDIEN
0

LBDL
0

LBDF
0

ADD[3:0]
0000

0x08 Reserved

0x09
UART2_CR6
Reset Value

LDUM
0

-
0

LSLV
0

LASE
0

-
0

LHDIEN
0

LHDF
0

LSF
0

RM0016 Controller area network (beCAN)

 351/430

23 Controller area network (beCAN)

23.1 Introduction
The Basic Enhanced CAN peripheral, named beCAN, interfaces the CAN network. It
supports the CAN protocol version 2.0A and B. It has been designed to manage high
number of incoming messages efficiently with a minimum CPU load. It also meets the
priority requirements for transmit messages.

For safety-critical applications the CAN controller provides all hardware functions for
supporting the CAN Time triggered Communication option.

23.2 beCAN main features
● Supports CAN protocol version 2.0 A, B Active

● Bit rates up to 1 Mbit/s

● Supports the Time Triggered Communication option

● Selectable clock source (fMASTER or fCANEXT)

Transmission

● Three transmit mailboxes

● Configurable transmit priority

● Time Stamp on SOF transmission

Reception

● One receive FIFO with three stages

● Six scalable filter banks

● Identifier list feature

● Configurable FIFO overrun

● Time Stamp on SOF reception

Time triggered communication option

● Disable automatic retransmission mode

● 16-bit free running timer

● Configurable timer resolution

● Time Stamp sent in last two data bytes

Management

● Maskable interrupts

● Software-efficient mailbox mapping at a unique address space

23.3 beCAN general description
In today’s CAN applications, the number of nodes in a network is increasing and often
several networks are linked together via gateways. Typically the number of messages in the
system (and thus to be handled by each node) has significantly increased. In addition to the

Controller area network (beCAN) RM0016

352/430

application messages, Network Management and Diagnostic messages have been
introduced.

● An enhanced filtering mechanism is required to handle each type of message.

Furthermore, application tasks require more CPU time, therefore real-time constraints
caused by message reception have to be reduced.

● A receive FIFO scheme allows the CPU to be dedicated to application tasks for a long
time period without losing messages.

The standard HLP (Higher Layer Protocol) based on standard CAN drivers requires an
efficient interface to the CAN controller.

● All mailboxes and registers are organized in 16-byte pages mapped at the same
address and selected via a page select register.

Figure 126. CAN network topology

23.3.1 CAN 2.0B active core

The beCAN module handles the transmission and the reception of CAN messages fully
autonomously. Standard identifiers (11-bit) and extended identifiers (29-bit) are fully
supported by hardware.

23.3.2 Control, status and configuration registers

The application uses these registers to:

● Configure CAN parameters, e.g. baud rate

● Request transmissions

● Handle receptions

● Manage interrupts

● Get diagnostic information

23.3.3 Tx mailboxes

Three transmit mailboxes are provided to the software for setting up messages. The
Transmission Scheduler decides which mailbox has to be transmitted first.

C
A

N
 n

od
e

1

C
A

N
 n

od
e

2

C
A

N
 n

od
e

n
CANCAN

High Low

CANCAN
Rx Tx

CAN
Transceiver

CAN
Controller

STM8 MCU

CAN Bus

Application

RM0016 Controller area network (beCAN)

 353/430

23.3.4 Acceptance filters

The beCAN provides six scalable/configurable identifier filter banks for selecting the
incoming messages the software needs and discarding the others.

Receive FIFO

The receive FIFO is used by the CAN controller to store the incoming messages. Three
complete messages can be stored in the FIFO. The software always accesses the next
available message at the same address. The FIFO is managed completely by hardware.

Figure 127. beCAN block diagram

Figure 128. beCAN operating modes

5

Mailbox 2

Mailbox 1

CAN 2.0B Active Core

Mailbox 0

Transmission

Acceptance Filters

Tx Mailboxes
Master Control

Scheduler

Master Status

Transmit Control

Transmit Status

Transmit Priority

Receive FIFO

Error Status

Error Int. Enable

Tx Error Counter

Rx Error Counter

Diagnostic

Bit Timing

Filter Mode

Filter Config.

Interrupt Enable

4321
Filter bank 0

Mailbox 0
1

2

Receive FIFO

C
on

tr
ol

 /
S

ta
tu

s
/ C

on
fig

ur
at

io
n

Sleep

InitializationNormal

Reset

SLAK = 1
INAK = 0

SLAK = 0
INAK = 1

SLAK = 0
INAK = 0

SLEEP . INRQ . ACK

SLEEP . INRQ . ACK

INRQ . ACK

INRQ . SYNC . SLEEP

SLEEP . A
CK

SLE
EP . S

YNC . I
NRQ

Controller area network (beCAN) RM0016

354/430

23.4 Operating modes
beCAN has three main operating modes: Initialization, Normal and Sleep. After a
hardware reset, beCAN is in sleep mode to reduce power consumption. The software
requests beCAN to enter Initialization or Sleep mode by setting the INRQ or SLEEP bits in
the CAN_MCR register. Once the mode has been entered, beCAN confirms it by setting the
INAK or SLAK bits in the CAN_MSR register. When neither INAK nor SLAK are set, beCAN
is in Normal mode. Before entering Normal mode beCAN always has to synchronize on
the CAN bus. To synchronize, beCAN waits until the CAN bus is idle, this means 11
consecutive recessive bits have been monitored on CANRX.

23.4.1 Initialization mode

The software initialization can be done while the hardware is in Initialization mode. To enter
this mode the software sets the INRQ bit in the CAN_MCR register and waits until the
hardware has confirmed the request by setting the INAK bit in the CAN_MSR register.

To leave Initialization mode, the software clears the INQR bit. beCAN has left Initialization
mode once the INAK bit has been cleared by hardware. However the Rx line has to be in
recessive state to leave this mode.

While in Initialization mode, all message transfers to and from the CAN bus are stopped and
the status of the CAN bus output CANTX is recessive (high).

Entering Initialization Mode does not change any of the configuration registers.

To initialize the CAN Controller, software has to set up the Bit Timing registers and the filter
banks. If a filter bank is not used, it is recommended to leave it non active (leave the
corresponding FACT bit in the CAN_FCRx register cleared).

23.4.2 Normal mode

Once the initialization has been done, the software must request the hardware to enter
Normal mode, to synchronize on the CAN bus and start reception and transmission.
Entering Normal mode is done by clearing the INRQ bit in the CAN_MCR register and
waiting until the hardware has confirmed the request by clearing the INAK bit in the
CAN_MSR register. Afterwards, the beCAN synchronizes with the data transfer on the CAN
bus by waiting for the occurrence of a sequence of 11 consecutive recessive bits (Bus Idle
state) before it can take part in bus activities and start message transfer.

The initialization of the filter values is independent from Initialization mode but must be done
while the filter bank is not active (corresponding FACTx bit cleared). The filter bank scale
and mode configuration must be configured in initialization mode.

23.4.3 Sleep mode (low power)

To reduce power consumption, beCAN has a low power mode called Sleep mode. This
mode is entered on software request by setting the SLEEP bit in the CAN_MCR register. In
this mode, the beCAN clock is stopped, however software can still access the beCAN
mailboxes.

Note: If software requests entry to initialization mode by setting the INRQ bit while beCAN is in
sleep mode, it must also clear the SLEEP bit.

beCAN can be woken up (exit Sleep mode) either by software clearing the SLEEP bit or on
detection of CAN bus activity.

RM0016 Controller area network (beCAN)

 355/430

On CAN bus activity detection, hardware automatically performs the wakeup sequence by
clearing the SLEEP bit if the AWUM bit in the CAN_MCR register is set. If the AWUM bit is
cleared, software has to clear the SLEEP bit when a wakeup interrupt occurs, in order to exit
from sleep mode.

Note: If the wakeup interrupt is enabled (WKUIE bit set in CAN_IER register) a wakeup interrupt
will be generated on detection of CAN bus activity, even if the beCAN automatically
performs the wakeup sequence.

After the SLEEP bit has been cleared, Sleep mode is exited once beCAN has synchronized
with the CAN bus, refer to Figure 128: beCAN operating modes. However the Rx line has to
be in recessive state to leave this mode. Sleep mode is exited once the SLAK bit has been
cleared by hardware.

23.4.4 Time triggered communication mode

In this mode, the internal counter of the CAN hardware is activated and used to generate the
Time Stamp value stored in the CAN_MTSRH and CAN_MTSRL registers (for Rx and Tx
mailboxes). The internal counter is captured on the sample point of the Start Of Frame bit in
both reception and transmission.

The TGT bit (Transmit Global Time in CAN_MDLCR) enables automatic transmission of the
contents of both CAN_MTSRH and CAN_MTSRL in the two last data bytes of the message
(refer to the TTCAN specification ISO 11898-4). In this case, the TTCM (Time Triggered
Communication Mode in CAN_MCR) bit has to be set to enable the Time Triggered
Communication mechanism.

23.5 Test modes
Test modes can be selected by the SILM and LBKM bits in the CAN_DGR register. These
bits must be configured while beCAN is in Initialization mode. Once a test mode has been
selected, the INRQ bit in the CAN_MCR register must be reset to enter Normal mode.

23.5.1 Silent mode

The beCAN can be put in Silent mode by setting the SILM bit in the CAN_DGR register.

In Silent mode, the beCAN is able to receive valid data frames and valid remote frames, but
it sends only recessive bits on the CAN bus and it cannot start a transmission. If the beCAN
has to send a dominant bit (ACK bit, overload flag, active error flag), the bit is rerouted
internally so that the CAN Core monitors this dominant bit, although the CAN bus may
remain in recessive state. Silent mode can be used to analyze the traffic on a CAN bus
without affecting it by the transmission of dominant bits (Acknowledge Bits, Error Frames).

Controller area network (beCAN) RM0016

356/430

Figure 129. beCAN in silent mode

23.5.2 Loop back mode

The beCAN can be set in Loop Back Mode by setting the LBKM bit in the CAN_DGR
register. In Loop Back Mode, the beCAN treats its own transmitted messages as received
messages and stores them (if they pass acceptance filtering) in the FIFO.

Figure 130. beCAN in loop back mode

This mode is provided for self-test functions. To be independent of external events, the CAN
Core ignores acknowledge errors (no dominant bit sampled in the acknowledge slot of a
data / remote frame) in Loop Back Mode. In this mode, the beCAN performs an internal
feedback from its Tx output to its Rx input. The actual value of the CANRX input pin is
disregarded by the beCAN. The transmitted messages can be monitored on the CANTX pin.

Note: As the Tx line is still active in this mode, be aware that it can disturb the communication on
the CAN bus.

23.5.3 Loop back combined with silent mode

It is also possible to combine Loop Back mode and Silent mode by setting the LBKM and
SILM bits in the CAN_DGR register. This mode can be used for a “Hot Selftest”, meaning
the beCAN can be tested like in Loop Back mode but without affecting a running CAN
system connected to the CANTX and CANRX pins. In this mode, the CANRX pin is
disconnected from the beCAN and the CANTX pin is held recessive.

beCAN

CANTX CANRX

Tx Rx

=1

beCAN

CANTX CANRX

Tx Rx

RM0016 Controller area network (beCAN)

 357/430

Figure 131. beCAN in combined mode

23.6 Functional description

23.6.1 Transmission handling

In order to transmit a message, the application must select one empty transmit mailbox, set
up the identifier, the data length code (DLC) and the data before requesting the transmission
by setting the corresponding TXRQ bit in the CAN_MCSR register. Once the mailbox has
left empty state, the software no longer has write access to the mailbox registers.
Immediately after the TXRQ bit has been set, the mailbox enters pending state and waits to
become the highest priority mailbox, see Transmit Priority. As soon as the mailbox has the
highest priority it will be scheduled for transmission. The transmission of the message of
the scheduled mailbox will start (enter transmit state) when the CAN bus becomes idle.
Once the mailbox has been successfully transmitted, it will become empty again. The
hardware indicates a successful transmission by setting the RQCP and TXOK bits in the
CAN_MCSR and CAN_TSR registers.

If the transmission fails, the cause is indicated by the ALST bit in the CAN_MCSR register in
case of an Arbitration Lost, and/or the TERR bit, in case of transmission error detection.

Transmit priority

By identifier:

When more than one transmit mailbox is pending, the transmission order is given by the
identifier of the message stored in the mailbox. The message with the lowest identifier value
has the highest priority according to the arbitration of the CAN protocol. If the identifier
values are equal, the lower mailbox number will be scheduled first.

By transmit request order:

The transmit mailboxes can be configured as a transmit FIFO by setting the TXFP bit in the
CAN_MCR register. In this mode the priority order is given by the transmit request order.

This mode is very useful for segmented transmission.

Abort

A transmission request can be aborted by the user setting the ABRQ bit in the CAN_MCSR
register. In pending or scheduled state, the mailbox is aborted immediately. An abort
request while the mailbox is in transmit state can have two results. If the mailbox is
transmitted successfully the mailbox becomes empty with the TXOK bit set in the
CAN_MCSR and CAN_TSR registers. If the transmission fails, the mailbox becomes
scheduled, the transmission is aborted and becomes empty with TXOK cleared. In all
cases the mailbox will become empty again at least at the end of the current transmission.

beCAN

CANTX CANRX

Tx Rx

=1

Controller area network (beCAN) RM0016

358/430

Non-automatic retransmission mode

This mode has been implemented in order to fulfil the requirement of the Time Triggered
Communication option of the CAN standard. To configure the hardware in this mode the
NART bit in the CAN_MCR register must be set.

In this mode, each transmission is started only once. If the first attempt fails, due to an
arbitration loss or an error, the hardware will not automatically restart the message
transmission.

At the end of the first transmission attempt, the hardware considers the request as
completed and sets the RQCP bit in the CAN_MCSR register. The result of the transmission
is indicated in the CAN_MCSR register by the TXOK, ALST and TERR bits.

Figure 132. Transmit mailbox states

EMPTY

TXRQ = 1

RQCP = X

TXOK = X

PENDING

RQCP = 0

TXOK = 0

SCHEDULED
RQCP = 0

TXOK = 0

Mailbox has

TRANSMIT

RQCP = 0

TXOK = 0

CAN Bus = IDLE

Transmit failed (NART = 0)

Transmit succeeded

Mailbox does not

EMPTY

RQCP = 1

TXOK = 0

highest priority

have highest priority

EMPTY

RQCP = 1

TXOK = 1

ABRQ = 1

ABRQ = 1

Transmit failed (NART = 1)

TME = 1

TME = 0

TME = 0

TME = 0

TME = 1

TME = 1

RM0016 Controller area network (beCAN)

 359/430

23.6.2 Reception handling

For the reception of CAN messages, three mailboxes organized as a FIFO are provided. In
order to save CPU load, simplify the software and guarantee data consistency, the FIFO is
managed completely by hardware. The application accesses the messages stored in the
FIFO through the FIFO output mailbox.

Valid message

A received message is considered as valid when it has been received correctly according to
the CAN protocol (no error until the last but one bit of the EOF field) and It passed through
the identifier filtering successfully, see Section 23.6.3: Identifier filtering.

Figure 133. Receive FIFO states

FIFO management

Starting from the empty state, the first valid message received is stored in the FIFO which
becomes pending_1. The hardware signals the event setting the FMP[1:0] bits in the
CAN_RFR register to the value 0b01. The message is available in the FIFO output mailbox.
The software reads out the mailbox content and releases it by setting the RFOM bit in the
CAN_RFR register. The FIFO becomes empty again. If a new valid message has been
received in the meantime, the FIFO stays in pending_1 state and the new message is
available in the output mailbox.

EMPTY
Valid MessageFMP = 00b

FOVR = 0

PENDING_1
FMP = 01b
FOVR = 0

Received

PENDING_2
FMP = 10b
FOVR = 0

PENDING_3
FMP = 11b
FOVR = 0

Valid Message

Received

Release
OVERRUN
FMP = 11b
FOVR = 1Mailbox

Release
Mailbox

Valid Message

Received

Valid Message

Received
Release
Mailbox

Release
Mailbox

Valid Message
Received

RFOM = 1

RFOM = 1

RFOM = 1

Controller area network (beCAN) RM0016

360/430

If the application does not release the mailbox, the next valid message will be stored in the
FIFO which enters pending_2 state (FMP[1:0] = 0b10). The storage process is repeated for
the next valid message putting the FIFO into pending_3 state (FMP[1:0] = 0b11). At this
point, the software must release the output mailbox by setting the RFOM bit, so that a
mailbox is free to store the next valid message. Otherwise the next valid message received
will cause a loss of message.

Refer also to Section 23.6.4: Message storage.

Overrun

Once the FIFO is in pending_3 state (i.e. the three mailboxes are full) the next valid
message reception will lead to an overrun and a message will be lost. The hardware
signals the overrun condition by setting the FOVR bit in the CAN_RFR register. Which
message is lost depends on the configuration of the FIFO:

– If the FIFO lock function is disabled (RFLM bit in the CAN_MCR register cleared)
the last message stored in the FIFO will be overwritten by the new incoming
message. As a result, the last message is always available to the application.

Note:The previously received messages will stay in their positions in the FIFO,
only the last one will be overwritten.

– If the FIFO lock function is enabled (RFLM bit in the CAN_MCR register set) the
most recent message will be discarded and the software will have the three oldest
messages in the FIFO available.

Reception related interrupts

On the storage of the first message in the FIFO - FMP[1:0] bits change from 0b00 to 0b01 -
an interrupt is generated if the FMPIE bit in the CAN_IER register is set.

When the FIFO becomes full (i.e. a third message is stored) the FULL bit in the CAN_RFR
register is set and an interrupt is generated if the FFIE bit in the CAN_IER register is set.

On overrun condition, the FOVR bit is set and an interrupt is generated if the FOVIE bit in
the CAN_IER register is set.

23.6.3 Identifier filtering

In the CAN protocol the identifier of a message is not associated with the address of a node
but related to the content of the message. Consequently a transmitter broadcasts its
message to all receivers. On message reception a receiver node decides - depending on
the identifier value - whether the software needs the message or not. If the message is
needed, it is copied into the RAM. If not, the message must be discarded without
intervention by the software.

To fulfil this requirement, the beCAN Controller provides 6 configurable and scalable filter
banks (5:0) in order to receive only the messages the software needs. This hardware
filtering saves CPU resources which would be otherwise needed to perform filtering by
software. Each filter bank x consists of eight 8-bit registers, CAN_FxR[8:1].

RM0016 Controller area network (beCAN)

 361/430

Scalable width

To optimize and adapt the filters to the application needs, each filter bank can be scaled
independently. Depending on the filter scale a filter bank provides:

– One 32-bit filter for the STDID[10:0] / EXID[28:18], IDE, EXID[17:0] and RTR bits.

– Two 16-bit filters for the STDID[10:0] / EXID[28:18], RTR and IDE bits.

– Four 8-bit filters for the STDID[10:3] / EXID[28:21] bits. The other bits are
considered as don’t care.

– One 16-bit filter and two 8-bit filters for filtering the same set of bits as the 16 and
8-bit filters described above.

Refer to Figure 134 through Figure 137.

Furthermore, the filters can be configured in mask mode or in identifier list mode.

Mask mode

In mask mode the identifier registers are associated with mask registers specifying which
bits of the identifier are handled as “must match” or as “don’t care”.

Controller area network (beCAN) RM0016

362/430

Identifier list mode

In identifier list mode, the mask registers are used as identifier registers. Thus instead of
defining an identifier and a mask, two identifiers are specified, doubling the number of single
identifiers. All bits of the incoming identifier must match the bits specified in the filter
registers.

Filter bank scale and mode configuration

The filter banks are configured by means of the corresponding CAN_FCRx register. To
configure a filter bank this must be deactivated by clearing the FACT bit in the CAN_FCRx
register. The filter scale is configured by means of the FSC[1:0] bits in the corresponding
CAN_FCRx register. The identifier list or identifier mask mode for the corresponding
Mask/Identifier registers is configured by means of the FMLx and FMHx bits in the
CAN_FMRx register. The FMLx bit defines the mode for the lower half (registers
CAN_FxR1-4), and the FMHx bit the mode for the upper half (registers CAN_FxR5-8) of
filter bank x. Refer to Figure 134 through Figure 137 for details.

Examples:

– If filter bank 1 is configured as two 16-bit filters, then the FML1 bit defines the
mode of the CAN_F1R3 and CAN_F1R4 registers and the FMH1 bit defines the
mode of the CAN_F1R7 and CAN_F1R8 registers.

– If filter bank 1 is configured as four 8-bit filters, then the FML1 bit defines the mode
of the CAN_F1R2 and CAN_F1R4 registers and the FMH1 bit defines the mode of
the CAN_F1R6 and CAN_F1R8 registers.

Note: In 32-bit configuration, the FMLx and FMHx bits must have the same value to ensure that
the four Mask/Identifier registers are in the same mode.

When a standard identifier is received (IDE bit is zero), the extended part of 32-bit or 16-bit
filters is not compared.

To filter a group of identifiers, configure the Mask/Identifier registers in mask mode.

To select single identifiers, configure the Mask/Identifier registers in identifier list mode.

Filters not used by the application should be left deactivated.

Each filter within a filter bank is numbered (called the Filter Number) from 0 to a maximum
dependent on the mode and the scale of each of the 6 filter banks.

For the filter configuration, refer to Figure 134 through Figure 137.

Figure 134. 32-bit filter bank configuration (FSCx bits = 0b11 in CAN_FCRx register)

Filter registers Filter mode1

Mapping STID[10:3] /
EXID[28:21]

STID [2:0] /
EXID[20:18] R

T
R

ID
E EXID

[17:15] EXID [14:7] EXID[6:0] 0 FMHx = 0
FMLx = 0

FMHx = 1
FMLx = 1

Identifier CAN_FxR1 CAN_FxR2 CAN_FxR3 CAN_FxR4 ID
n

ID n

Identifier/Mask CAN_FxR5 CAN_FxR6 CAN_FxR7 CAN_FxR8 M ID n+1

ID= Identifier
M = Mask

n = Filter number
x = Filter bank number

1 The FMHx and FMLx bits are located in the CAN_FMR1 and CAN_FMR2 registers

RM0016 Controller area network (beCAN)

 363/430

Figure 135. 16-bit filter bank configuration (FSCx bits = 0b10 in CAN_FCRx register)

Figure 136. 16/8-bit filter bank configuration (FSCx bits = 0b01 in CAN_FCRx register)

Filter registers Filter mode1

Mapping STID[10:3] /
EXID[28:21]

STID [2:0] /
EXID [20:18] R

T
R

ID
E EXID

[17:15]
FMHx = 0
FMLx = 0

FMHx = 0
FMLx = 1

FMHx = 1
FMLx = 0

FMHx = 1
FMLx = 1

Identifier CAN_FxR1 CAN_FxR2 ID
n

ID n ID
n

ID n

Identifier/Mask CAN_FxR3 CAN_FxR4 M ID n+1 M ID n+1

Identifier CAN_FxR5 CAN_FxR6 ID
n+1

ID
n+2

ID n+1 ID n+2

Identifier/Mask CAN_FxR7 CAN_FxR8 M M ID n+2 ID n+3

ID= Identifier
M = Mask

n = Filter number
x = Filter bank number

1 The FMHx and FMLx bits are located in the CAN_FMR1 and CAN_FMR2 registers

Filter registers Filter mode1

Mapping STID[10:3] /
EXID[28:21]

STID [2:0] /
EXID [20:18] R

T
R

ID
E EXID

[17:15]
FMHx = 0
FMLx = 0

FMHx = 0
FMLx = 1

FMHx = 1
FMLx = 0

FMHx = 1
FMLx = 1

Identifier CAN_FxR1 CAN_FxR2 ID
n

ID n ID
n

ID n

Identifier/Mask CAN_FxR3 CAN_FxR4 M ID n+1 M ID n+1

Identifier CAN_FxR5 ID
n+1

ID
n+2

ID n+1 ID n+2

Identifier/Mask CAN_FxR6 M M ID n+2 ID n+3

Identifier CAN_FxR7 ID
n+2

ID
n+3

ID n+3 ID n+4

Identifier/Mask CAN_FxR8 M M ID n+4 ID n+5

ID= Identifier
M = Mask

n = Filter number
x = Filter bank number

1 The FMHx and FMLx bits are located in the CAN_FMR1 and CAN_FMR2 registers

Controller area network (beCAN) RM0016

364/430

Figure 137. 8-bit filter bank configuration (FSCx bits = 0b00 in CAN_FCRx register)

Filter registers Filter mode1

Mapping STID[10:3] /
EXID[28:21]

FMHx = 0
FMLx = 0

FMHx = 0
FMLx = 1

FMHx = 1
FMLx = 0

FMHx = 1
FMLx = 1

Identifier CAN_FxR1 ID
n

ID n ID
n

ID n

Identifier/Mask CAN_FxR2 M ID n+1 M ID n+1

Identifier CAN_FxR3 ID
n+1

ID n+2 ID
n+1

ID n+2

Identifier/Mask CAN_FxR4 M ID n+3 M ID n+3

Identifier CAN_FxR5 ID
n+2

ID
n+4

ID n+2 ID n+4

Identifier/Mask CAN_FxR6 M M ID n+3 ID n+5

Identifier CAN_FxR7 ID
n+3

ID
n+5

ID n+4 ID n+6

Identifier/Mask CAN_FxR8 M M ID n+5 ID n+7

ID= Identifier
M = Mask

n = Filter number
x = Filter bank number

1 The FMHx and FMLx bits are located in the CAN_FMR1 and CAN_FMR2 registers

RM0016 Controller area network (beCAN)

 365/430

Filter match index

Once a message has been received in the FIFO it is available to the application. Typically
application data are copied into RAM locations. To copy the data to the right location the
application has to identify the data by means of the identifier. To avoid this and to ease the
access to the RAM locations, the CAN controller provides a Filter Match Index.

This index is stored in the mailbox together with the message according to the filter priority
rules. Thus each received message has its associated Filter Match Index.

The Filter Match Index can be used in two ways:

– Compare the Filter Match Index with a list of expected values.

– Use the Filter Match Index as an index on an array to access the data destination
location.

For non-masked filters, the software no longer has to compare the identifier.

If the filter is masked the software reduces the comparison to the masked bits only.

Note: The index value of the filter number does not take into account the activation state of the
filter banks.

Table 57. Example of filter numbering

Filter bank
Filter number

Number FCS FMH FML FACT Configuration

0 0b11 1 1 1 Identifier list (32-bit)
0
1

1 0b11 0 0 1 Identifier mask (32-bit) 2

2 0b10 1 1 1 Identifier list (16-bit)

3
4
5
6

3 0b00 0 1 0
Deactivated

Identifier List/Identifier
mask (8-bit)

7
8
9

10
11
12

4 0b10 0 0 0
Deactivated

Identifier Mask (16-bit)
13
14

5 0b01 0 0 1 Identifier Mask (16/8-bit)
15
16
17

Controller area network (beCAN) RM0016

366/430

Filter priority rules

Depending on the filter combination it may occur that an identifier passes successfully
through several filters. In this case the filter match value stored in the receive mailbox is
chosen according to the following rules:

– A 32-bit filter takes priority over 16-bit filter which takes itself priority over 8-bit
filter.

– For filters of equal scale, priority is given to the identifier List mode over the
identifier Mask mode.

– For filters of equal scale and mode, priority is given by the filter number (the lower
the number, the higher the priority).

Figure 138. Filter banks configured as in the example in Table 57.

The example above shows the filtering principle of the beCAN. On reception of a message,
the identifier is compared first with the filters configured in identifier list mode. If there is a
match, the message is stored in the FIFO and the index of the matching filter is stored in the
Filter Match Index. As shown in the example, the identifier matches with Identifier #4 thus
the message content and FMI 4 is stored in the FIFO.

If there is no match, the incoming identifier is then compared with the filters configured in
mask mode.

If the identifier does not match any of the identifiers configured in the filters, the message is
discarded by hardware without disturbing the software.

Id
en

tif
ie

r
Li

st

Message Discarded

Id
en

tif
ie

r
&

 M
as

k

Identifier 0
Identifier 1
Identifier 3

Identifier
2Mask

Identifier
17Mask

Identifier

Message Received

Ctrl Data

Identifier #4 Match

Message
Stored

Receive FIFO

No Match
Found

Filter number stored in the
Filter Match Index field
within the CAN_MFMIR
register

FMI

Filter bank

0

2

1

5

Num

Identifier 4
Identifier 5
Identifier 6

Identifier
15Mask

Identifier
16Mask

RM0016 Controller area network (beCAN)

 367/430

23.6.4 Message storage

The interface between the software and the hardware for the CAN messages is
implemented by means of mailboxes. A mailbox contains all information related to a
message; identifier, data, control, status and time stamp information.

Transmit mailbox

The software sets up the message to be transmitted in an empty transmit mailbox. The
status of the transmission is indicated by hardware in the CAN_MCSR register.

Table 58. Transmit mailbox mapping

Offset to Transmit Mailbox base
address (bytes)

Register name

0 CAN_MCSR

1 CAN_MDLCR

2 CAN_MIDR1

3 CAN_MIDR2

4 CAN_MIDR3

5 CAN_MIDR4

6 CAN_MDAR1

7 CAN_MDAR2

8 CAN_MDAR3

9 CAN_MDAR4

10 CAN_MDAR5

11 CAN_MDAR6

12 CAN_MDAR7

13 CAN_MDAR8

14 CAN_MTSRL

15 CAN_MTSRH

Controller area network (beCAN) RM0016

368/430

Receive mailbox

When a message has been received, it is available to the software in the FIFO output
mailbox. Once the software has handled the message (e.g. read it) the software must
release the FIFO output mailbox by means of the RFOM bit in the CAN_RFR register to
make the next incoming message available. The filter match index is stored in the
CAN_MFMIR register. The 16-bit time stamp value is stored in the CAN_MTSRH and
CAN_MTSRL registers.

Table 59. Receive mailbox mapping

Offset to Receive Mailbox base
address (bytes)

Register name

0 CAN_MFMIR

1 CAN_MDLCR

2 CAN_MIDR1

3 CAN_MIDR2

4 CAN_MIDR3

5 CAN_MIDR4

6 CAN_MDAR1

7 CAN_MDAR2

8 CAN_MDAR3

9 CAN_MDAR4

10 CAN_MDAR5

11 CAN_MDAR6

12 CAN_MDAR7

13 CAN_MDAR8

14 CAN_MTSRL

15 CAN_MTSRH

RM0016 Controller area network (beCAN)

 369/430

23.6.5 Error management

The error management as described in the CAN protocol is handled entirely by hardware
using a Transmit Error Counter (CAN_TECR register) and a Receive Error Counter
(CAN_RECR register), which get incremented or decremented according to the error
condition. For detailed information about TEC and REC management, please refer to the
CAN standard.

Both of them may be read by software to determine the stability of the network.
Furthermore, the CAN hardware provides detailed information on the current error status in
CAN_ESR register. By means of CAN_EIER register and ERRIE bit in CAN_IER register,
the software can configure the interrupt generation on error detection in a very flexible way.

Bus-Off Recovery

The Bus-Off state is reached when TEC is greater then 255, this state is indicated by BOFF
bit in CAN_ESR register. In Bus-Off state, the beCAN is no longer able to transmit and
receive messages.

Depending on the ABOM bit in the CAN_MCR register beCAN will recover from Bus-Off
(become error active again) either automatically or on software request. But in both cases
the beCAN has to wait at least for the recovery sequence specified in the CAN standard
(128 x 11 consecutive recessive bits monitored on CANRX).

If ABOM is set, the beCAN will start the recovering sequence automatically after it has
entered Bus-Off state.

If ABOM is cleared, the software must initiate the recovering sequence by requesting
beCAN to enter initialization mode. Then beCAN starts monitoring the recovery sequence
when the beCAN is requested to leave the initialisation mode.

Note: In initialization mode, beCAN does not monitor the CANRX signal, therefore it cannot
complete the recovery sequence. To recover, beCAN must be in normal mode.

Figure 139. CAN error state diagram

ERROR PASSIVE

When TEC or REC > 127

When TEC and REC < 128

ERROR ACTIVE

BUS OFF

 When TEC > 255When 128 * 11 recessive bits occur

Controller area network (beCAN) RM0016

370/430

23.6.6 Bit timing

The bit timing logic monitors the serial bus-line and performs sampling and adjustment of
the sample point by synchronizing on the start-bit edge and resynchronizing on the following
edges.

Its operation may be explained simply by splitting nominal bit time into three segments as
follows:

– Synchronization segment (SYNC_SEG): a bit change is expected to occur
within this time segment. It has a fixed length of one time quantum (1 x tCAN).

– Bit segment 1 (BS1): defines the location of the sample point. It includes the
PROP_SEG and PHASE_SEG1 of the CAN standard. Its duration is
programmable between 1 and 16 time quanta but may be automatically
lengthened to compensate for positive phase drifts due to differences in the
frequency of the various nodes of the network.

– Bit segment 2 (BS2): defines the location of the transmit point. It represents the
PHASE_SEG2 of the CAN standard. Its duration is programmable between 1 and
8 time quanta but may also be automatically shortened to compensate for
negative phase drifts.

The reSynchronization Jump Width (SJW) defines an upper bound to the amount of
lengthening or shortening of the bit segments. It is programmable between 1 and 4 time
quanta.

To guarantee the correct behaviour of the CAN controller, SYNC_SEG + BS1 + BS2 must
be greater than or equal to 5 time quanta.

Note: For a detailed description of the CAN bit timing and resynchronization mechanism, please
refer to the ISO 11898 standard.

As a safeguard against programming errors, the configuration of the Bit Timing Registers
CAN_BTR1 and CAN_BTR2 is only possible while the device is in Initialization mode.

Figure 140. Bit timing

SYNC_SEG BIT SEGMENT 1 (BS1) BIT SEGMENT 2 (BS2)

NOMINAL BIT TIME

1 x tq tBS1 tBS2

SAMPLE POINT TRANSMIT POINT

NominalBitTime 1 tq× tBS1 tBS2+ +=

with:

tBS1 = (BS1[3:0] + 1) x tq,

tBS2 = (BS2[2:0] + 1) x tq,

tq = (BRP[5:0] + 1) x tsys

tsys = time period of the system clock (fMASTER or fCANEXT, depending on CLKS bit

BRP[5:0], BS1[3:0] and BS2[2:0] are defined in the CAN_BTR1 and CAN_BTR2 registers.

BaudRate 1
NominalBitTime
--=

where tq refers to the Time quantum

configuration in CAN_BTR2 register)

(1 .. 16 x tq) (1 .. 8 x tq)

(min. 5 x tq)

RM0016 Controller area network (beCAN)

 371/430

Figure 141. CAN frames

Data Field

8 * N

Ctrl Field

6

Arbitration Field

12

CRC Field

16

Ack Field

7

S
O

F

STID[10:0] DLC CRC

Data Frame (Standard identifier)

44 + 8 * N

Arbitration Field

12

S
O

F

STID[10:0] DLC

Remote Frame (Standard identifier)
44

CRC Field

16 7

CRC

Ctrl Field

6

A
C

K

A
C

K

2

2

Inter-Frame Space
or Overload FrameInter-Frame Space

Inter-Frame Space
or Overload FrameInter-Frame Space

Ack Field

EOF

R
T

R
ID

E
/r

1 r0

EOF

Data Field

8 * N

Ctrl Field

612

CRC Field

16

Ack Field

7

S
O

F

EXID[28:18] DLC CRC

Data Frame (Extended identifier)
64 + 8 * N

A
C

K

2

Inter-Frame Space
or Overload FrameInter-Frame Space

S
R

R
ID

E
EOF

R
T

R r1 r0

Std Arbitr. Field

20

Ext Arbitr. Field

EXID[17:0]

Data Frame or
Remote Frame

Overload

Overload Frame

 Error

6

Error Delimiter

8

Error Frame

Flag Echo

≤ 6

Bus Idle

Inter-Frame Space
Suspend

8

Intermission
3 Transmission

Inter-Frame Space
or Overload Frame Notes:

• 0 <= N <= 8

• SOF = Start Of Frame

• ID = Identifier

• RTR = Remote Transmission Request

• IDE = Identifier Extension

• r0, r1 = Reserved bits

• DLC = Data Length Code

• CRC = Cyclic Redundancy Code

• Error flag: 6 dominant bits if node is error

active else 6 recessive bits.

• Suspend transmission: applies to error

passive nodes only.

• EOF = End of Frame

• ACK = Acknowledge bit (send as

recessive)

• Ctrl = Control

Data Frame or
Remote FrameAny Frame

Inter-Frame Space
or Error Frame

End Of Frame or
Error Delimiter or

Overload Delimiter

6

Overload

8≤ 6

Flag
Flag Echo Delimiter

Flag

Ctrl Field

612

CRC Field

16

Ack Field

7

S
O

F

EXID[28:18] DLC CRC

Remote Frame (Extended identifier)
64

A
C

K
2

Inter-Frame Space
or Overload FrameInter-Frame Space

S
R

R
ID

E

EOF

R
T

R r1 r0

Std Arbitr. Field

20

Ext Arbitr. Field

EXID[17:0]

R
T

R
ID

E
/r

1 r0

Controller area network (beCAN) RM0016

372/430

23.7 Interrupts
Two interrupt vectors are dedicated to beCAN. Each interrupt source can be independently
enabled or disabled by means of the CAN Interrupt Enable Register (CAN_IER) and CAN
Error Interrupt Enable register (CAN_EIER).

Figure 142. Event flags and interrupt generation

● The FIFO interrupt can be generated by the following events:

– Reception of a new message, FMP bits in the CAN_RFR register incremented.

– FIFO full condition, FULL bit in the CAN_RFR register set.

– FIFO overrun condition, FOVR bit in the CAN_RFR register set.

● The transmit, error and status change interrupt can be generated by the following
events:

– Transmit mailbox 0 becomes empty, RQCP0 bit in the CAN_TSR register set.

– Transmit mailbox 1 becomes empty, RQCP1 bit in the CAN_TSR register set.

– Transmit mailbox 2 becomes empty, RQCP2 bit in the CAN_TSR register set.

– Error condition, for more details on error conditions please refer to the CAN Error
Status register (CAN_ESR).

– Wakeup condition, SOF monitored on the CAN Rx signal.

RQCP0
RQCP1 CAN_TSR

TMEIE

CAN_IER

TRANSMIT/

EWGF
EWGIE

EPVF
EPVIE

BOFF
BOFIE

1 ≤ LEC ≤ 6

LECIE

CAN_ESR

ERRIE

FMP
FMPIE

FULL
FFIE

FOVR
FOVIE

CAN_RFR

FIFO

INTERRUPT

RQCP2

WKUI
WKUIE

CAN_MSR

INTERRUPT
ERROR

STATUS CHANGE/

ERRI

CAN_MSR

CAN_EIER

RM0016 Controller area network (beCAN)

 373/430

23.8 Register access protection
Erroneous access to certain configuration registers can cause the hardware to temporarily
disturb the whole CAN network. Therefore the following registers can be modified by
software only while the hardware is in initialization mode:

CAN_BTR1, CAN_BTR2, CAN_FCR1, CAN_FCR2, CAN_FMR1, CAN_FMR2 and
CAN_DGR registers.

Although the transmission of incorrect data will not cause problems at the CAN network
level, it can severely disturb the application. A transmit mailbox can be only modified by
software while it is in empty state, refer to Figure 132: Transmit mailbox states.

The filters must be deactivated before their value can be modified by software. The
modification of the filter configuration (scale or mode) can be done by software only in
initialization mode.

23.9 Clock system
The clock tolerance limit as specified in CAN protocol is 1.58 % at speeds of up to 125
Kbps. For higher baud rates, it is suggested to use a crystal oscillator. In order to allow
beCAN to be used with the full range of baud rates, an interface is provided to allow beCAN
to work with two different clock domains: fMASTER or an accurate external clock (HSE). The
interface between beCAN and the CPU is done at CPU clock speed whereas the various
nodes in the CAN network communicate using a Baud rate clock generated from an external
clock. Refer to the description of the CLKS bit in the CAN_BTR2 register.

Figure 143. Clock interface

The frequency of the external clock fCANEXT must be less than that of the CPU clock (fCPU).

There are two ways to configure the beCAN clock:

1. By selecting fMASTER as CAN clock. In this case, the clock can be stopped at peripheral
level (Peripheral clock gating register 2 (CLK_PCKENR2) during low power mode.
Obviously, fMASTER must be driven by a crystal oscillator for CAN high speed
applications.

2. Or, by selecting fCANEXT (CLKS bit set) as CAN clock. In this case, the clock cannot be
stopped by the peripheral clock gating register.

Note: If the clock security system feature is enabled in the CLK controller (Refer to the description
of the CSSEN bit in the Clock security system register (CLK_CSSR) on page 79), there is a
way to put CAN automatically into the recessive state when a main clock failure occurs, so
that the CAN network does not get stuck by the device. However to ensure this, the PG0 I/O
pin must be configured in pull-up mode prior to using the beCAN. In this way, when a failure
occurs and the I/O alternate function is disabled, the line is pulled-up instead of floating.

fHSE
Prescaler

(1...64)

CANDIV[2:0] bits (CLK_CANCCR)

Prescaler

beCAN
fMASTER

fCAN 1/tq

CLKS bit (CAN_BTR2)
(1...8)

Time quanta clock
CAN peripheral clock enable bit (CLK_PCKENR2)

fCANEXT

Controller area network (beCAN) RM0016

374/430

23.10 beCAN low power modes

Note: If a CAN frame is received in WAIT, HALT or Active HALT modes, the microcontroller will be
woken-up but the CAN frame will be lost.

Table 60. beCAN behavior in low power modes

Mode Description

WAIT
No effect on beCAN, except that accesses to Tx/Rx mailboxes and filter values are not
possible (CPU clock is stopped).

beCAN interrupts cause the device to exit from WAIT mode.

SLOW
No effect on beCAN.

Frequency of the external clock (if selected) must be less than fCPU. See CLKS bit in
CAN bit timing register 2 (CAN_BTR2) on page 385.

HALT/
Active HALT

beCAN is halted.
A beCAN Rx interrupt causes the device to exit from HALT/Active HALT modes (in
fact, any falling edge driven externally on the Rx pin will wake-up the microcontroller.

RM0016 Controller area network (beCAN)

 375/430

23.11 beCAN registers

23.11.1 CAN master control register (CAN_MCR)

Address offset: 0x00

Reset value: 0x02

7 6 5 4 3 2 1 0

TTCM ABOM AWUM NART RFLM TXFP SLEEP INRQ

rw rw rw rw rw rw rw rw

Bit 7 TTCM Time Triggered Communication Mode
0: Time Triggered Communication mode disabled.
1: Time Triggered Communication mode enabled

Note: For more information on Time Triggered Communication mode, please refer to Section 23.4.4:
Time triggered communication mode.

Bit 6 ABOM Automatic Bus-Off Management
This bit controls the behaviour of the CAN hardware on leaving the Bus-Off state.
0: The Bus-Off state is left on software request.
Refer to Section 23.6.5: Error management, Bus-Off recovery.
1: The Bus-Off state is left automatically by hardware once 128 x 11 recessive bits have been
monitored.

Note: For detailed information on the Bus-Off state please refer to Section 23.6.5: Error management.

Bit 5 AWUM Automatic wakeup Mode

This bit controls the behaviour of the CAN hardware on message reception during sleep mode.
0: The sleep mode is left on software request by clearing the SLEEP bit in the CAN_MCR register.
1: The sleep mode is left automatically by hardware on CAN message detection. The SLEEP bit of
the CAN_MCR register and the SLAK bit of the CAN_MSR register are cleared by hardware.

Bit 4 NART No Automatic Retransmission

0: The CAN hardware will automatically retransmit the message until it has been successfully
transmitted according to the CAN standard.
1: A message will be transmitted only once, independently of the transmission result (successful,
error or arbitration lost).

Bit 3 RFLM Receive FIFO Locked Mode

0: Receive FIFO not locked on overrun. Once a receive FIFO is full the next incoming message will
overwrite the previous one.
1: Receive FIFO locked against overrun. Once a receive FIFO is full the next incoming message will
be discarded.

Bit 2 TXFP Transmit FIFO Priority
This bit controls the transmission order when several mailboxes are pending at the same time.
0: Priority driven by the identifier of the message
1: Priority driven by the request order (chronologically)

Controller area network (beCAN) RM0016

376/430

23.11.2 CAN master status register (CAN_MSR)

Address offset: 0x01

Reset value: 0x002

Bit 1 SLEEP Sleep Mode Request
This bit is set by software to request the CAN hardware to enter the sleep mode. Sleep mode will be
entered as soon as the current CAN activity (transmission or reception of a CAN frame) has been
completed.
This bit is cleared by software to exit sleep mode.
This bit is cleared by hardware when the AWUM bit is set and a SOF bit is detected on the CAN Rx
signal.

Bit 0 INRQ Initialization Request
The software clears this bit to switch the hardware into normal mode. Once 11 consecutive
recessive bits have been monitored on the Rx signal the CAN hardware is synchronized and ready
for transmission and reception. Hardware signals this event by clearing the INAK bit in the
CAN_MSR register.
Software sets this bit to request the CAN hardware to enter initialization mode. Once software has
set the INRQ bit, the CAN hardware waits until the current CAN activity (transmission or reception) is
completed before entering the initialization mode. Hardware signals this event by setting the INAK
bit in the CAN_MSR register.

7 6 5 4 3 2 1 0

Reserved
RX TX WKUI ERRI SLAK INAK

r r rc_w1 rc_w1 r r

Bits 7:6 Reserved, read as 0.

Bit 5 RX Receive

1: The CAN hardware is currently receiver.

Bit 4 TX Transmit

1: The CAN hardware is currently transmitter.

Bit 3 WKUI Wakeup Interrupt

This bit is set by hardware to signal that a SOF bit has been detected while the CAN hardware was
in sleep mode. Setting this bit generates a status change interrupt if the WKUIE bit in the CAN_IER
register is set.
This bit is cleared by software writing 1.

Bit 2 ERRI Error Interrupt

This bit is set by hardware when a bit of the CAN_ESR has been set on error detection and the
corresponding interrupt in the CAN_EIER is enabled. Setting this bit generates a status change
interrupt if the ERRIE bit in the CAN_EIER register is set.
This bit is cleared by software writing 1.

Bit 1 SLAK Sleep Acknowledge
This bit is set by hardware and indicates to the software that the CAN hardware is now in sleep
mode. This bit acknowledges the sleep mode request from the software (set SLEEP bit in
CAN_MCR register).
This bit is cleared by hardware when the CAN hardware has left sleep mode. Sleep mode is left
when the SLEEP bit in the CAN_MCR register is cleared. Please refer to the AWUM bit of the
CAN_MCR register description for detailed information for clearing SLEEP bit.

RM0016 Controller area network (beCAN)

 377/430

23.11.3 CAN transmit status register (CAN_TSR)

Address offset: 0x02

Reset value: 0x00

Bit 0 INAK Initialization Acknowledge
This bit is set by hardware and indicates to the software that the CAN hardware is now in
initialization mode. This bit acknowledges the initialization request from the software (set INRQ bit in
CAN_MCR register).
This bit is cleared by hardware when the CAN hardware has left the initialization mode and is now
synchronized on the CAN bus. To be synchronized the hardware has to monitor a sequence of 11
consecutive recessive bits on the CAN RX signal.

7 6 5 4 3 2 1 0

Reserved
TXOK2 TXOK1 TXOK0

Reserved
RQCP2 RQCP1 RQCP0

r r r rc_w1 rc_w1 rc_w1

Bit 7 Reserved, read as 0.

Bit 6 TXOK2 Transmission OK for mailbox 2
This bit is set by hardware when the transmission request on mailbox 2 has been completed
successfully. Please refer to Figure 132.
This bit is cleared by hardware when mailbox 2 is requested for transmission or when the software
clears the RQCP2 bit.

Bit 5 TXOK1 Transmission OK for mailbox 1

This bit is set by hardware when the transmission request on mailbox 1 has been completed
successfully. Please refer to Figure 132.
This bit is cleared by hardware when mailbox 1 is requested for transmission or when the software
clears the RQCP1 bit.

Bit 4 TXOK0 Transmission OK for mailbox 0

This bit is set by hardware when the transmission request on mailbox 0 has been completed
successfully. Please refer to Figure 132.
This bit is cleared by hardware when mailbox 1 is requested for transmission or when the software
clears the RQCP0 bit.

Bit 3 Reserved, read as 0.

Bit 2 RQCP2 Request Completed for Mailbox 2

This bit is set by hardware to signal that the last request for mailbox 2 has been completed. The
request could be a transmit or an abort request.
This bit is cleared by software writing 1.

Bit 1 RQCP1 Request Completed for Mailbox 1

This bit is set by hardware to signal that the last request for mailbox 1 has been completed. The
request could be a transmit or an abort request.
This bit is cleared by software writing 1.

Bit 0 RQCP0 Request Completed for Mailbox 0
This bit is set by hardware to signal that the last request for mailbox 0 has been completed. The
request could be a transmit or an abort request.
This bit is cleared by software writing 1.

Controller area network (beCAN) RM0016

378/430

23.11.4 CAN transmit priority register (CAN_TPR)

Address offset: 0x03

Reset value: 0x1C

7 6 5 4 3 2 1 0

LOW2 LOW1 LOW0 TME2 TME1 TME0 CODE1 CODE0

r r r r r r r r

Bit 7 LOW2 Lowest Priority Flag for Mailbox 2
This bit is set by hardware when more than one mailbox is pending for transmission and mailbox 2
has the lowest priority.

Note: It is set to zero when only one mailbox is pending.

Bit 6 LOW1 Lowest Priority Flag for Mailbox 1
This bit is set by hardware when more than one mailbox is pending for transmission and mailbox 1
has the lowest priority.

Note: It is set to zero when only one mailbox is pending.

Bit 5 LOW0 Lowest Priority Flag for Mailbox 0
This bit is set by hardware when more than one mailbox is pending for transmission and mailbox 0
has the lowest priority.

Note: It is set to zero when only one mailbox is pending.

Bit 4 TME2 Transmit Mailbox 2 Empty
This bit is set by hardware when no transmit request is pending for mailbox 2.

Note: This bit is reserved, forced to 0 by hardware in ST7 beCAN compatibility mode (TXM2E bit = 0
in CAN_DGR register).

Bit 3 TME1 Transmit Mailbox 1 Empty
This bit is set by hardware when no transmit request is pending for mailbox 1.

Bit 2 TME0 Transmit Mailbox 0 Empty
This bit is set by hardware when no transmit request is pending for mailbox 0.

Bits 1:0 CODE[1:0] Mailbox Code
When at least one transmit mailbox is free, this field contains the number of the next free transmit
mailbox.
When all transmit mailboxes are pending, this field contains the number of the transmit mailbox with
the lowest priority.

Note: CODE1 is always 0 in ST7 beCAN compatibility mode (TXM2E bit = 0 in CAN_DGR register).

RM0016 Controller area network (beCAN)

 379/430

23.11.5 CAN receive FIFO register (CAN_RFR)

Address offset: 0x04

Reset value: 0x00

23.11.6 CAN interrupt enable register (CAN_IER)

Address offset: 0x05

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
RFOM FOVR FULL

Reserved
FMP[1:0]

rs rc_w1 rc_w1 r r

Bit 7:6 Reserved, read as 0.

Bit 5 RFOM Release FIFO Output Mailbox

Set by software to release the output mailbox of the FIFO. The output mailbox can only be released
when at least one message is pending in the FIFO. Setting this bit when the FIFO is empty has no
effect. If more than one message is pending in the FIFO, the software has to release the output
mailbox to access the next message.
Cleared by hardware when the output mailbox has been released.

Bit 4 FOVR FIFO Overrun

This bit is set by hardware when a new message has been received and passed the filter while the
FIFO was full.
This bit is cleared by software writing ‘1’.

Bit 3 FULL FIFO Full
Set by hardware when three messages are stored in the FIFO.
This bit can be cleared by software writing ‘1’ or by releasing the FIFO by means of RFOM.

Bit 2 Reserved, read as 0.

Bits 1:0 FMP[1:0] FIFO Message Pending

These bits indicate how many messages are pending in the receive FIFO.
FMP is increased each time the hardware stores a new message in to the FIFO. FMP is decreased
each time the FIFO output mailbox has been released by hardware (RFOM bit has been cleared
after prior setting by software).

7 6 5 4 3 2 1 0

WKUIE
Reserved

FOVIE FFIE FMPIE TMEIE

rw rw rw rw rw

Bit 7 WKUIE Wakeup Interrupt Enable

0: No interrupt when WKUI is set.
1: Interrupt generated when WKUI bit is set.

Bit 6:4 Reserved, read as 0.

Bit 3 FOVIE FIFO Overrun Interrupt Enable

0: No interrupt when FOVR bit is set.
1: Interrupt generated when FOVR bit is set.

Controller area network (beCAN) RM0016

380/430

23.11.7 CAN diagnostic register (CAN_DGR)

Address offset: 0x06

Reset value: 0x0C

Bit 2 FFIE FIFO Full Interrupt Enable
0: No interrupt when FULL bit is set.
1: Interrupt generated when FULL bit is set.

Bit 1 FMPIE FIFO Message Pending Interrupt Enable

0: No interrupt on FMP[1:0] bits transition from 0b00 to 0b01.
1: Interrupt generated on FMP[1:0] bits transition from 0b00 to 0b01.

Bit 0 TMEIE Transmit Mailbox Empty Interrupt Enable

0: No interrupt when RQCPx bit is set.
1: Interrupt generated when RQCPx bit is set.

7 6 5 4 3 2 1 0

Reserved
TXM2E RX SAMP SILM LBKM

rw r r rw rw

Bit 7:5 Reserved, read as 0.

Bit 4 TXM2E TX Mailbox 2 enable

0: Force compatibility with ST7 beCAN (2 TX Mailboxes) - reset value
1: Enables the third TX Mailbox (Mailbox number 2)

Bit 3 RX CAN Rx Signal

Monitors the actual value of the CAN_RX Pin.

Bit 2 SAMP Last sample point

The value of the last sample point.

Bit 1 SILM Silent mode

0: Normal operation
1: Silent mode

Bit 0 LBKM Loop back mode

0: Loop back mode disabled
1: Loop back mode enabled

RM0016 Controller area network (beCAN)

 381/430

23.11.8 CAN page select register (CAN_PSR)

Address offset: 0x07

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
PS[2:0]

rw rw rw

Bits 7:3 Reserved, read as 0.

Bits 2:0 PS[2:0] Page select

This register is used to select the register page.
000: Tx Mailbox 0
001: Tx Mailbox 1
010: Acceptance Filter 0:1
011: Acceptance Filter 2:3
100: Acceptance Filter 4:5
101: Tx Mailbox 2
110: Configuration/Diagnostic
111: Receive FIFO
Refer to Figure 145 for more details.

Controller area network (beCAN) RM0016

382/430

23.11.9 CAN error status register (CAN_ESR)

Address offset: See Table 63.

Reset value: 0000 0000 (00h)
7 6 5 4 3 2 1 0

Reserved
LEC[2:0]

Reserved
BOFF EPVF EWGF

rw rw rw r r r

Bit 7 Reserved, read as 0.

Bit 6:4 LEC[2:0] Last error code

This field holds a code which indicates the type of the last error detected on the CAN bus. If a
message has been transferred (reception or transmission) without error, this field will be cleared to
‘0’. The code 7 is unused and may be written by the CPU to check for update.
000: No Error
001: Stuff Error
010: Form Error
011: Acknowledgment Error
100: Bit recessive Error
101: Bit dominant Error
110: CRC Error
111: Set by software

Bit 3 Reserved, read as 0.

Bit 2 BOFF Bus-off flag

This bit is set by hardware when it enters the bus-off state. The bus-off state is entered on
CAN_TECR overrun, TEC greater than 255, refer to Section 23.6.5 on page 369.

Bit 1 EPVF Error passive flag

This bit is set by hardware when the Error Passive limit has been reached (Receive Error Counter or
Transmit Error Counter greater than 127).

Bit 0 EWGF Error warning flag
This bit is set by hardware when the warning limit has been reached. Receive Error Counter or
Transmit Error Counter greater than 96.

RM0016 Controller area network (beCAN)

 383/430

23.11.10 CAN error interrupt enable register (CAN_EIER)

Address offset: See Table 63.

Reset value: 0000 0000 (00h)

23.11.11 CAN transmit error counter register (CAN_TECR)

Address offset: See Table 63.

Reset value: 0000 0000 (00h)

7 6 5 4 3 2 1 0

ERRIE
Reserved

LECIE
Reserved

BOFIE EPVIE EWGIE

rw rw rw rw rw

Bit 7 ERRIE Error interrupt enable
0: No interrupt is generated when an error condition is pending in the CAN_ESR (ERRI bit in
CAN_MSR is set).
1: An interrupt is generated when an error condition is pending in the CAN_ESR (ERRI bit in
CAN_MSR is set).
Refer to Figure 142 for more details.

Bit 6:5 Reserved, read as 0.

Bit 4 LECIE Last error code interrupt enable
0: ERRI bit is not set when the error code in LEC[2:0] is set by hardware on error detection.
1: ERRI bit is set when the error code in LEC[2:0] is set by hardware on error detection.

Bit 3 Reserved, read as 0.

Bit 2 BOFIE Bus-Off interrupt enable

0: ERRI bit is not set when BOFF is set.
1: ERRI bit is set when BOFF is set.

Bit 1 EPVIE Error passive interrupt enable

0: ERRI bit is not set set when EPVF is set.
1: ERRI bit is set when EPVF is set.

Bit 0 EWGIE Error warning interrupt enable
0: ERRI bit is not set when EWGF is set.
1: ERRI bit is set when EWGF is set.

7 6 5 4 3 2 1 0

TEC[7:0]

r r r r r r r r

Bits 7:0 TEC[7:0] Transmit error counter

In case of an error during transmission, this counter is incremented by 8 depending on the error
condition as defined by the CAN standard. After every successful transmission the counter is
decremented by 1 or reset to 0 if the CAN controller exited from bus-off to error active state. When
the counter value exceeds 127, the CAN controller enters the error passive state. When the counter
value exceeds 255, the CAN controller enters the bus-off state.

Controller area network (beCAN) RM0016

384/430

23.11.12 CAN receive error counter register (CAN_RECR)

Address offset: See Table 63.

Reset value: 0000 0000 (00h)

23.11.13 CAN bit timing register 1 (CAN_BTR1)

Address offset: See Table 63.

Reset value: 0100 0000 (40h)

This register can only be accessed by the software when the CAN hardware is in
initialization mode.

7 6 5 4 3 2 1 0

REC[7:0]

r r r r r r r r

Bits 7:0 REC[7:0] Receive error counter
This is is the Receive Error Counter implementing part of the fault confinement mechanism of the
CAN protocol. In case of an error during reception, this counter is incremented by 1 or by 8
depending on the error condition as defined by the CAN standard. After every successful reception
the counter is decremented by 1 or reset to 120 if its value was higher than 128. When the counter
value exceeds 127, the CAN controller enters the error passive state.

7 6 5 4 3 2 1 0

SJW[1:0] BRP[5:0]

rw rw rw rw rw rw rw rw

Bits 7:6 SJW[1:0] Resynchronization jump width

These bits define the maximum number of time quanta the CAN hardware is allowed to lengthen or
shorten a bit to perform the resynchronization. Resynchronization Jump Width = (SJW+1).

Bits 5:0 BRP[5:0] Baud rate prescaler

These bits define the length of a time quantum.
tq = (BRP+1)/fCAN
where fCAN = fCANEXT or fMASTER (refer to CLKS bit configuration in the CAN_BTR2 register)
For more information on bit timing, please refer to Section 23.6.6: Bit timing.

RM0016 Controller area network (beCAN)

 385/430

23.11.14 CAN bit timing register 2 (CAN_BTR2)

Address offset: See Table 63.

Reset value: 0x23

This register can only be accessed by the software when the CAN hardware is in
initialization mode.

7 6 5 4 3 2 1 0

CLKS BS2[2:0] BS1[3:0]

rw rw rw rw rw rw rw rw

Bit 7 CLKS Clock input selection
0: CPU clock selected (fCAN = fMASTER)
1: External clock selected (fCAN= fCANEXT)

Note:

Bits 6:4 BS2[2:0] Bit Segment 2
These bits define the number of time quanta in Bit Segment 2.
Bit Segment 2 = (BS2+1)

Bits 3:0 BS1[3:0] Bit Segment 1

These bits define the number of time quanta in Bit Segment 1
Bit Segment 1 = (BS1+1)
For more information on bit timing, please refer to Section 23.6.6: Bit timing.

Controller area network (beCAN) RM0016

386/430

23.11.15 Mailbox registers

This chapter describes the registers of the transmit and receive mailboxes. Refer to
Section 23.6.4: Message storage for detailed register mapping.

Transmit and receive mailboxes have the same registers except:

– CAN_MCSR register in a transmit mailbox is replaced by CAN_MFMIR register in
a receive mailbox.

– A receive mailbox is always write protected.

– A transmit mailbox is write enabled only while empty (the corresponding TME bit in
the CAN_TPR register is set).

CAN message control/status register (CAN_MCSR)

Address offset: See Table 58. and Table 59.

Reset value: 0x00

Note: This register is implemented only in transmit mailboxes. In receive mailboxes, the
CAN_MFMIR register is mapped at this location.

7 6 5 4 3 2 1 0

Reserved
TERR ALST TXOK RQCP ABRQ TXRQ

r r r rc_w1 rs rs

Bits 7:6 Reserved, read as 0.

Bit 5 TERR Transmission error

This bit is updated by hardware after each transmission attempt.
0: The previous transmission was successful
1: The previous transmission failed due to an error

Bit 4 ALST Arbitration lost

This bit is updated by hardware after each transmission attempt.
0: The previous transmission was successful
1: The previous transmission failed due to an arbitration lost

Bit 3 TXOK Transmission OK

The hardware updates this bit after each transmission attempt.
0: The previous transmission failed
1: The previous transmission was successful

Note: This bit has the same value as the corresponding TXOKx bit in the CAN_TSR register.

Bit 2 RQCP Request completed

Set by hardware when the last request (transmit or abort) has been performed.
Cleared by software writing a “1” or by hardware on transmission request.

Note: This bit has the same value as the corresponding RQCPx bit of the CAN_TSR register.

Clearing this bit clears all the status bits (TXOK, ALST and TERR) in the CAN_MCSR register
and the corresponding RQCPx and TXOKx bits in the CAN_TSR register.

Bit 1 ABRQ Abort request for mailbox

Set by software to abort the transmission request for the corresponding mailbox.
Cleared by hardware when the mailbox becomes empty.
Setting this bit has no effect when the mailbox is not pending for transmission.

RM0016 Controller area network (beCAN)

 387/430

CAN mailbox filter match index register (CAN_MFMIR)

Address offset: See Table 58. and Table 59.

Reset value: undefined

Note: This register is implemented only in receive mailboxes. In transmit mailboxes, the
CAN_MCSR register is mapped at this location.

CAN mailbox identifier register 1 (CAN_MIDR1)

Address offset: See Table 58. and Table 59.

Reset value: undefined

Bit 0 TXRQ Transmit mailbox request
Set by software to request the transmission for the corresponding mailbox.
Cleared by hardware when the mailbox becomes empty.

7 6 5 4 3 2 1 0

FMI[7:0]

r r r r r r r r

Bits 7:0 FMI[7:0] Filter match index

This register contains the index of the filter the message stored in the mailbox passed through. For
more details on identifier filtering please refer to Section 23.6.3: Identifier filtering - Filter Match
Index paragraph.

7 6 5 4 3 2 1 0

Reserved
IDE RTR STID[10:6] / EXID[28:24]

rw rw rw rw rw rw rw

Bit 7 Reserved, read as 0.

Bit 6 IDE Extended identifier

This bit defines the identifier type of message in the mailbox.
0: Standard identifier.
1: Extended identifier.

Bit 5 RTR Remote transmission request

0: Data frame
1: Remote frame

Bits 4:0 STID[10:6] Standard identifier

5 most significant bits of the standard part of the identifier.

or
EXID[28:24] Extended identifier

5 most significant bits of the “Base” part of extended identifier.

Controller area network (beCAN) RM0016

388/430

CAN mailbox identifier register 2 (CAN_MIDR2)

Address offset: See Table 58. and Table 59.

Reset value: undefined

CAN mailbox identifier register 3 (CAN_MIDR3)

Address offset: See Table 58. and Table 59.

Reset value: undefined

CAN mailbox identifier register 4 (CAN_MIDR4)

Address offset: See Table 58. and Table 59.

Reset value: undefined

7 6 5 4 3 2 1 0

STID[5:0] / EXID[23:18] EXID[17:16]

rw rw rw rw rw rw rw rw

Bits 7:2 STID[5:0] Standard Identifier

6 least significant bits of the standard part of the identifier.

or
EXID[23:18] Extended Identifier

6 least significant bits of the “Base” part of extended identifier.

Bits 1:0 EXID[17:16] Extended Identifier

2 most significant bits of the “Extended” part of the extended identifier.

7 6 5 4 3 2 1 0

EXID[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0 EXID[15:8] Extended identifier
Bit 15 to 8 of the “Extended” part of the extended identifier.

7 6 5 4 3 2 1 0

EXID[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 EXID[7:0] Extended identifier

8 least significant bits of the “Extended” part of the extended identifier.

RM0016 Controller area network (beCAN)

 389/430

CAN mailbox data length control register (CAN_MDLCR)

Address offset: See Table 58. and Table 59.

Reset value: undefined

CAN mailbox data register x (CAN_MDAR) (x= 1 .. 8)

Address offset: See Table 58. and Table 59.

Reset value: undefined

CAN mailbox time stamp register low (CAN_MTSRL)

Address offset: See Table 58. and Table 59.

Reset value: undefined

7 6 5 4 3 2 1 0

TGT
Reserved

DLC[3:0]

rw rw rw rw rw

Bit 7 TGT Transmit global time

This bit is active only when the hardware is in the Time Trigger Communication mode, TTCM bit in
the CAN_MCR register is set.
0: CAN_MTSRH and CAN_MTSRL registers are not sent.
1: CAN_MTSRH and CAN_MTSRL registers are sent in the last two data bytes of the message.

Bits 6:4 Reserved, read as 0.

Bits 3:0 DLC[3:0] Data length code

This field defines the number of data bytes in a data frame or a remote frame request.

7 6 5 4 3 2 1 0

DATA[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 DATA[7:0] Data

A data byte of the message. A message can contain from 0 to 8 data bytes.

Note: These bits are write protected when the mailbox is not in empty state.

7 6 5 4 3 2 1 0

TIME[7:0]

r r r r r r r r

Bits 7:0 TIME[7:0] Message time stamp low
This field contains the low byte of the 16-bit timer value captured at the SOF detection.

Controller area network (beCAN) RM0016

390/430

CAN mailbox time stamp register high (CAN_MTSRH)

Address offset: See Table 58. and Table 59.

Reset value: undefined

23.11.16 CAN filter registers

CAN filter mode register 1 (CAN_FMR1)

Address offset: See Table 63.

Reset value: 0x00

7 6 5 4 3 2 1 0

TIME[15:8]

r r r r r r r r

Bits 7:0 TIME[15:8] Message time stamp high

This field contains the high byte of the 16-bit timer value captured at the SOF detection.

7 6 5 4 3 2 1 0

FMH3 FML3 FMH2 FML2 FMH1 FML1 FMH0 FML0

rw rw rw rw rw rw rw rw

Bit 7 FMH3 Filter 3 mode high

Mode of the high identifier/mask registers of Filter 3.
0: High registers are in mask mode
1: High registers are in identifier list mode

Bit 6 FML3 Filter 3 mode low

Mode of the low identifier/mask registers of Filter 3.
0: Low registers are in mask mode
1: Low registers are in identifier list mode

Bit 5 FMH2 Filter 2 mode high

Mode of the high identifier/mask registers of Filter 2.
0: High registers are in mask mode
1: High registers are in identifier list mode

Bit 4 FML2 Filter 2 mode low

Mode of the low identifier/mask registers of Filter 2.
0: Low registers are in mask mode
1: Low registers are in identifier list mode

Bit 3 FMH1 Filter 1 mode high

Mode of the high identifier/mask registers of Filter 1.
0: High registers are in mask mode
1: High registers are in identifier list mode

RM0016 Controller area network (beCAN)

 391/430

CAN filter mode register 2 (CAN_FMR2)

Address offset: See Table 63.

Reset value: 0x00

Bits 2 FML1 Filter 1 mode low
Mode of the low identifier/mask registers of filter 1.
0: Low registers are in mask mode
1: Low registers are in identifier list mode

Bit 1 FMH0 Filter 0 mode high
Mode of the high identifier/mask registers of filter 0.
0: High registers are in mask mode
1: High registers are in identifier list mode

Bit 0 FML0 Filter 0 mode low
Mode of the low identifier/mask registers of filter 0.
0: Low registers are in mask mode
1: Low registers are in identifier list mode

7 6 5 4 3 2 1 0

Reserved
FMH5 FML5 FMH4 FML4

rw rw rw rw

Bits 7:4 Reserved, read as 0.

Bit 3 FMH5 Filter 5 mode high
Mode of the high identifier/mask registers of Filter 5.
0: High registers are in mask mode
1: High registers are in identifier list mode

Bits 2 FML5 Filter 5 mode low
Mode of the low identifier/mask registers of filter 5.
0: Low registers are in mask mode
1: Low registers are in identifier list mode

Bit 1 FMH4 Filter 4 mode high
Mode of the high identifier/mask registers of filter 4.
0: High registers are in mask mode
1: High registers are in identifier list mode

Bit 0 FML4 Filter 4 mode low
Mode of the low identifier/mask registers of filter 4.
0: Low registers are in mask mode
1: Low registers are in identifier list mode

Controller area network (beCAN) RM0016

392/430

CAN filter configuration register 1 (CAN_FCR1)

Address offset: See Table 63.

Reset value: 0x00

CAN filter configuration register 2 (CAN_FCR2)

Address offset: See Table 63.

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
FSC11 FSC10 FACT1

Reserved
FSC01 FSC00 FACT0

rw rw rw rw rw rw

Bit 7 Reserved, read as 0.

Bits 6:5 FSC1[1:0] Filter scale configuration
These bits define the scale configuration of Filter 1.

Bit 4 FACT1 Filter Active
The software sets this bit to activate Filter 1. To modify the Filter 1 registers (CAN_F1Rx), the FACT1
bit must be cleared.
0: Filter 1 is not active
1: Filter 1 is active

Bit 3 Reserved, read as 0.

Bits 2:1 FSC0[1:0] Filter scale configuration

These bits define the scale configuration of Filter 0.

Bit 0 FACT0 Filter active

The software sets this bit to activate Filter 0. To modify the Filter 0 registers (CAN_F0Rx), the FACT0
bit must be cleared.
0: Filter 0 is not active
1: Filter 0 is active

7 6 5 4 3 2 1 0

Reserved
FSC31 FSC30 FACT3

Reserved
FSC21 FSC20 FACT2

rw rw rw rw rw rw

Bit 7 Reserved, read as 0.

Bits 6:5 FSC3[1:0] Filter scale configuration
These bits define the scale configuration of Filter 3.

Bit 4 FACT3 Filter active
The software sets this bit to activate Filter 3. To modify the Filter 3 registers (CAN_F3Rx) the FACT3
bit must be cleared.
0: Filter 3 is not active
1: Filter 3 is active

Bit 3 Reserved, read as 0.

RM0016 Controller area network (beCAN)

 393/430

CAN filter configuration register 3 (CAN_FCR3)

Address offset: See Table 63.

Reset value: 0x00

Bits 2:1 FSC2[1:0] Filter scale configuration
These bits define the scale configuration of Filter 2.

Bit 0 FACT2 Filter active
The software sets this bit to activate Filter 2. To modify the Filter 2 registers (CAN_F2Rx), the FACT2
bit must be cleared.
0: Filter 2 is not active
1: Filter 2 is active

7 6 5 4 3 2 1 0

Reserved
FSC51 FSC50 FACT5

Reserved
FSC41 FSC40 FACT4

rw rw rw rw rw rw

Bit 7 Reserved, read as 0.

Bits 6:5 FSC5[1:0] Filter scale configuration

These bits define the scale configuration of Filter 5.

Bit 4 FACT5 Filter active

The software sets this bit to activate Filter 5. To modify the Filter 5 registers (CAN_F5Rx) the FACT5
bit must be cleared.
0: Filter 5 is not active
1: Filter 5 is active

Bit 3 Reserved, read as 0.

Bits 2:1 FSC4[1:0] Filter scale configuration
These bits define the scale configuration of Filter 4.

Bit 0 FACT4 Filter active
The software sets this bit to activate Filter 4. To modify the Filter 4 registers (CAN_F4Rx), the FACT4
bit must be cleared.
0: Filter 4 is not active
1: Filter 4 is active

Controller area network (beCAN) RM0016

394/430

CAN filter bank i register x (CAN_FiRx) (i = 0 .. 5, x = 1 .. 8)

Address offset: See Figure 145.

Reset value: undefined

7 6 5 4 3 2 1 0

FB(7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 FB[7:0]: Filter bits

● Identifier
Each bit of the register specifies the level of the corresponding bit of the expected identifier.
0: Dominant bit is expected
1: Recessive bit is expected

● Mask
Each bit of the register specifies whether the bit of the associated identifier register must match with
the corresponding bit of the expected identifier or not.
0: Don’t care, the bit is not used for the comparison
1: Must match, the bit of the incoming identifier must have the same level has specified in the
corresponding identifier register of the filter.

Note: Each filter i is composed of 8 registers, CAN_FiR1..8. Depending on the scale and mode
configuration of the filter the function of each register can differ. For the filter mapping, functions
description and mask registers association, refer to Section Figure 23.6.3: Identifier filtering.

A Mask/Identifier register in mask mode has the same bit mapping as in identifier list mode.

Note: To modify these registers, the corresponding FACT bit in the CAN_FCRx register must
be cleared.

RM0016 Controller area network (beCAN)

 395/430

23.12 CAN register map

Figure 144. CAN register mapping

0x00

0x01

CAN MASTER CONTROL REGISTER

CAN MASTER STATUS REGISTER

CAN TRANSMIT STATUS REGISTER

CAN TRANSMIT PRIORITY REGISTER

CAN_MCR

CAN_MSR

CAN_TSR

CAN_TPR

CAN RECEIVE FIFO REGISTER CAN_RFR

CAN INTERRUPT ENABLE REGISTER

CAN DIAGNOSTIC REGISTER

CAN_IER

CAN_DGR

CAN PAGE SELECTION REGISTER CAN_PSR

0x02

0x03

0x04

0x05

0x06

0x07

XXh

PAGED REGISTER 0

PAGED REGISTER 1

PAGED REGISTER 2

PAGED REGISTER 3

PAGED REGISTER 4

PAGED REGISTER 5

PAGED REGISTER 6

PAGED REGISTER 7

PAGED REGISTER 8

PAGED REGISTER 9

PAGED REGISTER 10

PAGED REGISTER 11

PAGED REGISTER 12

PAGED REGISTER 13

PAGED REGISTER 14

PAGED REGISTER 15

Controller area network (beCAN) RM0016

396/430

23.12.1 Page mapping for CAN

Figure 145. CAN page mapping

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

0x0A

0x0B

0x0C

0x0D

0x0E

0x0F

PAGE 0 PAGE 1 PAGE 2 PAGE 3

Tx Mailbox 0 Tx Mailbox 1 Acceptance Filter 0:1 Acceptance Filter 2:3

CAN_MCSR

CAN_MDLCR

CAN_MTSRL

CAN_MTSRH

CAN_MIDR1

CAN_MIDR2

CAN_MIDR3

CAN_MIDR4

CAN_MDAR1

CAN_MDAR2

CAN_MDAR3

CAN_MDAR4

CAN_MDAR5

CAN_MDAR6

CAN_MDAR7

CAN_MDAR8

CAN_MCSR

CAN_MDLCR

CAN_MTSRL

CAN_MTSRH

CAN_MIDR1

CAN_MIDR2

CAN_MIDR3

CAN_MIDR4

CAN_MDAR1

CAN_MDAR5

CAN_MDAR6

CAN_MDAR4

CAN_MDAR5

CAN_MDAR6

CAN_MDAR7

CAN_MDAR8

CAN_F0R1

CAN_F0R2

CAN_F0R3

CAN_F0R4

CAN_F0R5

CAN_F0R6

CAN_F0R7

CAN_F0R8

CAN_F1R1

CAN_F1R2

CAN_F1R3

CAN_F1R4

CAN_F1R5

CAN_F1R6

CAN_F1R7

CAN_F1R8

CAN_F2R1

CAN_F2R2

CAN_F2R3

CAN_F2R4

CAN_F2R5

CAN_F2R6

CAN_F2R7

CAN_F2R8

CAN_F3R1

CAN_F3R2

CAN_F3R3

CAN_F3R4

CAN_F3R5

CAN_F3R6

CAN_F3R7

CAN_F3R8

CAN_MFMIR

CAN_MDLCR

CAN_MTSRL

CAN_MTSRH

PAGE 7

Receive FIFO

CAN_MIDR1

CAN_MIDR2

CAN_MIDR3

CAN_MIDR4

CAN_MDAR1

CAN_MDAR2

CAN_MDAR3

CAN_MDAR4

CAN_MDAR5

CAN_MDAR6

CAN_MDAR7

CAN_MDAR8

PAGE 6

Configuration/Diagnostic

CAN_ESR

CAN_EIER

Reserved

Reserved

CAN_TECR

CAN_RECR

CAN_BTR1

CAN_BTR2

Reserved

Reserved

CAN_FMR1

CAN_FMR2

CAN_FCR1

CAN_FCR2

CAN_FCR3

Reserved

PAGE 4

Acceptance Filter 4:5

CAN_F4R1

CAN_F4R2

CAN_F4R3

CAN_F4R4

CAN_F4R5

CAN_F4R6

CAN_F4R7

CAN_F4R8

CAN_F5R1

CAN_F5R2

CAN_F5R3

CAN_F5R4

CAN_F5R5

CAN_F5R6

CAN_F5R7

CAN_F5R8

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

0x0A

0x0B

0x0C

0x0D

0x0E

0x0F

PAGE 5

Tx Mailbox 2

CAN_MCSR

CAN_MDLCR

CAN_MTSRL

CAN_MTSRH

CAN_MIDR1

CAN_MIDR2

CAN_MIDR3

CAN_MIDR4

CAN_MDAR1

CAN_MDAR2

CAN_MDAR3

CAN_MDAR4

CAN_MDAR5

CAN_MDAR6

CAN_MDAR7

CAN_MDAR8

(if TXM2E=1
in CAN_DGR register)

RM0016 Controller area network (beCAN)

 397/430

Table 61. beCAN control and status page - register map and reset values

Address

Offset
Register name 7 6 5 4 3 2 1 0

0x00
CAN_MCR

Reset Value

TTCM

0

ABOM

0

AWUM

0

NART

0

RFLM

0

TXFP

0

SLEEP

1

INRQ

0

0x01
CAN_MSR

Reset Value 0 0

RX

0

TX

0

WKUI

0

ERRI

0

SLAK

1

INAK

0

0x02
CAN_TSR

Reset Value 0

TXOK2

0

TXOK1

0

TXOK0

0 0

RQCP2

0

RQCP1

0

RQCP0

0

0x03
CAN_TPR

Reset Value

LOW2

0

LOW1

0

LOW0

0

TME2

1

TME1

1

TME0

1

CODE1

0

CODE0

0

0x04
CAN_RFR

Reset Value 0 0

RFOM

0

FOVR

0

FULL

0 0

FMP1

0

FMP0

0

0x05
CAN_IER

Reset Value

WKUIE

0
0 0 0

FOVIE

0

FFIE

0

FMPIE

0

TMEIE

0

0x06
CAN_DGR

Reset Value 0 0 0

TXM2E

0

RX

1

SAMP

1

SILM

0

LBKM

0

0x07
CAN_PSR

Reset Value 0 0 0 0 0

PS2

0

PS1

0

PS0

0

Table 62. beCAN mailbox pages - register map and reset values

Address

Offset
Register name 7 6 5 4 3 2 1 0

0x00
Receive

CAN_MFMIR
Reset Value

FMI7
x

FMI6
x

FMI5
x

FMI4
x

FMI3
x

FMI2
x

FMI1
x

FMI0
x

0x00
Transmit

CAN_MCSR
Reset Value 0 0

TERR
0

ALST
0

TXOK
0

RQCP
0

ABRQ
0

TXRQ
0

0x01
CAN_MDLCR
Reset Value

TGT
x x x x

DLC3
x

DLC2
x

DLC1
x

DLC0
x

0x02
CAN_MIDR1

Reset Value x

IDE

x

RTR

x

STID10 /
EXID28

x

STID9 /
EXID27

x

STID8 /
EXID26

x

STID7 /
EXID25

x

STID6 /
EXID24

x

0x03
CAN_MIDR2

Reset Value

STID5 /
EXID23

x

STID4 /
EXID22

x

STID3 /
EXID21

x

STID2 /
EXID20

x

STID1 /
EXID19

x

STID0 /
EXID18

x

EXID17

x

EXID16

x

0x04
CAN_MIDR3

Reset Value

EXID15

x

EXID14

x

EXID13

x

EXID12

x

EXID11

x

EXID10

x

EXID9

x

EXID8

x

0x05
CAN_MIDR4

Reset Value

EXID7

x

EXID6

x

EXID5

x

EXID4

x

EXID3

x

EXID2

x

EXID1

x

EXID0

x

0x06:0D
CAN_MDAR1:8

Reset Value

MDAR7

x

MDAR6

x

MDAR5

x

MDAR4

x

MDAR3

x

MDAR2

x

MDAR1

x

MDAR0

x

Controller area network (beCAN) RM0016

398/430

0x0E
CAN_MTSRL
Reset Value

TIME7
x

TIME6
x

TIME5
x

TIME4
x

TIME3
x

TIME2
x

TIME1
x

TIME0
x

0x0F
CAN_MTSRH
Reset Value

TIME15
x

TIME14
x

TIME13
x

TIME12
x

TIME11
x

TIME10
x

TIME9
x

TIME8
x

Table 62. beCAN mailbox pages - register map and reset values (continued)

Address

Offset
Register name 7 6 5 4 3 2 1 0

Table 63. beCAN filter configuration page - register map and reset values

Address

Offset
Register name 7 6 5 4 3 2 1 0

0x00
CAN_ESR

Reset Value
0

LEC2

0

LEC1

0

LEC0

0
0

BOFF

0

EPVF

0

EWGF

0

0x01
CAN_EIER

Reset Value

ERRIE

0
0 0

LECIE

0
0

BOFIE

0

EPVIE

0

EWGIE

0

0x02
CAN_TECR
Reset Value

TEC7
0

TEC6
0

TEC5
0

TEC4
0

TEC3
0

TEC2
0

TEC1
0

TEC0
0

0x03
CAN_RECR
Reset Value

REC7
0

REC6
0

REC5
0

REC4
0

REC3
0

REC2
0

REC1
0

REC0
0

0x04
CAN_BTR1
Reset Value

SJW1
0

SJW0
1

BRP5
0

BRP4
0

BRP3
0

BRP2
0

BRP1
0

BRP0
0

0x05
CAN_BTR2
Reset Value

CLKS
0

BS22
0

BS21
1

BS20
0

BS13
0

BS12
0

BS11
1

BS10
1

0x06 Reserved
X X X X X X X X

0x07 Reserved
X X X X X X X X

0x08
CAN_FMR1
Reset Value

FMH3
0

FML3
0

FMH2
0

FML2
0

FMH1
0

FML1
0

FMH0
0

FML0
0

0x09
CAN_FMR2
Reset Value

0 0 0 0
FMH5

0
FML5

0
FMH4

0
FML4

0

0x0A
CAN_FCR1
Reset Value

0
FSC11

0
FSC10

0
FACT1

0
0

FSC01
0

FSC00
0

FACT0
0

0x0B
CAN_FCR2
Reset Value

0
FSC31

0
FSC30

0
FACT3

0
0

FSC21
0

FSC20
0

FACT2
0

0x0C
CAN_FCR3
Reset Value

0
FSC51

0
FSC50

0
FACT5

0
0

FSC41
0

FSC40
0

FACT4
0

RM0016 Analog/digital converter (ADC)

 399/430

24 Analog/digital converter (ADC)

24.1 Introduction
ADC1 and ADC2 are 10-bit successive approximation Analog to Digital Converters. They
have up to 16 multiplexed input channels (the exact number of channels is indicated in the
datasheet pin description). A/D Conversion of the various channels can be performed in
single, and continuous modes.

ADC1 has extended features for scan mode, buffered continuous mode and analog
watchdog. Refer to the datasheet for information about availability ADC1 and ADC2 in
specific product types.

24.2 ADC main features
These features are available in ADC1 and ADC2.

● 10-bit resolution

● Single and continuous conversion modes

● Programmable prescaler: fMASTER divided by 2 to 18

● External trigger option using external interrupt (ADC_ETR) or timer trigger (TRGO)

● Analog zooming (in devices with VREF pins)

● Interrupt generation at End of Conversion

● Data alignment with in-built data coherency

● ADC input range: VSSA ≤ VIN ≤ VDDA

24.3 ADC extended features
These features are available in ADC1.

● Buffered continuous conversion mode(1)

● Scan mode for single and continuous conversion

● Analog watchdog with upper and lower thresholds

● Interrupt generation at analog watchdog event

The block diagrams of ADC1 and ADC2 are shown in Figure 146 and Figure 147

1. Data buffer size is product dependent (10 x 10 bits or 8 x 10 bits). Plese refer to the datasheet.

Analog/digital converter (ADC) RM0016

400/430

Figure 146. ADC1 block diagram

AIN0

AIN1
ANALOG TO DIGITAL

CONVERTER

AIN9

ANALOG
MUX

PrescalerfADC

GPIO
Ports

A
dd

re
ss

/d
at

a
bu

s

DATA REGISTER
(1 x 10-bits)

VDDA
VSSA

/2, /3, /4,/18

fMASTER

ADC_ETR

Internal TRGO trigger from TIM1

End of Conversion
ADC Interrupt to ITC

ANALOG

WATCHDOG

DATA BUFFER

 (10 x 10 bits) or (8 x 10 bits)

Low Threshold (10-bits)

AWEN Enable bits (10 channels)

AWS status bits (10 channels)

High Threshold (10-bits)

Flags Masks

EOC
AWD

EOCIE
AWDIE

Analog Watchdog Event10

SPSEL Channel select

CONT Single/continuous mode

ADON Start conversion (software)

SCAN Scan mode

DBUF Buffered mode

RM0016 Analog/digital converter (ADC)

 401/430

Figure 147. ADC2 block diagram

AIN0

AIN1
ANALOG TO DIGITAL

CONVERTER

AIN15

ANALOG
MUX

PrescalerfADC

EOC Interrupt to CPU

GPIO
Ports

A
dd

re
ss

/d
at

a
bu

s

DATA REGISTER
(1 x 10-bits)

VDDA
VSSA

/2, /3, /4,/18

fMASTER

ADC_ETR

Internal TRGO trigger from TIM1

VREF+

VREF-

80/64-pin
devices
only

CONT Single/Continuous

ADON Power on /Start conversion

CH[2:0] Channel select

3

Analog/digital converter (ADC) RM0016

402/430

24.4 ADC pins

24.5 ADC functional description

24.5.1 ADC on-off control

The ADC can be powered-on by setting the ADON bit in the ADC_CR1 register. When the
ADON bit is set for the first time, it wakes up the ADC from power down mode. To start
conversion, set the ADON bit in the ADC_CR1 register with a second write instruction.

At the end of conversion, the ADC remains powered on and you have to set the ADON bit
only once to start the next conversion.

If the ADC is not used for a long time, it is recommended to switch it to power down mode to
decrease power consumption. This is done by clearing the ADON bit.

When the ADC is powered on, the output stage of the selected channel is disabled,
therefore it is recommended to select the channel first before powering-on the ADC.

24.5.2 ADC clock

The clock supplied to the ADC can by a prescaled fMASTER clock. The prescaling factor of
the clock depends on the SPSEL[2:0] bits in the ADC_CR1 register.

24.5.3 Channel selection

There are up to 16 external input channels. The number of external channels depends on
the MCU package size.

If the channel selection is changed during a conversion, the current conversion is reset and
a new start pulse is sent to the ADC.

Table 64. ADC pins

Name Signal type Remarks

VDDA
Input, Analog
supply

Analog power supply. This input is bonded to VDD in
devices that have no external VDDA pin.

VSSA
Input, Analog
supply ground

Ground for analog power supply. This input is bonded to
VSS in devices that have no external VSSA pin.

VREF-
Input, Analog
Reference negative

The lower/negative reference voltage for the ADC,
ranging from VSSA to (VSSA + 500 mV).
This input is bonded to VSSA in devices that have no
external VREF- pin (packages with 48 pins or less)

VREF+
Input, Analog
Reference positive

The higher/positive reference voltage for the ADC,

ranging from 2.75 V to VDDA. This input is bonded to VDDA
in devices that have no external VREF+ pin (packages with
48 pins or less)

AIN[15:0] Analog input signals
Up to 16 analog input channels, which are converted by
the ADC one at a time.

ADC_ETR Digital input signals External trigger.

RM0016 Analog/digital converter (ADC)

 403/430

24.5.4 Conversion modes

The ADC supports five conversion modes: single mode, continuous mode, buffered
continuous mode, single scan mode, continuous scan mode.

Single mode

In Single conversion mode, the ADC does one conversion on the channel selected by the
CH[3:0] bits in the ADC_CSR register. This mode is started by setting the ADON bit in the
ADC_CR1 register, while the CONT bit is 0.

Once the conversion is complete, the converted data are stored in the ADC_DR register, the
EOC (End of Conversion) flag is set and an interrupt is generated if the EOCIE bit is set.

Continuous and buffered continuous modes

In continuous conversion mode, the ADC starts another conversion as soon as it finishes
one. This mode is started by setting the ADON bit in the ADC_CR1 register, while the CONT
bit is set.

● If buffering is not enabled (DBUF bit = 0 in the ADC_CR3 register), the converted data
is stored in the ADC_DR register and the EOC (End of Conversion) flag is set. An
interrupt is generated if the EOCIE bit is set. Then a new conversion starts
automatically.

● If buffering is enabled (DBUF bit =1) the data buffer is filled with the results of 8 or 10
consecutive conversions performed on a single channel. When the buffer is full, the
EOC (End of Conversion) flag is set and an interrupt is generated if the EOCIE bit is
set. Then a new set of 8 or 10 conversions starts automatically. The OVR flag is set if
one of the data buffer registers is overwritten before it has been read (see
Section 24.5.5).

To stop continuous conversion, reset the CONT bit to stop conversion or reset the ADON bit
to power off the ADC.

Single scan mode

This mode is used to convert a sequence of analog channels from AIN0 to AINn where ‘n’ is
the channel number defined by the CH[3:0] bits in the ADC_CSR register. During the scan
conversion sequence the CH[3:0] bits are updated by hardware and contain the channel
number currently being converted.

Single scan mode is started by setting the ADON bit while the SCAN bit is set and the
CONT bit is cleared.

Note: When using scan mode, it is not possible to use channels AIN0 to AINn in output mode
because the output stage of each channel is disabled when it is selected by the ADC
multiplexer.

A single conversion is performed for each channel starting with AIN0 and the data is stored
in the data buffer registers ADC_DBxR. When the last channel (channel ‘n’) has been
converted, the EOC (End of Conversion) flag is set and an interrupt is generated if the
EOCIE bit is set.

The converted values for each channel can be read from the data buffer registers. The OVR
flag is set if one of the data buffer registers is overwritten before it has been read (see
Section 24.5.5).

Analog/digital converter (ADC) RM0016

404/430

Do not clear the SCAN bit while the conversion sequence is in progress. Single scan mode
can be stopped immediately by clearing the ADON bit.

To start a new SCAN conversion, clear the EOC bit and set the ADON bit in the ADC_CR1
register.

Continuous scan mode

This mode is like single scan mode except that each time the last channel has been
converted, a new scan conversion from channel 0 to channel n starts automatically. The
OVR flag is set if one of the data buffer registers is overwritten before it has been read (see
Section 24.5.5).

Continuous scan mode is started by setting the ADON bit while the SCAN and CONT bits
are set.

Do not clear the SCAN bit while scan conversion is in progress.

Continuous scan mode can be stopped immediately by clearing the ADON bit. Alternatively
if the CONT bit is cleared while conversion is ongoing, conversion stops the next time the
last channel has been converted.

Caution: In scan mode, do not use a bit manipulation instruction (BRES) to clear the EOC flag. This is
because this performs a read-modify-write on the whole ADC_CSR register, reading the
current channel number from the CH[3:0] register and writing it back, which changes the last
channel number for the scan sequence.

The correct way to clear the EOC flag in continuous scan mode is to load a byte in the
ADC_CSR register from a RAM variable, clearing the EOC flag and reloading the last
channel number for the scan sequence

24.5.5 Overrun flag

The OVR error flag is set by hardware in buffered continuous mode, single scan or
continuous scan modes. It indicates that one of the ten data buffer registers was overwritten
by a new converted value before the previous value was read. In this case, it is
recommended to start a new conversion.

Note: Setting the ADON bit automatically clears the OVR flag.

24.5.6 Analog watchdog

The analog watchdog is enabled for single conversion and non-buffered continuous
conversion modes by setting the AWDEN bit in the ADC_CSR register.

The AWD analog watchdog flag is set if the analog voltage converted by the ADC is below a
low threshold or above a high threshold as shown in Figure 148. These thresholds are
programmed in the ADC_HTR and ADC_LTR 10-bit registers. An interrupt can be enabled
by setting the AWDIE bit in the ADC_CSR register.

For Scan mode, the analog watchdog can be enabled on selected channels using the
AWENx bits in the ADC_AWCRH and ADC_AWCRL registers. The watchdog status for
each channel is obtained by reading the AWSx bits in the ADC_AWSRH and ADC_AWSRL
registers. If any of the AWS flags are set, this also sets the AWD flag. Depending on the
AWDIE interrupt enable bit, an interrupt is generated at the end of the SCAN sequence. The
interrupt routine should then clear the AWS flag and the global AWD flag in the ADC_CSR
register.

RM0016 Analog/digital converter (ADC)

 405/430

For Buffered continuous mode, the analog watchdog can be enabled on selected buffers,
and is managed as described for scan mode, with the difference the buffers contain the
results of continuous conversions performed on a single channel.

Refer to Section 24.7 for more details on interrupts.

Note: To optimize analog watchdog interrupt latency in scan or buffered continuous mode, it
recommended to use the last channels in the conversion sequence.

Figure 148. Analog watchdog guarded area

24.5.7 Conversion on external trigger

Conversion can be triggered by an rising edge event on the ADC_ETR pin or a TRGO event
from a timer. Refer to the datasheet for details on the timer trigger, as this is product depend-
ent). If the EXTTRIG control bit is set then either of the external events can be used to trigger
a conversion. The EXTSEL[1:0] bits are used to select the two possible sources of events
that can trigger conversion.

To use external trigger mode:

1. The ADC is in off state (ADON=0) and EOC bit is cleared.

2. Select trigger source (EXTSEL [1:0]).

3. Set external trigger mode EXTTRIG=1 using a BSET instruction in order not to change
other bits in the register.

4. If the trigger source is in high state, this switches on the ADC. For this reason, test if
ADC is switched off (ADON=0), then switch on ADC (ADON=1).

5. Wait for the stabilisation time (tSTAB). If an external trigger occurs before tSTAB elapses,
the result will not be accurate.

6. Conversion starts when an external trigger event occurs.

Note: 1 If timer trigger mode is selected (timer event as trigger source, not external pin) it is
recommended to start the timer only when the ADC is completely set - and stop the timer
before the ADC is switched off.

2 External trigger mode must be disabled (EXTTRIG=0) before executing a HALT instruction.

24.5.8 Analog zooming

Analog zooming is supported in devices with external reference voltage pins (VREF+ and
VREF-). In analog zooming, the reference voltage is chosen to allow increased resolution in a
reduced voltage range. Refer to the datasheet for details on the allowed reference voltage
range.

Analog voltage

High threshold

Low threshold

Guarded area

HTR

LTR

Analog/digital converter (ADC) RM0016

406/430

24.5.9 Timing diagram

As shown in Figure 149, after ADC power on, the ADC needs a stabilization time tSTAB
(equivalent to one conversion time tCONV) before it starts converting accurately. For
subsequent conversions there is no stabilization delay and ADON needs to be set only
once. The ADC conversion time takes 14 clock cycles. After conversion the EOC flag is set
and the 10-bit ADC Data register contains the result of the conversion.

Figure 149. Timing diagram in single mode (CONT =0)

Figure 150. Timing diagram in continuous mode (CONT=1)

fADC

ADON

EOC

ADC Conversion

Conversion Time (tCONV)tSTAB

ADC

Software resets EOC bit

Software sets ADON bit 1st time
Software sets ADON bit 2nd time

2nd Conversion

fADC

ADON

EOC

1st Conversion

tSTAB

ADC

Software sets ADON bit 1st time
Software sets ADON bit 2nd time Software resets ADON or CONT bit

nth ADC Conversion

 tCONV tCONV

Software resets EOC bit

RM0016 Analog/digital converter (ADC)

 407/430

24.6 ADC low power modes

The ADC does not have the capability to wake the device from Active Halt or Halt Mode.

24.7 ADC interrupts
The ADC interrupt control bits are summarized in Table 66, Table 67 and Table 68

Table 65. Low power modes

Mode Description

WAIT No effect on ADC

HALT/
Fast Active HALT/
Slow Active HALT

In devices with extended features, the ADC is automatically switched off
before entering HALT/Active HALT mode. After waking up from HALT/Fast
Active HALT or Slow Active HALT mode, the ADON bit must be set by
software to power on the ADC, and a delay of 7 µs is needed before starting
a new conversion.

Table 66. ADC Interrupts in single and non-buffered continuous mode (ADC1 and ADC2)

Enable bits Status flags
Exit
from
Wait

Exit
from
Halt

A
W

D
E

N
x

A
W

D
IE

E
O

C
IE

AWSx AWDG EOC

Don’t
care

0 0

Don’t care

Flag is set if the channel
crosses the

programmed thresholds.

Flag is set at the end of
each conversion.

No No

0 1
Flag is set if the channel

crosses the
programmed thresholds.

Flag is set at the end of
each conversion and an
interrupt is generated.

Yes No

1 0

Flag is set if the channel
crosses the
programmed thresholds.
An interrupt is
generated but
continuous conversion
is not stopped.

Flag is set at the end of
each conversion.

Yes No

1 1

Flag is set if the channel
crosses the
programmed thresholds.
An interrupt is
generated but
continuous conversion
is not stopped.

Flag is set at the end of
each conversion and an
interrupt is generated.

Yes no

Analog/digital converter (ADC) RM0016

408/430

Note: BSIZE = Data buffer size (8 or 10 depending on the product).

Table 67. ADC interrupts in buffered continuous mode (ADC1)

Enable bits Status flags
Exit
from
Wait

Exit
from
Halt

A
W

E
N

x

A
W

D
IE

E
O

C
IE

AWSx AWD EOC

0
Don’t
care

0 0

0

The flag is set at the end
of BSIZE conversions

No No

0
Don’t
care

1 0

The flag is set at the end
of BSIZE conversions

and an interrupt is
generated.

Yes No

1 0 0

Flag is set if conversion
on buffer ”x” crosses the
thresholds programmed

in the ADC_HTR and
ADC_LTR registers

The flag is set at the end
of BSIZE conversions if

at least one of the
AWSx bits is set

The flag is set at the end
of BSIZE conversions

(Data Buffer Full)

No No

1 1 0

The flag is set and an
interrupt is generated at

the end of BSIZE
conversions if at least

one of the AWSx bits is
set. Continuous
conversion is not

stopped.

Yes No

1 0 1

The flag is set at the end
of BSIZE conversions if

at least one of the
AWSx bits is set

The flag is set at the end
of BSIZE conversions

and an interrupt is
generated.

Yes No

1 1 1

The flag is set
immediately as soon as
one of the AWSx bits is

set. In interrupt is
generated and

continuous conversion
is stopped.

The flag is set at the end
of BSIZE conversions

and an interrupt is
generated.

 Yes No

RM0016 Analog/digital converter (ADC)

 409/430

Table 68. ADC interrupts in scan mode (ADC1)

Control bits Status bits
Exit
from
Wait

Exit
from
Halt

A
W

E
N

x

A
W

D
IE

E
O

C
IE

AWSx AWD EOC

0
Don’t
care

0 0 0
The flag is set at the end

of the scan sequence
 No No

0
Don’t
care

1 0 0

The flag is set at the end
of the scan sequence

and an interrupt is
generated.

 Yes No

1 0 0

Flag is set if conversion
on channel ”x” crosses

the thresholds
programmed in the

ADC_HTR and
ADC_LTR registers

The flag is set at the end
of the scan sequence if

at least one of the
AWSx bits is set

The flag is set at the end
of the scan sequence

 No No

1 1 0

The flag is set and an
interrupt is generated at

the end of the SCAN
sequence if at least one
of the AWSx bits is set.
SCAN conversion is not

stopped.

The flag is set to 1 at the
end of the scan

sequence
 Yes No

1 0 1

The flag is set at the end
of the scan sequence if

at least one of the
AWSx bits is set

The flag is set to 1 at the
end of the scan

sequence and an
interrupt is generated.

 Yes No

1 1 1

The flag is set
immediately as soon as
one of the AWSx bits is

set. In interrupt is
generated and scan

conversion is stopped.

The flag is set at the end
of the scan sequence

and an interrupt is
generated.

 Yes No

Analog/digital converter (ADC) RM0016

410/430

24.8 Data alignment
ALIGN bit in the ADC_CR2 register selects the alignment of data stored after conversion.
Data can be aligned in the following ways.

Right Alignment: 8 Least Significant bits are written in the ADC_DL register, then the
remaining Most Significant bits are written in the ADC_DH register. The Least Significant
Byte must be read first followed by the Most Significant Byte.

Figure 151. Right alignment of data

Left Alignment: 8 Most Significant bits are written in the ADC_DH register, then the
remaining Least Significant bits are written in the ADC_DL register. The Most Significant
Byte must be read first followed by the Least Significant Byte.

Figure 152. Left alignment of data

24.9 Reading the conversion result
When reading the ADC conversion result, its important to know that the ADC data registers
must be read in two consecutive instructions and in a specific order depending on the
selected data alignment.

For data coherency, an internal locking mechanism is implemented, and one data register
register is not updated with the conversion result until the other one is read. For this reason,
reading registers in the wrong order returns an incorrect result.

The register reading order depends on the data alignment setting (see Section 24.8)

For correct results:

● In left alignment mode, read the MSB register (ADC_DRH) first, then the LSB register
(ADC_DRL)

● In right alignment mode, read the LSB register (ADC_DRL) first, then the MSB register
(ADC_DRH). In this case you can use the LDW instruction that has the same reading
order.

D7

ADC_DRH

ADC_DRL

D8 D9

D6 D5 D4 D3 D2 D1 D0

D9

ADC_DRL

ADC_DRH

D0 D1

D8 D7 D6 D5 D4 D3 D2

RM0016 Analog/digital converter (ADC)

 411/430

24.10 Schmitt trigger disable registers
The ADC_TDRH and ADC_TDRL registers are used to disable the Schmitt triggers available
in the AIN analog input pins. Disabling the Schmitt trigger lowers the power consumption in
the I/Os.

24.11 ADC registers

24.11.1 ADC data buffer register x high (ADC_DBxRH) (x=0..7 or 0..9)

Address offset: 0x00 + 2 * channel number

Reset value: 0x00

Note: Data buffer registers are not available for ADC2. The data buffer size is device dependent
and is specifed in the corresponding datasheet.

7 6 5 4 3 2 1 0

DBH[7:0]

r r r r r r r r

Bits 7:0 DBH[7:0] Data bits high
These bits are set/reset by hardware and are read only. When the ADC is in
buffered continuous or scan mode, they contain the high part of the converted
data. The data is in right-aligned or left-aligned format depending on the ALIGN
bit.

Left Data Alignment
These bits contain the 8 MSB bits of the converted data.The MSB must be read
first before reading the LSB (see Section 24.9: Reading the conversion result
and Figure 152.)

Right Data Alignment
These bits contain the (ADC data width - 8) MSB bits of the converted data.
Remaining bits are tied to zero.
See Figure 151.

Analog/digital converter (ADC) RM0016

412/430

24.11.2 ADC data buffer register x low (ADC_DBxRL) (x=or 0..7 or 0..9)

Address offset: 0x01 + 2 * channel number

Reset value: 0x00

Note: Data buffer registers are not available for ADC2. The data buffer size is device dependent
and is specifed in the corresponding datasheet.

7 6 5 4 3 2 1 0

DL[7:0]

r r r r r r r r

Bits 7:0 DL[7:0] Data bits low
These bits are set/reset by hardware and are read only. When the ADC is in
buffered continuous or scan mode, they contain the low part of the A/D
conversion result, in right-aligned or left-aligned format depending on the
ALIGN bit.

● Left Data Alignment
These bits contain the (ADC data width - 8) LSB bits of the converted data,
remaining bits of the register are tied to zero.

See Figure 152.

● Right Data Alignment
These bits contain the 8 LSB bits of the converted data. The LSB must be read
first before reading the MSB (see Section 24.9: Reading the conversion result
and Figure 151.)

RM0016 Analog/digital converter (ADC)

 413/430

24.11.3 ADC control/status register (ADC_CSR)

Address offset: 0x00

Reset value: 0x00

7 6 5 4 3 2 1 0

EOC AWD EOCIE AWDIE CH[3:0]

rw rc_w0 rw rw rw rw rw rw

Bit 7 EOC: End of conversion

This bit is set by hardware at the end of conversion. It is cleared by software by
writing ‘0’.
0: Conversion is not complete
1: Conversion complete

Bit 6 AWD: Analog Watchdog flag
0: No analog watchdog event
1: An analog watchdog event occurred. In buffered continuous or scan mode
you can read the ADC_AWSR register to determine the data buffer register
related to the event. An interrupt request is generated if AWDIE=1.

Note: This bit is not available for ADC2

Bit 5 EOCIE: Interrupt enable for EOC

This bit is set and cleared by software. It enables the interrupt for End of
Conversion.
0: EOC interrupt disabled
1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set.

Bit 4 AWDIE: Analog watchdog interrupt enable
0: AWD interrupt disabled.
1: AWD interrupt enabled

Note: This bit is not available for ADC2

Bits 3:0 CH[3:0]: Channel selection bits
These bits are set and cleared by software. They select the input channel to be
converted.
0000: Channel AIN0
0001: Channel AIN1
....
1111: Channel AIN15

Analog/digital converter (ADC) RM0016

414/430

24.11.4 ADC configuration register 1 (ADC_CR1)

Address offset: 0x01

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
SPSEL[2:0]

Reserved
CONT ADON

rw rw rw rw rw

Bit 7 Reserved, always read as 0.

Bits 6:4 SPSEL[2:0]: Prescaler selection
These control bits are written by software to select the prescaler division factor.
000: fADC = fMASTER/2
001: fADC = fMASTER/3
010: fADC = fMASTER/4
011: fADC = fMASTER/6
100: fADC = fMASTER/8
101: fADC = fMASTER/10
110: fADC = fMASTER/12
111: fADC = fMASTER/18
See Section 24.5.2 on page 402.

Note: It is recommended to change the SPSEL bits when ADC is in power down.
This is because internally there can be a glitch in the clock during this
change. Otherwise the user is required to ignore the 1st converted result if
the change is done when ADC is not in power down.

Bits 3:2 Reserved, always read as 0.

Bit 1 CONT: Continuous conversion

This bit is set and cleared by software. If set, conversion takes place
continuously till this bit is reset by software.
0: Single conversion mode
1: Continuous conversion mode

Bit 0 ADON: A/D Converter on/off

This bit is set and reset by software. This bit must be written to wake up the
ADC from power down mode and to trigger the start of conversion. If this bit
holds a value of 0 and a 1 is written to it then it wakes the ADC from power
down mode. Conversion starts when this bit holds a value of 1 and a 1 is written
to it. As soon as the ADC is powered on, the output stage of the selected
channel is disabled.
0: Disable ADC conversion/calibration and go to power down mode.
1: Enable ADC and to start conversion

Note: If any other bit in this register apart from ADON is changed at the same
time, then conversion is not triggered. This is to prevent triggering an
erroneous conversion.

RM0016 Analog/digital converter (ADC)

 415/430

24.11.5 ADC configuration register 2 (ADC_CR2)

Address offset: 0x02

Reset value: 0x00

7 6 5 4 3 2 1 0

Reserved
EXTTRIG EXTSEL[1:0] ALIGN

Reserved
SCAN

Reserved

rw rw rw rw rw

Bit 7 Reserved, must be kept cleared.

Bit 6 EXTTRIG: External trigger enable
This bit is set and cleared by software. It is used to enable an external trigger to
trigger a conversion.
0: Conversion on external event disabled
1: Conversion on external event enabled

Note: To avoid a spurious trigger event, use the BSET instruction to set
EXTTRIG without changing other bits in the register.

Bits 5:4 EXTSEL[1:0]: External event selection

The two bits are written by software. They select one of four types of event used
to trigger the start of ADC conversion.
00: Internal TIM1 TRGO event
01: External interrupt on ADC_ETR pin
10: Reserved
11: Reserved

Bit 3 ALIGN: Data alignment

This bit is set and cleared by software.
0: Left alignment (8 MSB bits are written in the ADC_DRH register then the
remaining LSB bits in the ADC_DRL register). Reading order should be MSB
first and then LSB.
1: Right alignment (8 LSB bits are written in the ADC_DRL register then the
remaining MSB bits in the ADC_DH register). Reading order should be LSB first
and then MSB.

Bit 2 Reserved, must be kept cleared.

Bit 1 SCAN: Scan mode enable

This bit is set and cleared by software.
0: Scan mode disabled
1: Scan mode enabled

Note: This bit is not available for ADC2

Bit 0 Reserved, must be kept cleared.

Analog/digital converter (ADC) RM0016

416/430

24.11.6 ADC configuration register 3 (ADC_CR3)

Address offset: 0x03

Reset value: 0x00

Note: This register is not available for ADC2.

7 6 5 4 3 2 1 0

DBUF OVR
Reserved

rw rc_w0

Bit 7 DBUF: Data buffer enable

This bit is set and cleared by software. It is used together with the CONT bit
enable buffered continuous mode (DBUF=1, CONT=1). When DBUF is set,
converted values are stored in the ADC_DBxRH and ADC_DBxRL registers
instead of the ADC_DRH and ADC_DRL registers.
0: Data buffer disabled
1: Data buffer enabled

Bit 6 OVR: Overrun flag

This bit is set by hardware and cleared by software.
0: No overrun
1: An overrun was detected in the data buffer registers.
Refer to Section 24.5.5 on page 404 for more details.

Bits 5:0 Reserved, must be kept cleared.

RM0016 Analog/digital converter (ADC)

 417/430

24.11.7 ADC data register high (ADC_DRH)

Address offset: 0x04

Reset value: undefined

24.11.8 ADC data register low (ADC_DRL)

Address offset: 0x05

Reset value: undefined

7 6 5 4 3 2 1 0

DH[7:0]

r r r r r r r r

Bits 7:0 DH[7:0] Data bits high

These bits are set/reset by hardware and are read only. When the ADC is in
single or non-buffered continuous mode, they contain the high part of the
converted data, in right-aligned or left-aligned format depending on the ALIGN
bit.

● Left Data Alignment
These bits contain the 8 MSB bits of the converted data. The MSB must be read
first before reading the LSB (see Section 24.9: Reading the conversion result
and Figure 152.)

● Right Data Alignment
These bits contain the (ADC data width - 8) MSB bits of the converted data.
Remaining bits are tied to zero.

See Figure 151.

7 6 5 4 3 2 1 0

DL[7:0]

r r r r r r r r

Bits 7:0 DL[7:0] Data bits low

These bits are set/reset by hardware and are read only. When the ADC is in
single or non-buffered continuous mode, they contain the low part of the A/D
conversion result, in right-aligned or left-aligned format depending on the
ALIGN bit.

● Left Data Alignment
These bits contain the (ADC data width - 8) LSB bits of the converted data,
remaining bits of the register are tied to zero.
See Figure 152.

● Right Data Alignment
These bits contain the 8 LSB bits of the converted data. The LSB must be read
first before reading the MSB (see Section 24.9: Reading the conversion result
and Figure 151.)

Analog/digital converter (ADC) RM0016

418/430

24.11.9 ADC Schmitt trigger disable register high (ADC_TDRH)

Address offset: 0x06

Reset value: 0x00

24.11.10 ADC Schmitt trigger disable register low (ADC_TDRL)

Address offset: 0x07

Reset value: 0x00

7 6 5 4 3 2 1 0

TD[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0 TD[15:8] Schmitt trigger disable high

These bits are set and cleared by software. When a TDx bit is set, it disables
the I/O port input Schmitt trigger of the corresponding ADC input channel x
even if this channel is not being converted. This is needed to lower the static
power consumption of the I/O port.
0: Schmitt trigger enabled
1: Schmitt trigger disabled

7 6 5 4 3 2 1 0

TD[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 TD[7:0] Schmitt trigger disable low

These bits are set and cleared by software. When a TDx bit is set, it disables
the I/O port input Schmitt trigger of the corresponding ADC input channel x
even if this channel is not being converted. This is needed to lower the static
power consumption of the I/O port.
0: Schmitt trigger enabled
1: Schmitt trigger disabled

RM0016 Analog/digital converter (ADC)

 419/430

24.11.11 ADC high threshold register high (ADC_HTRH)

Address offset: 0x08

Reset value: 0x03

Note: This register is not available for ADC2.

24.11.12 ADC high threshold register low (ADC_HTRL)

Address offset: 0x09

Reset value: 0xFF

Note: This register is not available for ADC2.

24.11.13 ADC low threshold register high (ADC_LTRH)

Address offset: 0x0A

Reset value: 0x00

Note: This register is not available for ADC2.

7 6 5 4 3 2 1 0

Reserved
HT[9:8]

rw rw

Bits 7:2 Reserved, must be kept cleared.

Bits 1:0 HT[9:8] Analog Watchdog High Voltage threshold MSB
These bits are set and cleared by software. They define the MSB of the high
threshold (VREFH) for the Analog Watchdog.

7 6 5 4 3 2 1 0

HT[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 HT[7:0] Analog watchdog high voltage threshold LSB

These bits are set and cleared by software. They define the LSB of the high
threshold (VREFH) for the Analog Watchdog.

7 6 5 4 3 2 1 0

Reserved
LT[9:8]

rw rw

Bits 7:2 Reserved, must be kept cleared.

Analog/digital converter (ADC) RM0016

420/430

24.11.14 ADC low threshold register low (ADC_LTRL)

Address offset: 0x0B

Reset value: 0x00

Note: This register is not available for ADC2.

24.11.15 ADC watchdog status register high (ADC_AWSRH)

Address offset: 0x0C

Reset value: 0x00

Note: This register is not available for ADC2.

Bits 1:0 LT[9:8] Analog watchdog low voltage threshold MSB
These bits are set and cleared by software. They define the MSB of the low
Threshold (VREFL) for the Analog Watchdog.

7 6 5 4 3 2 1 0

LT[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 LT[7:0] Analog watchdog low voltage threshold LSB

These bits are set and cleared by software. They define the LSB of the low
threshold (VREFL) for the Analog Watchdog.

7 6 5 4 3 2 1 0

Reserved
AWS[9:8]

rc_w0 rc_w0

Bits 7:2 Reserved, must be kept cleared.

Bits 1:0 AWS[9:8] Analog watchdog status flags 9:8

These bits are set by hardware and cleared by software.

– In buffered continuous mode (DBUF=1, CONT=1) AWS flags behave
as described in Table 67.

– In scan mode (SCAN=1) AWS flags behave as described in Table 68.
0: No analog watchdog event in data buffer register x.
1: Analog watchdog event occurred in data buffer register x.

RM0016 Analog/digital converter (ADC)

 421/430

24.11.16 ADC watchdog status register low (ADC_AWSRL)

Address offset: 0x0D

Reset value: 0x00

Note: This register is not available for ADC2.

24.11.17 ADC watchdog control register high (ADC_AWCRH)

Address offset: 0x0E

Reset value: 0x00

Note: This register is not available for ADC2.

7 6 5 4 3 2 1 0

AWS[7:0]

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 7:0 AWS[7:0] Analog watchdog status flags 7:0

These bits are set by hardware and cleared by software.

– In buffered continuous mode (DBUF=1, CONT=1) AWS flags behave
as described in Table 67.

– In scan mode (SCAN=1) AWS flags behave as described in Table 68.
0: No analog watchdog event in data buffer register x.
1: Analog watchdog event occurred in data buffer register x.

7 6 5 4 3 2 1 0

Reserved
AWEN[9:8]

rw rw

Bits 7:2 Reserved, must be kept cleared.

Bits 1:0 AWEN[9:8] Analog watchdog enable bits 9:8
These bits are set and cleared by software.
In buffered continuous mode (DBUF=1, CONT=1) and in scan mode (SCAN=1)
the AWENx bits enable the analog watchdog function for each of the 10 data
buffer registers.
0: Analog watchdog disabled in data buffer register x.
1: Analog watchdog enabled in data buffer register x.

Analog/digital converter (ADC) RM0016

422/430

24.11.18 ADC watchdog control register low (ADC_AWCRL)

Address offset: 0x0F

Reset value: 0x00

Note: This register is not available for ADC2.

7 6 5 4 3 2 1 0

AWEN[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0 AWEN[7:0] Analog watchdog enable bits 7:0

These bits are set and cleared by software.
In buffered continuous mode (DBUF=1, CONT=1) and in scan mode (SCAN=1)
the AWENx bits enable the analog watchdog function for each of the 10 data
buffer registers.
0: Analog watchdog disabled in data buffer register x.
1: Analog watchdog enabled in data buffer register x.

RM0016 Analog/digital converter (ADC)

 423/430

24.12 ADC register map and reset values

Table 69. ADC1 register map and reset values

Address
offset

Register name 7 6 5 4 3 2 1 0

0x00
ADC1 _DB0RH

Reset value

-

0

-

0

-

0

-

0

-

0

-

0

DATA9

0

DATA8

0

0x01
ADC1_DB0RL

Reset value

DATA7

0

DATA6

0

DATA5

0

DATA4

0

DATA3

0

DATA2

0

DATA1

0

DATA0

0

.

.

.

.

.

.

0x0E
ADC1 _DB7RH

Reset value

-

0

-

0

-

0

-

0

-

0

-

0

DATA9

0

DATA8

0

0x0Fh
ADC1_DB7RL

Reset value

DATA7

0

DATA6

0

DATA5

0

DATA4

0

DATA3

0

DATA2

0

DATA1

0

DATA0

0

0x10
ADC1 _DB8RH(1)

Reset value

-

0

-

0

-

0

-

0

-

0

-

0

DATA9

0

DATA8

0

0x11
ADC1_DB8RL(1)

Reset value

DATA7

0

DATA6

0

DATA5

0

DATA4

0

DATA3

0

DATA2

0

DATA1

0

DATA0

0

0x12
ADC1 _DB9RH(1)

Reset value

-

0

-

0

-

0

-

0

-

0

-

0

DATA9

0

DATA8

0

0x13h
ADC1_DB9RL(1)

Reset value

DATA7

0

DATA6

0

DATA5

0

DATA4

0

DATA3

0

DATA2

0

DATA1

0

DATA0

0

0x00
ADC1 _CSR
Reset value

EOC
0

AWD
0

EOCIE
0

AWDIE
0

CH3
0

CH2
0

CH1
0

CH0
0

0x01
ADC1_CR1
Reset value

-
0

SPSEL2
0

SPSEL1
0

SPSEL0
0

-
0

-
0

CONT
0

ADON
0

0x02
ADC1_CR2
Reset value

-
0

EXTTRIG
0

EXTSEL1
0

EXTSEL0
0

ALIGN
0

-
0

SCAN
0

-
0

0x03
ADC1_CR3
Reset value

DBUF
0

OVR
0

-
0

-
0

-
0

-
0

-
0

-
0

0x04
ADC1_DRH
Reset value

-
x

-
x

-
x

-
x

-
x

-
x

DATA9
x

DATA8
x

0x05
ADC1_DRL
Reset value

DATA7
x

DATA6
x

DATA5
x

DATA4
x

DATA3
x

DATA2
x

DATA1
x

DATA0
x

0x06
ADC1_TDRH(2)

Reset value
TD15

0
TD14

0
TD13

0
TD12

0
TD11

0
TD10

0
TD9

0
TD8

0

0x07
ADC1_TDRL
Reset value

TD7
0

TD6
0

TD5
0

TD4
0

TD3
0

TD2
0

TD1
0

TD0
0

Analog/digital converter (ADC) RM0016

424/430

0x08
ADC1 _HTRH
Reset value

-
0

-
0

-
0

-
0

-
0

-
0

HT9
1

HT8
1

0x09
ADC1_HTRL
Reset value

HT7
1

HT6
1

HT5
1

HT4
1

HT3
1

HT2
1

HT1
1

HT0
1

0x0A
ADC1 _LTRH
Reset value

-
0

-
0

-
0

-
0

-
0

-
0

LT9
0

LT8
0

0x0B
ADC1_LTRL
Reset value

LT7
0

LT6
0

LT5
0

LT4
0

LT3
0

LT2
0

LT1
0

LT0
0

0x0C
ADC1 _AWSRH(2)

Reset value
-
0

-
0

-
0

-
0

-
0

-
0

AWS9
0

AWS8
0

0x0D
ADC1_AWSRL

Reset value

AWS7

0

AWS6

0

AWS5

0

AWS4

0

AWS3

0

AWS2

0

AWS1

0

AWS0

0

0x0E
ADC1 _AWCRH(2)

Reset value

-

0

-

0

-

0

-

0

-

0

-

0

AWEN9

0

AWEN8

0

0x0F
ADC1_AWCRL

Reset value

AWEN7

0

AWEN6

0

AWEN5

0

AWEN4

0

AWEN3

0

AWEN2

0

AWEN1

0

AWEN0

0

1. This register is reserved in devices with buffer size 8 x 10 bits.

2. This register is reserved in devices without ADC channels 8 and 9.

Table 69. ADC1 register map and reset values (continued)

Address
offset

Register name 7 6 5 4 3 2 1 0

Table 70. ADC2 register map and reset values

Address
offset

Register name 7 6 5 4 3 2 1 0

0x00
ADC2 _CSR

Reset value

EOC

0

AWD

0

EOCIE

0

AWDIE

0

CH3

0

CH2

0

CH1

0

CH0

0

0x01
ADC2_CR1

Reset value

-

0

SPSEL2

0

SPSEL1

0

SPSEL0

0

-

0

-

0

CONT

0

ADON

0

0x02
ADC2_CR2

Reset value
-
0

EXTTRIG

0

EXTSEL1

0

EXTSEL0

0

ALIGN

0

-

0

-

0

-

0

0x03
ADC2_CR3

Reset value

DBUF

0

OVR

0
-
0

-
0

-
0

-
0

-
0

-
0

0x04
ADC2_DRH

Reset value

-

0

-

0

-

0

-

0

-

0

-

0

DATA9

0

DATA8

0

0x05
ADC2_DRL

Reset value

DATA7

0

DATA6

0

DATA5

0

DATA4

0

DATA3

0

DATA2

0

DATA1

0

DATA0

0

0x06
ADC2_TDRH

Reset value

TD15

0

TD14

0

TD13

0

TD12

0

TD11

0

TD10

0

TD9

0

TD8

0

0x07
ADC2_TDRL

Reset value

TD7

0

TD6

0

TD5

0

TD4

0

TD3

0

TD2

0

TD1

0

TD0

0

RM0016 Revision history

 425/430

25 Revision history

Table 71. Document revision history

Date Revision Changes

27-May-2008 1 Initial release.

13-Aug-2008 2

Updated Section 2: Memory and register map on page 27:
introduced high, medium and low density categories; modified end
address for option bytes; updated RAM, data EEPROM and Flash
program memory densities.
Updated Figure 11: Reset circuit on page 55

Update min reset pulse from 300 to 500 ns in Section 7.1: Reset
circuit description on page 55

Updated Table 5: Memory access versus programming method on
page 44.

Reorganised Section 16 on page 133 to Section 19 on page 245

Renamed USART and LINUART to UART1, UART2 and UART3
combined in new Section 22 on page 299.

Updated CAN filter and external clock description in Section 23 on
page 351.

Renamed ADC to ADC1 and ADC2 in Section 24 on page 399

Updated Continuous scan mode on page 404
Updated Conversion on external trigger on page 405

Revision history RM0016

426/430

22-Sep-2008 3

Updated Section 4: Flash program memory and data EEPROM
(FLASH).
Changed name of SWUAH bit to REGAH in Section 8.9.1: Internal
clock register (CLK_ICKR) on page 71.
Modified Section 11.8.2: Slope control on page 109.

Added description of TIM5, TIM6 in Section 16: Timer overview,
Section 18: 16-bit general purpose timers (TIM2, TIM3, TIM5) and
Section 19: 8-bit basic timer (TIM4, TIM6).
Updated Section 24.5.6: Analog watchdog.

15-Jan-2009 4

Removed memory and register map (information transferred to
datasheets)

Register absolute addresses replaced by offsets. (refer now to
register map in datasheet for the base addresses).

Added Note 3 related to TLI interrupt in Section 10.2.1 on page 91.
Added TLI in Section 10.5: Concurrent and nested interrupt
management.
Updated Flash program density to 32 - 128 Kbytes for high density
STM8S devices in Section 4: Flash program memory and data
EEPROM (FLASH).

Updated size of STM8S option byte area in Section 4.4: Memory
organization and Figure 3, Figure 4, and Figure 5.

Updated maximum value of UBC in Figure 8.Added information on
DATA area programming on devices with and without RWW
capability in Section 4.7.1: Byte programming and Section 4.7.3:
Block programming.
Added HVOFF in: Fast block programming, : Fast block
programming, and Section 4.9.8: Flash Status register
(FLASH_IAPSR). Updated bitfield access types in Section 4.9.8:
Flash Status register (FLASH_IAPSR) on page 51.

Table 5: Memory access versus programming method: removed NMI
and TRAP vectors, modified access for option bytes in ICP/SWIM
mode/ROP enabled, and UBC ROP disabled.
Updated Table 26: Watchdog timeout period (with 64 kHz counter
clock) on page 124
Updated Table 26: Approximate timeout duration on page 129

Table 27: Window watchdog timing diagram on page 130

Updated Note 7 on page 291

Table 71. Document revision history (continued)

Date Revision Changes

Index RM0016

427/430

Index

A
ADC_AWCRH .421
ADC_AWCRL .422
ADC_AWSRH .420
ADC_AWSRL .421
ADC_CR1 .414
ADC_CR2 .415
ADC_CR3 .416
ADC_CSR .413
ADC_DBxRH .411
ADC_DBxRL .412
ADC_DRH .417
ADC_DRL .417
ADC_HTRH .419
ADC_HTRL .419
ADC_LTRH .419
ADC_LTRL .420
ADC_TDRH .418
ADC_TDRL .418
AWU_APR .118
AWU_CSR1 .117
AWU_TBR .119

B
BEEP_CSR .122

C
CAN_BTR1 .384
CAN_BTR2 .385
CAN_DGR .380
CAN_ESR .382
CAN_FCR1 .392
CAN_FCR2 .392
CAN_FCR3 .393
CAN_FiRx .394
CAN_FMR1 .390
CAN_FMR2 .391
CAN_IER .379, 383
CAN_MCR .375
CAN_MCSR .386
CAN_MDAR .389
CAN_MDLCR .389
CAN_MFMIR .387
CAN_MIDR1 .387
CAN_MIDR2 .388
CAN_MIDR3 .388

CAN_MIDR4 . 388
CAN_MSR . 376
CAN_MTSRH . 390
CAN_MTSRL . 389
CAN_PSR . 381
CAN_RECR . 384
CAN_RFR . 379
CAN_TECR . 383
CAN_TPR . 378
CAN_TSR . 377
CFG_GCR . 27
CLK_CANCCR . 81
CLK_CCOR . 80
CLK_CKDIVR . 76
CLK_CMSR . 74
CLK_CSSR . 79
CLK_ECKR . 73
CLK_HSITRIMR . 82-83
CLK_ICKR . 71
CLK_PCKENR1 . 77
CLK_PCKENR2 . 78
CLK_SWCR . 75
CLK_SWR . 74

E
EXTI_CR1 . 102
EXTI_CR2 . 103

F
FLASH_CR1 . 45-46, 51
FLASH_NCR2 . 47

I
I2C_CCRH . 296
I2C_CCRL . 295
I2C_CR1 . 286
I2C_CR2 . 287
I2C_DR . 289
I2C_FREQR . 288
I2C_ITR . 294
I2C_OARH . 289
I2C_OARL . 288
I2C_SR1 . 290
I2C_SR2 . 292
I2C_SR3 . 293
I2C_TRISER . 297

RM0016 Index

 428/430

ITC_SPRx .101
IWDG_KR .125
IWDG_PR .125
IWDG_RLR .126

P
Px_CR1 .111
Px_CR2 .112
Px_DDR .111
Px_IDR .110
Px_ODR .110

R
RST_SR .58

S
SPI_CR1 .266
SPI_CR2 .267
SPI_CRCPR .270
SPI_DR .270
SPI_ICR .268
SPI_RXCRCR .270
SPI_SR .269
SPI_TXCRCR .271

T
TIM1_ARRH .207
TIM1_ARRL .207
TIM1_BKR .212
TIM1_CCER1 .202
TIM1_CCER2 .205
TIM1_CCMR1 .195
TIM1_CCMR2 .198
TIM1_CCMR3 .199
TIM1_CCMR4 .201
TIM1_CCR1H .208
TIM1_CCR1L .208
TIM1_CCR2H .209
TIM1_CCR2L .209
TIM1_CCR3H .210
TIM1_CCR3L .210
TIM1_CCR4H .211
TIM1_CCR4L .211
TIM1_CNTRH .205
TIM1_CNTRL .206
TIM1_CR1 .184
TIM1_CR2 .185
TIM1_DTR .214
TIM1_EGR .193

TIM1_ETR . 188
TIM1_IER . 190
TIM1_OISR . 215
TIM1_PSCRH . 206
TIM1_PSCRL . 206
TIM1_RCR . 207
TIM1_SMCR . 187
TIM1_SR1 . 191
TIM1_SR2 . 192
TIM4_ARR . 252
TIM4_CNTR . 251
TIM4_CR1 . 247
TIM4_CR2 . 248
TIM4_EGR . 251
TIM4_IER . 250
TIM4_PSCR . 251
TIM4_SMCR . 249
TIM4_SR1 . 250
TIMx_ARRH . 237
TIMx_ARRL . 237
TIMx_CCER1 . 235
TIMx_CCER2 . 236
TIMx_CCMR1 . 230
TIMx_CCMR2 . 232
TIMx_CCMR3 . 234
TIMx_CCR1H . 238
TIMx_CCR1L . 238
TIMx_CCR2H . 239
TIMx_CCR2L . 239
TIMx_CCR3H . 240
TIMx_CCR3L . 240
TIMx_CNTRH . 236
TIMx_CNTRL . 236
TIMx_CR1 . 224
TIMx_CR2 . 225
TIMx_EGR . 229
TIMx_IER . 227
TIMx_PSCR . 237
TIMx_SMCR . 226
TIMx_SR1 . 227
TIMx_SR2 . 228

U
UART_BRR1 . 339
UART_BRR2 . 340
UART_CR1 . 340
UART_CR2 . 341
UART_CR3 . 343
UART_CR4 . 344
UART_CR5 . 345
UART_CR6 . 346

RM0016 Index

 429/430

UART_DR .339
UART_GTR .347
UART_SR .337

W
WWDG_CR .131
WWDG_WR .132

RM0016

430/430

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	Contents
	List of tables
	List of figures
	1 Central processing unit (CPU)
	1.1 Introduction
	1.2 CPU registers
	1.2.1 Description of CPU registers
	Accumulator (A)
	Index registers (X and Y)
	Program counter (PC)
	Stack pointer (SP)
	Condition code register (CC)

	1.2.2 STM8 CPU register map

	1.3 Global configuration register (CFG_GCR)
	1.3.1 Activation level
	1.3.2 SWIM disable
	1.3.3 Description of global configuration register (CFG_GCR)
	1.3.4 Global configuration register map and reset values

	2 Boot ROM
	3 Memory and register map
	3.1 Register description abbreviations

	4 Flash program memory and data EEPROM (FLASH)
	4.1 Introduction
	4.2 Glossary
	4.3 FLASH main features
	4.4 Memory organization
	4.4.1 User boot area (UBC)
	4.4.2 Data EEPROM (DATA)
	4.4.3 Main program area
	4.4.4 Option bytes

	4.5 Memory protection
	4.5.1 Readout protection
	4.5.2 Memory access security system (MASS)
	Enabling write access to the main program memory
	Enabling write access to the DATA area

	4.5.3 Enabling write access to option bytes

	4.6 Memory programming
	4.7 Read-while-write (RWW)
	4.7.1 Byte programming
	Automatic fast byte programming

	4.7.2 Word programming
	4.7.3 Block programming
	Standard block programming
	Fast block programming
	Block erasing

	4.7.4 Option byte programming

	4.8 ICP and IAP
	4.9 FLASH registers
	4.9.1 Flash control register 1 (FLASH_CR1)
	4.9.2 Flash control register 2 (FLASH_CR2)
	4.9.3 Flash complementary control register 2 (FLASH_NCR2)
	4.9.4 Flash protection register (FLASH_FPR)
	4.9.5 Flash protection register (FLASH_NFPR)
	4.9.6 Flash program memory unprotecting key register (FLASH_PUKR)
	4.9.7 Data EEPROM unprotection key register (FLASH_DUKR)
	4.9.8 Flash Status register (FLASH_IAPSR)
	4.9.9 Flash register map and reset values

	5 Single wire interface module (SWIM) and debug module (DM)
	5.1 Introduction
	5.2 Main features
	5.3 SWIM modes

	6 Power supply
	7 Reset (RST)
	7.1 Reset circuit description
	7.2 Internal reset sources
	7.2.1 Power-on reset (POR) and brown-out reset (BOR)
	7.2.2 Watchdog reset
	7.2.3 Software reset
	7.2.4 SWIM reset
	7.2.5 Illegal opcode reset
	7.2.6 EMS reset

	7.3 RST register description
	7.3.1 Reset status register (RST_SR)

	7.4 RST register map

	8 Clock control (CLK)
	8.1 Master clock sources
	8.1.1 HSE
	External crystal/ceramic resonator (HSE crystal)

	8.1.2 HSI
	Fast wakeup feature
	If the FHWU bit in the Internal clock register (CLK_ICKR) is set, this automatically selects the HSI clock as master clock after MCU wakeup from Halt or Active Halt (see Low Power chapter).
	Calibration

	8.1.3 LSI
	Calibration

	8.2 Master clock switching
	8.2.1 System startup
	8.2.2 Master clock switching procedures
	Automatic switching
	Manual switching

	8.3 Low speed clock selection
	8.4 CPU clock divider
	8.5 Peripheral clock gating (PCG)
	8.6 Clock security system (CSS)
	8.7 Clock-out capability (CCO)
	8.8 CLK interrupts
	8.9 CLK register description
	8.9.1 Internal clock register (CLK_ICKR)
	8.9.2 External clock register (CLK_ECKR)
	8.9.3 Clock master status register (CLK_CMSR)
	8.9.4 Clock master switch register (CLK_SWR)
	8.9.5 Switch control register (CLK_SWCR)
	8.9.6 Clock divider register (CLK_CKDIVR)
	8.9.7 Peripheral clock gating register 1 (CLK_PCKENR1)
	8.9.8 Peripheral clock gating register 2 (CLK_PCKENR2)
	8.9.9 Clock security system register (CLK_CSSR)
	8.9.10 Configurable clock output register (CLK_CCOR)
	8.9.11 CAN external clock control register (CLK_CANCCR)
	8.9.12 HSI clock calibration trimming register (CLK_HSITRIMR)
	8.9.13 SWIM clock control register (CLK_SWIMCCR)

	8.10 CLK register map

	9 Power management
	9.1 General considerations
	9.2 Clock management for low consumption
	9.2.1 Slowing down the system clock
	9.2.2 Peripheral clock gating

	9.3 Low power modes
	9.3.1 Wait mode
	9.3.2 Halt mode
	Fast clock wakeup

	9.3.3 Active Halt modes
	Main voltage regulator (MVR) auto power-off
	Fast clock wakeup

	9.4 Additional analog power controls
	9.4.1 Fast Flash wakeup from Halt mode
	9.4.2 Very low Flash consumption in Active Halt mode

	10 Interrupt controller (ITC)
	10.1 ITC introduction
	10.2 Interrupt masking and processing flow
	10.2.1 Servicing pending interrupts
	10.2.2 Interrupt sources
	Non-maskable interrupt sources
	Maskable interrupt sources

	10.3 Interrupts and low power modes
	10.4 Activation level/low power mode control
	10.5 Concurrent and nested interrupt management
	10.5.1 Concurrent interrupt management mode
	10.5.2 Nested interrupt management mode

	10.6 External interrupts
	10.7 Interrupt instructions
	10.8 Interrupt mapping
	10.9 ITC registers
	10.9.1 CPU Condition Code register interrupt bits (CCR)
	10.9.2 Software priority register x (ITC_SPRx)
	10.9.3 External interrupt control register 1 (EXTI_CR1)
	10.9.4 External interrupt control register 1 (EXTI_CR2)
	10.9.5 ITC register map and reset values

	11 General purpose I/O ports (GPIO)
	11.1 Introduction
	11.2 GPIO main features
	11.3 Port configuration and usage
	11.3.1 Input modes
	11.3.2 Output modes

	11.4 Reset configuration
	11.5 Unused I/O pins
	11.6 Low power modes
	11.7 Input mode details
	11.7.1 Alternate function Input
	11.7.2 Interrupt capability
	Interrupt masking

	11.7.3 Analog channels
	11.7.4 Schmitt trigger

	11.8 Output mode details
	11.8.1 Alternate function output
	11.8.2 Slope control

	11.9 GPIO registers
	11.9.1 Port x output data register (Px_ODR)
	11.9.2 Port x pin input register (Px_IDR)
	11.9.3 Port x data direction register (Px_DDR)
	11.9.4 Port x control register 1 (Px_CR1)
	11.9.5 Port x control register 2 (Px_CR2)
	11.9.6 GPIO register map and reset values

	12 Auto-wakeup (AWU)
	12.1 Introduction
	12.2 AWU functional description
	12.2.1 AWU operation
	Idle mode

	12.2.2 Time base selection
	12.2.3 LSI clock frequency measurement

	12.3 AWU registers
	12.3.1 Control/status register (AWU_CSR)
	12.3.2 Asynchronous prescaler register (AWU_APR)
	12.3.3 Timebase selection register (AWU_TBR)
	12.3.4 AWU register map and reset values

	13 Beeper (BEEP)
	13.1 Introduction
	13.2 BEEP functional description
	13.2.1 Beeper operation
	13.2.2 Beeper calibration

	13.3 BEEP registers
	13.3.1 Beep control/status register (BEEP_CSR)
	13.3.2 BEEP register map and reset values

	14 Independent watchdog (IWDG)
	14.1 Introduction
	14.2 IWDG functional description
	Hardware watchdog feature
	Timeout period

	14.3 IWDG registers
	14.3.1 Key register (IWDG_KR)
	14.3.2 Prescaler register (IWDG_PR)
	14.3.3 Reload register (IWDG_RLR)
	14.3.4 IWDG register map and reset values

	15 Window watchdog (WWDG)
	15.1 Introduction
	15.2 WWDG main features
	15.3 WWDG functional description
	15.4 Using Halt mode with the WWDG
	15.5 How to program the watchdog timeout
	15.6 WWDG low power modes
	15.7 Hardware watchdog option
	15.8 Using Halt mode with the WWDG (WWDGHALT option)
	15.9 WWDG interrupts
	15.10 WWDG registers
	15.10.1 Control register (WWDG_CR)
	15.10.2 Window register (WWDG_WR)

	15.11 Window watchdog register map and reset values

	16 Timer overview
	16.1 Timer feature comparison
	16.2 Glossary of timer signal names

	17 16-bit advanced control timer (TIM1)
	17.1 Introduction
	17.2 TIM1 main features
	17.3 TIM1 time base unit
	17.3.1 Reading and writing to the 16-bit counter
	17.3.2 Write sequence for 16-bit TIM1_ARR register
	17.3.3 Prescaler
	17.3.4 Up-counting mode
	17.3.5 Down-counting mode
	17.3.6 Center-aligned mode (up/down counting)
	17.3.7 Repetition down-counter

	17.4 TIM1 clock/trigger controller
	17.4.1 Prescaler clock (CK_PSC)
	17.4.2 Internal clock source (fMASTER)
	17.4.3 External clock source mode 1
	17.4.4 External clock source mode 2
	17.4.5 Trigger synchronization
	Trigger standard mode
	Trigger reset mode
	Trigger gated mode
	Combining trigger modes with external clock mode 2

	17.4.6 Synchronization from TIM5/TIM6 timers
	Using one timer as prescaler for another timer
	Using one timer to enable another timer
	Using one timer to start another timer
	Starting 2 timers synchronously in response to an external trigger

	17.5 TIM1 capture/compare channels
	17.5.1 Write sequence for 16-bit TIM1_CCRi registers
	17.5.2 Input stage
	17.5.3 Input capture mode
	PWM input signal measurement

	17.5.4 Output stage
	17.5.5 Forced output mode
	17.5.6 Output compare mode
	17.5.7 PWM mode
	PWM edge-aligned mode
	PWM center-aligned mode
	One pulse mode
	Complementary outputs and dead-time insertion
	Re-directing OCiREF to OCi or OCiN
	6-step PWM generation for motor control

	17.5.8 Using the break function
	17.5.9 Clearing the OCiREF signal on an external event
	17.5.10 Encoder interface mode

	17.6 TIM1 interrupts
	17.7 TIM1 registers
	17.7.1 Control register 1 (TIM1_CR1)
	17.7.2 Control register 2 (TIM1_CR2)
	17.7.3 Slave mode control register (TIM1_SMCR)
	17.7.4 External trigger register (TIM1_ETR)
	17.7.5 Interrupt enable register (TIM1_IER)
	17.7.6 Status register 1 (TIM1_SR1)
	17.7.7 Status register 2 (TIM1_SR2)
	17.7.8 Event generation register (TIM1_EGR)
	17.7.9 Capture/compare mode register 1 (TIM1_CCMR1)
	17.7.10 Capture/compare mode register 2 (TIM1_CCMR2)
	17.7.11 Capture/compare mode register 3 (TIM1_CCMR3)
	17.7.12 Capture/compare mode register 4 (TIM1_CCMR4)
	17.7.13 Capture/compare enable register 1 (TIM1_CCER1)
	17.7.14 Capture/compare enable register 2 (TIM1_CCER2)
	17.7.15 Counter high (TIM1_CNTRH)
	17.7.16 Counter low (TIM1_CNTRL)
	17.7.17 Prescaler high (TIM1_PSCRH)
	17.7.18 Prescaler low (TIM1_PSCRL)
	17.7.19 Auto-reload register high (TIM1_ARRH)
	17.7.20 Auto-reload register low (TIM1_ARRL)
	17.7.21 Repetition counter register (TIM1_RCR)
	17.7.22 Capture/compare register 1 high (TIM1_CCR1H)
	17.7.23 Capture/compare register 1 low (TIM1_CCR1L)
	17.7.24 Capture/compare register 2 high (TIM1_CCR2H)
	17.7.25 Capture/compare register 2 low (TIM1_CCR2L)
	17.7.26 Capture/compare register 3 high (TIM1_CCR3H)
	17.7.27 Capture/compare register 3 low (TIM1_CCR3L)
	17.7.28 Capture/compare register 4 high (TIM1_CCR4H)
	17.7.29 Capture/compare register 4 low (TIM1_CCR4L)
	17.7.30 Break register (TIM1_BKR)
	17.7.31 Dead-time register (TIM1_DTR)
	17.7.32 Output idle state register (TIM1_OISR)
	17.7.33 TIM1 register map and reset values

	18 16-bit general purpose timers (TIM2, TIM3, TIM5)
	18.1 Introduction
	18.2 TIM2/TIM3 main features
	18.3 TIM5 main features
	18.4 TIM2/TIM3/TIM5 functional description
	18.4.1 Time base unit
	Prescaler
	Counter operation

	18.4.2 Clock/trigger controller
	18.4.3 Capture/compare channels
	Input stage
	Output stage

	18.5 TIM2/TIM3/TIM5 interrupts
	18.6 TIM2/TIM3/TIM5 registers
	18.6.1 Control register 1 (TIMx_CR1)
	18.6.2 Control register 2 (TIM5_CR2)
	18.6.3 Slave mode control register (TIM5_SMCR)
	18.6.4 Interrupt enable register (TIMx_IER)
	18.6.5 Status register 1 (TIMx_SR1)
	18.6.6 Status register 2 (TIMx_SR2)
	18.6.7 Event generation register (TIMx_EGR)
	18.6.8 Capture/compare mode register 1 (TIMx_CCMR1)
	18.6.9 Capture/compare mode register 2 (TIMx_CCMR2)
	18.6.10 Capture/compare mode register 3 (TIMx_CCMR3)
	18.6.11 Capture/compare enable register 1 (TIMx_CCER1)
	18.6.12 Capture/compare enable register 2 (TIMx_CCER2)
	18.6.13 Counter high (TIMx_CNTRH)
	18.6.14 Counter low (TIMx_CNTRL)
	18.6.15 Prescaler register (TIMx_PSCR)
	18.6.16 Auto-reload register high (TIMx_ARRH)
	18.6.17 Auto-reload register low (TIMx_ARRL)
	18.6.18 Capture/compare register 1 high (TIMx_CCR1H)
	18.6.19 Capture/compare register 1 low (TIMx_CCR1L)
	18.6.20 Capture/compare register 2 high (TIMx_CCR2H)
	18.6.21 Capture/compare register 2 low (TIMx_CCR2L)
	18.6.22 Capture/compare register 3 high (TIMx_CCR3H)
	18.6.23 Capture/compare register 3 low (TIMx_CCR3L)
	18.6.24 TIM2/TIM3/TIM5 register map and reset values

	19 8-bit basic timer (TIM4, TIM6)
	19.1 Introduction
	19.2 TIM4 main features
	19.3 TIM6 main features
	19.4 TIM4/TIM6 interrupts
	19.5 TIM4/TIM6 clock selection
	Prescaler

	19.6 TIM4/TIM6 registers
	19.6.1 Control register 1 (TIMx_CR1)
	19.6.2 Control register 2 (TIM6_CR2)
	19.6.3 Slave mode control register (TIM6_SMCR)
	19.6.4 Interrupt enable register (TIMx_IER)
	19.6.5 Status register 1 (TIMx_SR1)
	19.6.6 Event generation register (TIMx_EGR)
	19.6.7 Counter (TIMx_CNTR)
	19.6.8 Prescaler register (TIMx_PSCR)
	19.6.9 Auto-reload register (TIMx_ARR)
	19.6.10 TIM4/TIM6 register map and reset values

	20 Serial peripheral interface (SPI)
	20.1 Introduction
	20.2 SPI main features
	20.3 SPI functional description
	20.3.1 General description
	Slave select (NSS) pin management
	Clock phase and clock polarity
	Frame format

	20.3.2 SPI slave mode
	Procedure
	Transmit sequence

	20.3.3 SPI master mode
	Procedure
	Transmit sequence

	20.3.4 Simplex communication
	1 Clock and 1 bi-directional data wire
	1 Clock and 1 data wire (Rx-only or full duplex)
	Receive-only mode

	20.3.5 Status flags
	Busy flag
	Tx buffer empty flag (TXE)
	Rx buffer not empty (RXNE)

	20.3.6 CRC calculation
	20.3.7 Error flags
	Master mode fault (MODF)
	Overrun condition
	CRC error

	20.3.8 Disabling the SPI
	20.3.9 SPI low power modes
	Using the SPI to wake up the device from Halt mode
	- Full duplex and half duplex transmit-only modes
	- Half duplex receive-only mode

	20.3.10 SPI interrupts

	20.4 SPI registers
	20.4.1 SPI control register 1 (SPI_CR1)
	20.4.2 SPI control register 2 (SPI_CR2)
	20.4.3 SPI interrupt control register (SPI_ICR)
	20.4.4 SPI status register (SPI_SR)
	20.4.5 SPI data register (SPI_DR)
	20.4.6 SPI CRC polynomial register (SPI_CRCPR)
	20.4.7 SPI Rx CRC register (SPI_RXCRCR)
	20.4.8 SPI Tx CRC register (SPI_TXCRCR)

	20.5 SPI register map and reset values

	21 Inter-integrated circuit (I2C) Interface
	21.1 Introduction
	21.2 I2C main features
	21.3 I2C general description
	Mode selection

	21.4 I2C functional description
	21.4.1 I2C slave mode
	Slave transmitter
	Slave receiver
	Closing slave communication

	21.4.2 I2C master mode
	Start condition
	Slave address transmission
	Master transmitter
	Closing the communication
	Master receiver
	Closing the communication

	21.4.3 Error conditions
	Bus error (BERR)
	Acknowledge failure (AF)
	Arbitration lost (ARLO)
	Overrun/underrun error (OVR)

	21.4.4 SDA/SCL line control

	21.5 I2C low power modes
	21.6 I2C interrupts
	21.7 I2C registers
	21.7.1 Control register 1 (I2C_CR1)
	21.7.2 Control register 2 (I2C_CR2)
	21.7.3 Frequency register (I2C_FREQR)
	21.7.4 Own address register LSB (I2C_OARL)
	21.7.5 Own address register MSB (I2C_OARH)
	21.7.6 Data register (I2C_DR)
	21.7.7 Status register 1 (I2C_SR1)
	21.7.8 Status register 2 (I2C_SR2)
	21.7.9 Status register 3 (I2C_SR3)
	21.7.10 Interrupt register (I2C_ITR)
	21.7.11 Clock control register low (I2C_CCRL)
	21.7.12 Clock control register high (I2C_CCRH)
	21.7.13 TRISE register (I2C_TRISER)
	21.7.14 I2C register map and reset values

	22 Universal asynchronous receiver transmitter (UART)
	22.1 Introduction
	22.2 UART main features
	22.3 UART functional description
	22.3.1 UART character description
	22.3.2 Transmitter
	Character transmission
	Configurable stop bits
	Single byte communication
	Break character
	Idle character

	22.3.3 Receiver
	Character reception
	Break character
	Idle character
	Overrun error
	Noise error
	Framing error
	Configurable stop bits during reception:

	22.3.4 High precision baud rate generator
	22.3.5 Parity control
	22.3.6 Multi-processor communication
	Idle line detection (WAKE=0)
	Address mark detection (WAKE=1)

	22.3.7 LIN (local interconnection network) mode
	22.3.8 UART synchronous communication
	22.3.9 Single wire half duplex communication
	22.3.10 Smartcard
	22.3.11 IrDA SIR ENDEC block
	IrDA low-power mode

	22.4 LIN mode functional description
	22.4.1 Master mode
	UART initialization
	LIN header transmission
	LIN break and delimiter detection
	Response transmission (master is the publisher of the response)
	Response reception (master is the subscriber of the response)
	Discard Response (slave to slave communication)

	22.4.2 Slave mode with automatic resynchronization disabled
	UART initialization
	LIN Header reception
	Response transmission (slave is the publisher of the response)
	Response reception (slave is the subscriber of the response)
	Discard Response
	LIN header error detection
	LIN header time-out error
	Mute mode and errors

	22.4.3 Slave mode with automatic resynchronization enabled
	Automatic resynchronization
	LIN header error detection
	LIN header time-out error
	UART clock tolerance when synchronized
	UART clock tolerance when unsynchronized
	Clock deviation causes
	Error due to LIN synch measurement
	Error due to baud rate quantization
	Impact of clock deviation on maximum baud rate

	22.4.4 LIN mode selection

	22.5 UART low power modes
	22.6 UART interrupts
	22.7 UART registers
	22.7.1 Status register (UART_SR)
	22.7.2 Data register (UART_DR)
	22.7.3 Baud rate register 1 (UART_BRR1)
	22.7.4 Baud rate register 2 (UART_BRR2)
	22.7.5 Control register 1 (UART_CR1)
	22.7.6 Control register 2 (UART_CR2)
	22.7.7 Control register 3 (UART_CR3)
	22.7.8 Control register 4 (UART_CR4)
	22.7.9 Control register 5 (UART_CR5)
	22.7.10 Control register 6 (UART_CR6)
	22.7.11 Guard time register (UART_GTR)
	22.7.12 Prescaler register (UART_PSCR)
	22.7.13 UART register map and reset values

	23 Controller area network (beCAN)
	23.1 Introduction
	23.2 beCAN main features
	23.3 beCAN general description
	23.3.1 CAN 2.0B active core
	23.3.2 Control, status and configuration registers
	23.3.3 Tx mailboxes
	23.3.4 Acceptance filters

	23.4 Operating modes
	23.4.1 Initialization mode
	23.4.2 Normal mode
	23.4.3 Sleep mode (low power)
	23.4.4 Time triggered communication mode

	23.5 Test modes
	23.5.1 Silent mode
	23.5.2 Loop back mode
	23.5.3 Loop back combined with silent mode

	23.6 Functional description
	23.6.1 Transmission handling
	23.6.2 Reception handling
	23.6.3 Identifier filtering
	23.6.4 Message storage
	23.6.5 Error management
	23.6.6 Bit timing

	23.7 Interrupts
	23.8 Register access protection
	23.9 Clock system
	23.10 beCAN low power modes
	23.11 beCAN registers
	23.11.1 CAN master control register (CAN_MCR)
	23.11.2 CAN master status register (CAN_MSR)
	23.11.3 CAN transmit status register (CAN_TSR)
	23.11.4 CAN transmit priority register (CAN_TPR)
	23.11.5 CAN receive FIFO register (CAN_RFR)
	23.11.6 CAN interrupt enable register (CAN_IER)
	23.11.7 CAN diagnostic register (CAN_DGR)
	23.11.8 CAN page select register (CAN_PSR)
	23.11.9 CAN error status register (CAN_ESR)
	23.11.10 CAN error interrupt enable register (CAN_EIER)
	23.11.11 CAN transmit error counter register (CAN_TECR)
	23.11.12 CAN receive error counter register (CAN_RECR)
	23.11.13 CAN bit timing register 1 (CAN_BTR1)
	23.11.14 CAN bit timing register 2 (CAN_BTR2)
	23.11.15 Mailbox registers
	CAN message control/status register (CAN_MCSR)
	CAN mailbox filter match index register (CAN_MFMIR)
	CAN mailbox identifier register 1 (CAN_MIDR1)
	CAN mailbox identifier register 2 (CAN_MIDR2)
	CAN mailbox identifier register 3 (CAN_MIDR3)
	CAN mailbox identifier register 4 (CAN_MIDR4)
	CAN mailbox data length control register (CAN_MDLCR)
	CAN mailbox data register x (CAN_MDAR) (x= 1 .. 8)
	CAN mailbox time stamp register low (CAN_MTSRL)
	CAN mailbox time stamp register high (CAN_MTSRH)

	23.11.16 CAN filter registers
	CAN filter mode register 1 (CAN_FMR1)
	CAN filter mode register 2 (CAN_FMR2)
	CAN filter configuration register 1 (CAN_FCR1)
	CAN filter configuration register 2 (CAN_FCR2)
	CAN filter configuration register 3 (CAN_FCR3)
	CAN filter bank i register x (CAN_FiRx) (i = 0 .. 5, x = 1 .. 8)

	23.12 CAN register map
	23.12.1 Page mapping for CAN

	24 Analog/digital converter (ADC)
	24.1 Introduction
	24.2 ADC main features
	24.3 ADC extended features
	24.4 ADC pins
	24.5 ADC functional description
	24.5.1 ADC on-off control
	24.5.2 ADC clock
	24.5.3 Channel selection
	24.5.4 Conversion modes
	Single mode
	Continuous and buffered continuous modes
	Single scan mode
	Continuous scan mode

	24.5.5 Overrun flag
	24.5.6 Analog watchdog
	24.5.7 Conversion on external trigger
	24.5.8 Analog zooming
	24.5.9 Timing diagram

	24.6 ADC low power modes
	24.7 ADC interrupts
	24.8 Data alignment
	24.9 Reading the conversion result
	24.10 Schmitt trigger disable registers
	24.11 ADC registers
	24.11.1 ADC data buffer register x high (ADC_DBxRH) (x=0..7 or 0..9)
	24.11.2 ADC data buffer register x low (ADC_DBxRL) (x=or 0..7 or 0..9)
	24.11.3 ADC control/status register (ADC_CSR)
	24.11.4 ADC configuration register 1 (ADC_CR1)
	24.11.5 ADC configuration register 2 (ADC_CR2)
	24.11.6 ADC configuration register 3 (ADC_CR3)
	24.11.7 ADC data register high (ADC_DRH)
	24.11.8 ADC data register low (ADC_DRL)
	24.11.9 ADC Schmitt trigger disable register high (ADC_TDRH)
	24.11.10 ADC Schmitt trigger disable register low (ADC_TDRL)
	24.11.11 ADC high threshold register high (ADC_HTRH)
	24.11.12 ADC high threshold register low (ADC_HTRL)
	24.11.13 ADC low threshold register high (ADC_LTRH)
	24.11.14 ADC low threshold register low (ADC_LTRL)
	24.11.15 ADC watchdog status register high (ADC_AWSRH)
	24.11.16 ADC watchdog status register low (ADC_AWSRL)
	24.11.17 ADC watchdog control register high (ADC_AWCRH)
	24.11.18 ADC watchdog control register low (ADC_AWCRL)

	24.12 ADC register map and reset values

	25 Revision history
	Index

